

Limit cycles for Singular Perturbation Problems via Inverse Integrating Factor

Jaume Llibre, João C.R. Medrado, Paulo R. da Silva

ABSTRACT: In this paper singularly perturbed vector fields X_{ε} defined in \mathbb{R}^2 are discussed. The main results use the solutions of the linear partial differential equation $X_{\varepsilon}V=\operatorname{div}(X_{\varepsilon})V$ to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance.

Key Words: Limit cycles, vector fields, singular perturbation, inverse integrating factor.

Contents

1	Introduction and statement of the main results	41
2	Basic facts of GSP-theory and inverse integrating factor 2.1 The GSP-theory	
3	Proof of the main results	45
4	Examples and applications	46

1. Introduction and statement of the main results

The present work fits within the geometric study of singular perturbation problems expressed by one–parameter families of vector fields $X_{\varepsilon}: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ where

$$X_{\varepsilon}(x,y) = (f(x,y,\varepsilon), \varepsilon g(x,y,\varepsilon)) \tag{1}$$

with $\varepsilon \geq 0$, $f,g \in C^r$ for $r \geq 1$ or $f,g \in C^{\varpi}$ for which we want to study the phase portrait, for sufficient small ε , near the set of singular points of X_0 :

$$\Sigma = \{ (x, y) \in \mathbb{R}^2 : f(x, y, 0) = 0 \}.$$

Special emphasis will be given on systems which the solutions of the linear partial differential equation

$$X_{\varepsilon}V := f \frac{\partial V}{\partial x} + \varepsilon g \frac{\partial V}{\partial y} = \operatorname{div}(X_{\varepsilon}) V$$

are known.

2000 Mathematics Subject Classification: 34C25,34C35,34E15