On the invariant hyperplanes for \boldsymbol{d}-dimensional polynomial vector fields

Jaume Llibre ${ }^{1}$ and João C Medrado ${ }^{2}$
${ }^{1}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{2}$ Instituto de Matemática e Estatística, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
E-mail: jllibre@mat.uab.cat and medrado@mat.ufg.br

Received 14 December 2006, in final form 4 June 2007
Published 3 July 2007
Online at stacks.iop.org/JPhysA/40/8385

Abstract

We deal with polynomial vector fields \mathcal{X} of the form $\sum_{k=1}^{d} P_{k}\left(x_{1}, \ldots, x_{d}\right) \partial / \partial x_{k}$ with $d \geqslant 2$. Let m_{k} be the degree of P_{k}. We call $\left(m_{1}, \ldots, m_{d}\right)$ the degree of \mathcal{X}. We provide the best upper bounds for the polynomial vector field \mathcal{X} in the function of its degree $\left(m_{1}, \ldots, m_{d}\right)$ of (1) the maximal number of invariant hyperplanes, (2) the maximal number of parallel invariant hyperplanes, and (3) the maximal number of invariant hyperplanes that pass through a single point. Moreover, if $m_{i}=m, i=1, \ldots, d$, we show that these best upper bounds are reached taking into account the multiplicity of the invariant hyperplanes.

PACS numbers: 02.40.Sf, 02.30.Hq, 02.60.Nm
Mathematics Subject Classification: 58F14, 58F22, 34C05

1. Introduction and statement of the results

As usual we denote by $\mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$ the ring of the polynomials in the variables x_{1}, \ldots, x_{d} with coefficients in \mathbb{C}. By definition a polynomial differential system in \mathbb{C}^{d} is a system of the form

$$
\begin{equation*}
\frac{\mathrm{d} x_{i}}{\mathrm{~d} t}=P_{i}\left(x_{1}, \ldots, x_{d}\right), \quad i=1, \ldots, d, \tag{1}
\end{equation*}
$$

where $P_{i} \in \mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$. If m_{i} is the degree of P_{i}, then we say that $\mathbf{m}=\left(m_{1}, \ldots, m_{d}\right)$ is the degree of the polynomial system. Without loss of generality in the rest of the paper we assume that $m_{1} \geqslant \cdots \geqslant m_{d}$.

We denote by

$$
\begin{equation*}
\mathcal{X}=\sum_{i=1}^{d} P_{i}\left(x_{1}, \ldots, x_{d}\right) \frac{\partial}{\partial x_{i}} \tag{2}
\end{equation*}
$$

the polynomial vector field associated with system (1) of degree \mathbf{m}.

