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Abstract. We characterize all the planar polynomial differential systems with a unique invariant algebraic curve given by a
real conic and having a Darboux invariant.
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1. Introduction and statement of the main results

Real planar polynomial differential systems appear in many branches of applied mathematics, physics,
and, in general, in applied sciences. For such differential systems, the existence of a first integral deter-
mines completely their phase portrait. The first integrals depending on the time, i.e., on the independent
variable of the differential system, are called invariants. A special class of invariants is the Darboux
invariants. As we shall see the invariants instead of determining the phase portrait of the system, we
determine its α− and ω−limit sets in the compactified polynomial differential system. That is, the Dar-
boux invariants allow to describe the sets where all the orbits born or die.

In general, it is a very difficult problem to recognize when a given polynomial differential system in the
plane has or not a first integral or a Darboux invariant. The goal of this paper is to classify all polynomial
differential systems in the plane R

2 having a Darboux invariant and a unique invariant algebraic curve
given by a conic.

Let K[x, y] be the ring of the polynomials in the variables x and y with coefficients in K, where K is
either R or C. We consider the polynomial differential system in R

2 defined by

ẋ = P (x, y), ẏ = Q(x, y), (1)

where P,Q ∈ R[x, y], P and Q are relatively prime in R[x, y], and the dot denotes derivative with respect
to the independent variable t usually called the time.

We say that m = max{deg P,deg Q} is the degree of system (1). We associate with system (1) the
vector field

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
.
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