THE HILBERT NUMBER OF A CLASS OF DIFFERENTIAL EQUATIONS*

Jaume Llibre ${ }^{1, \dagger}$ and Ammar Makhlouf ${ }^{2}$

Abstract

The notion of Hilbert number from polynomial differential systems in the plane of degree n can be extended to the differential equations of the form $$
\begin{equation*} \frac{d r}{d \theta}=\frac{a(\theta)}{\sum_{j=0}^{n} a_{j}(\theta) r^{j}} \tag{*} \end{equation*}
$$ defined in the region of the cylinder $(\theta, r) \in \mathbb{S}^{1} \times \mathbb{R}$ where the denominator of $(*)$ does not vanish. Here $a, a_{0}, a_{1}, \ldots, a_{n}$ are analytic 2π-periodic functions, and the Hilbert number $\mathbb{H}(n)$ is the supremum of the number of limit cycles that any differential equation $(*)$ on the cylinder of degree n in the variable r can have. We prove that $\mathbb{H}(n)=\infty$ for all $n \geq 1$.

Keywords Periodic orbit, averaging theory, trigonometric polynomial, Hilbert number.

MSC(2000) 34C29, 37C27.

1. Introduction

In the article [6] Lins Neto studied the following problem posed by Charles Pugh.
Problem 1. Let $a_{0}, a_{1}, \ldots, a_{n}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ be continuous 2π-periodic functions and consider the differential equation

$$
\begin{equation*}
\frac{d r}{d \theta}=a_{0}(\theta)+a_{1}(\theta) r+\ldots+a_{n}(\theta) r^{n} \tag{1.1}
\end{equation*}
$$

on the cylinder $(\theta, r) \in \mathbb{S}^{1} \times \mathbb{R}$. Then the problem is to know the number of isolated periodic solutions (i.e. limit cycles) of the differential equation (1.1) in function of n.

Problem 1 was motivated by the Hilbert's 16 -th problem (see for instance [35]), because some polynomial differential systems in the plane can be reduced to equations (1.1) as all the polynomial differential systems of degree 2 (see for instance the proposition of [6]), all polynomial differential systems with the linear center

[^0]
[^0]: ${ }^{\dagger}$ the corresponding author. Email address: jllibre@mat.uab.cat (J. Llibre)
 ${ }^{1}$ Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
 ${ }^{2}$ Department of mathematics, UBMA University Annaba, Elhadjar, BP12, Annaba, Algeria
 *The first author is partially supported by a MINECO/FEDER grant MTM 2008-03437 and MTM2013-40998-P, an AGAUR grant number 2014 SGR568, an ICREA Academia, the grants FP7-PEOPLE-2012-IRSES 318999 and 316338, FEDER-UNAB-10-4E-378.

