THE HILBERT NUMBER OF A CLASS OF DIFFERENTIAL EQUATIONS*

Jaume Llibre^{1,†} and Ammar Makhlouf²

Abstract The notion of Hilbert number from polynomial differential systems in the plane of degree n can be extended to the differential equations of the form

$$\frac{dr}{d\theta} = \frac{a(\theta)}{\sum_{j=0}^{n} a_j(\theta) r^j} \tag{*}$$

defined in the region of the cylinder $(\theta, r) \in \mathbb{S}^1 \times \mathbb{R}$ where the denominator of (*) does not vanish. Here a, a_0, a_1, \ldots, a_n are analytic 2π -periodic functions, and the *Hilbert number* $\mathbb{H}(n)$ is the supremum of the number of limit cycles that any differential equation (*) on the cylinder of degree n in the variable r can have. We prove that $\mathbb{H}(n) = \infty$ for all $n \geq 1$.

 ${\bf Keywords}\,$ Periodic orbit, averaging theory, trigonometric polynomial, Hilbert number.

MSC(2000) 34C29, 37C27.

1. Introduction

In the article [6] Lins Neto studied the following problem posed by Charles Pugh.

Problem 1. Let $a_0, a_1, \ldots, a_n : \mathbb{S}^1 \to \mathbb{R}$ be continuous 2π -periodic functions and consider the differential equation

$$\frac{dr}{d\theta} = a_0(\theta) + a_1(\theta)r + \ldots + a_n(\theta)r^n, \qquad (1.1)$$

on the cylinder $(\theta, r) \in \mathbb{S}^1 \times \mathbb{R}$. Then the problem is to know the number of isolated periodic solutions (i.e. limit cycles) of the differential equation (1.1) in function of n.

Problem 1 was motivated by the Hilbert's 16–th problem (see for instance [3-5]), because some polynomial differential systems in the plane can be reduced to equations (1.1) as all the polynomial differential systems of degree 2 (see for instance the proposition of [6]), all polynomial differential systems with the linear center

 $^{^\}dagger {\rm the\ corresponding\ author.\ Email\ address:\ jllibre@mat.uab.cat\ (J.\ Llibre)$

¹Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

 $^{^{2}\}mathrm{Department}$ of mathematics, UBMA University Annaba, Elhadjar, BP12, Annaba, Algeria

^{*}The first author is partially supported by a MINECO/FEDER grant MT-M 2008-03437 and MTM2013-40998-P, an AGAUR grant number 2014 S-GR568, an ICREA Academia, the grants FP7-PEOPLE-2012-IRSES 318999 and 316338, FEDER-UNAB-10-4E-378.