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Limit cycles for Singular Perturbation Problems via Inverse

Integrating Factor
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abstract: In this paper singularly perturbed vector fields Xε defined in R
2 are

discussed. The main results use the solutions of the linear partial differential equa-
tion XεV = div(Xε)V to give conditions for the existence of limit cycles converging
to a singular orbit with respect to the Hausdorff distance.
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1. Introduction and statement of the main results

The present work fits within the geometric study of singular perturbation prob-
lems expressed by one–parameter families of vector fields Xε : R

2 −→ R
2 where

Xε(x, y) = (f(x, y, ε), εg(x, y, ε)) (1)

with ε ≥ 0, f, g ∈ Cr for r ≥ 1 or f, g ∈ C$ for which we want to study the phase
portrait, for sufficient small ε, near the set of singular points of X0 :

Σ = {(x, y) ∈ R
2 : f(x, y, 0) = 0}.

Special emphasis will be given on systems which the solutions of the linear
partial differential equation

XεV := f
∂V

∂x
+ εg

∂V

∂y
= div (Xε) V

are known.
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