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PHASE PORTRAITS OF LINEAR TYPE CENTERS OF POLYNOMIAL
HAMILTONIAN SYSTEMS WITH HAMILTONIAN FUNCTION OF DEGREE 5
OF THE FORM H = H,(z) + Ha(y)

JAUME LLIBRE, Y. PAULINA MARTINEZ, AND CLAUDIO VIDAL

ABSTRACT. We study the phase portraits on the Poincaré disc for all the linear type centers of polynomial

Hamiltonian systems of degree 5 with Hamiltonian function H(z,y) = Hi(z) + H2(y), where Hi(z) =

%12 + % a8+ g+ 8555 and Ha(y) = %yQ + %33/3 + %y4 + %”y5 as function of the six real parameters

as,a4,as,bz,bs and bs with asbs # 0.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Consider the polynomial differential systems in R? of the form

(1) &= Pz,y), ¥=Qy),
the dot denotes derivative with respect to an independent real variable ¢, usually called the time. We
assume that the origin (0,0) is an equilibrium of system (1).

We say that the origin is a center if there exists a neighborhood U of the origin such that all the orbits
of system (1) in U \ {(0,0)} are periodic. Poincaré [23] and Dulac [11] began the study of this type of
equilibria, in the present days many questions on the centers remain open.

If the origin of system (1) is a center, then after introducing a linear change of variables and a scaling
of the time, system (1) can be carried to one of three normal forms:

:t:_y""PQ(xay)v y:$+Q2(x,y),

called a linear type center,

J,‘Zy—FPQ(J),y), y:QQ(l‘ay)7
called a nilpotent center,

j;:PQ(xay)v y:QQ(xvy)a
called a degenerate center, where Pa(x,y) and Q2(x,y) are polynomials without constant and linear terms.
In this work we deal with a particular polynomial differential systems in R? of the form

(2) &=—y+Pi(y), §=x+P(x),
where Py (y) and Py(z) are polynomials without constant and linear terms.

The classification of centers of quadratic differential systems started with the works of Dulac [11],
Kapteyn [15, 16] and Bautin [4], and the characterization of their phase portraits in the Poincaré disc
was due to Vulpe [25]. There are many partial results for the centers of polynomial differential systems of
degree larger than 2. Malkin [18], and Vulpe and Sibirsky [26] characterized the linear type centers of the
polynomial differential systems with linear and homogeneous nonlinearities of degree 3. The centers for
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