Limit cycles, invariant meridians and parallels for polynomial vector fields on the torus ${ }^{*}$

Jaume Llibre ${ }^{\mathrm{a}, *}$, João C. Medrado ${ }^{\text {b }}$
${ }^{\text {a }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{\text {b }}$ Instituto de Matemática e Estatística, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
Received 2 June 2010
Available online 30 June 2010

Abstract

We study the polynomial vector fields of arbitrary degree in \mathbb{R}^{3} having the 2-dimensional torus $$
\mathbb{T}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}:\left(x^{2}+y^{2}-a^{2}\right)^{2}+z^{2}=1\right\} \quad \text { with } a>1,
$$ invariant by their flow. We characterize all the possible configurations of invariant meridians and parallels that these vector fields can exhibit. Furthermore we analyze when these invariant either meridians or parallels can be limit cycles.

© 2010 Elsevier Masson SAS. All rights reserved.
MSC: 58F14; 58F22; 34C05
Keywords: Polynomial vector fields; Invariant parallel; Invariant meridian; Limit cycle; Periodic orbit

1. Introduction and statement of the results

Polynomial vector fields or equivalently polynomial differential equations in the plane have been intensively studied since 1900 due to the second part of the 16th Hilbert problem, which mainly states: Provide un upper bound for the maximum number of limit cycles that a given polynomial vector field of degree n can exhibit in function of n; for more details see $[6,7,9]$.

[^0]
[^0]: 4* The first author is partially supported by a MEC/FEDER grant number MTM2008-03437, by a CICYT grant number 2009SGR 410 and by ICREA Academia. The second author is partially supported by CNPQ and CAPES grants. All authors are also supported by the joint project CAPES-MECD grant PHB-2009-0025-PC and AUXPE-DGU 15/2010.

 * Corresponding author.

 E-mail addresses: jllibre@mat.uab.cat (J. Llibre), medrado@mat.ufg.br (J.C. Medrado).

