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Abstract
Recently, Alves, Hric and Sousa Ramos proved that for any continuous
piecewise monotone map of a graph into itself, its topological entropy is equal
to the maximum of two quantities. The first one is the (exponential) upper
growth rate, as n → ∞, of the number of periodic points of period n at which
the orientation is reversed. The second one is the logarithm of the spectral
radius of the map induced in the first homology group.

We extend the essential part of this theorem to arbitrary continuous maps
of a graph into itself and provide a substantially shorter proof of the whole
theorem.
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1. Introduction

Recently, Alves et al [3] proved that for any continuous piecewise monotone map of a graph
to itself, its topological entropy is equal to the maximum of two quantities. The first one is the
(exponential) upper growth rate, as n → ∞, of the number of periodic points of period n at
which the orientation is reversed. The second one is the logarithm of the spectral radius of the
map induced in the first homology group. (We will give all necessary definitions in the next
section.)

This equality can be understood as follows. Since the entropy of continuous graph maps
is given by horseshoes (see [5]), the upper growth rate of the number of periodic points should
be equal to the entropy, if periodic points are counted in the right way (that is, sometimes we
count a whole class of periodic points as one point). If there are not enough ‘negative’ ones,
the only way we can get from a ‘positive’ one to the next ‘positive’ one is to go around some
circuit in the graph, and this causes a sufficiently big spectral radius of the map in the first
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