Research Article

Jaume Llibre* and Ammar Makhlouf

Periodic solutions for periodic second-order differential equations with variable potentials

https://doi.org/10.1515/jaa-2018-0013
Received October 12, 2017; revised February 2, 2018; accepted February 5, 2018

Abstract

We provide sufficient conditions for the existence of periodic solutions of the second-order differential equation with variable potentials $-\left(p x^{\prime}\right)^{\prime}(t)-r(t) p(t) x^{\prime}(t)+q(t) x(t)=f(t, x(t))$, where the functions $p(t)>0, q(t), r(t)$ and $f(t, x)$ are \mathcal{C}^{2} and T-periodic in the variable t.

Keywords: Periodic orbit, third-order differential equation, quadratic system, averaging theory
MSC 2010: 37G15, 37C80, 37C30

1 Introduction and statement of the main result

We want to study the periodic solutions of the second-order differential equation with variable potentials given by

$$
\begin{equation*}
-\left(p x^{\prime}\right)^{\prime}(t)-r(t) p(t) x^{\prime}(t)+q(t) x(t)=f(t, x(t)), \tag{1.1}
\end{equation*}
$$

where the functions $p(t)>0, q(t), r(t)$ and $f(t, x)$ are T-periodic. Here the prime denotes derivative with respect to the time t.

The T-periodic differential equation (1.1) has been considered by several authors. Liu, Ge and Gui [6] (see also [2]) studied it with $r(t)=0$. Graef, Kong and Wang [5] give an extensive analysis when the functions $p(t), q(t)$ and $r(t)$ are constant. More recently, Anderson and Avery [3] also studied the periodic solutions of the differential equation (1.1) with $p(t)>0, q(t)>0$ and $r(t) \geq 0$.

Here we study the periodic solutions of the differential equation (1.1) with the unique basic assumption that the functions $p(t)>0, q(t), r(t)$ and $f(t, x)$ are \mathcal{C}^{2} and T-periodic in the variable t.

Instead of working with the T-periodic second-order differential equation (1.1), we shall work with the following equivalent T-periodic differential system of first order:

$$
\begin{align*}
& x^{\prime}=y, \\
& y^{\prime}=\frac{q(t)}{p(t)} x-\left(r(t)+\frac{p^{\prime}(t)}{p(t)}\right) y-\frac{f(t, x)}{p(t)} . \tag{1.2}
\end{align*}
$$

Our results on the periodic solutions of the differential system (1.2) are summarized in the next theorem.
Theorem 1. We consider the differential system (1.2), where the functions $p(t)>0, q(t), r(t)$ and $f(t, x)$ are \mathcal{C}^{2} and T-periodic in the variable t. Then the following statements hold.

[^0]
[^0]: *Corresponding author: Jaume Llibre, Departament de Matematiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain, e-mail: jllibre@mat.uab.cat. http://orcid.org/0000-0002-9511-5999
 Ammar Makhlouf, Department of Mathematics, University of Annaba, Elhadjar 23 Annaba, Algeria,
 e-mail: makhloufamar@yahoo.fr

