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NEW FAMILY OF CENTERS OF PLANAR
POLYNOMIAL DIFFERENTIAL SYSTEMS OF

ARBITRARY EVEN DEGREE

JAUME LLIBRE1, MARZIEH MOUSAVI2 AND AREFEH NABAVI2

Abstract. The problem of distinguish between a focus and a
center is one of the classical problems in the qualitative theory
of planar differential systems. In this paper we provide a new
family of centers of polynomial differential systems of arbitrary
even degree. Moreover, we classify the global phase portraits in
the Poincaré disc of the centers of this family having degree 2, 4
and 6.

1. Introduction and statement of the main results

Let P (x, y) and Q(x, y) be two real polynomials. In this work we
deal with polynomial differential systems in R

2 of the form

(1) ẋ = P (x, y), ẏ = Q(x, y),

where the dot denotes derivative with respect to an independent real
variable t, usually called the time. The degree of the polynomial dif-
ferential system (1) is the maximum of the degrees of the polynomials
P (x, y) and Q(x, y).

The origin O = (0, 0) of R
2 is a singular point for system (1) if

P (0, 0) = Q(0, 0) = 0.

When all the orbits of system (1) in a neighborhood U \ {O} of the
singular point O are periodic, we say that the origin O is a center.

If all the orbits of system (1) in a neighborhood U \ {O} of the
singular point O spiral to O when t → +∞ or when t → −∞, we say
that the origin is a focus.
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The center-focus problem consists in distinguishing when the singular
point O is either a center or a focus. The center-focus problem started
with Poincaré [11] and Dulac [1], and in the present days many ques-
tions about them remain open. More recent results on the center-focus
problem can be found in [3, 4, 5, 7] and in their references.

In this paper we consider the planar polynomial differential systems
of the form

(2) ẋ = P (x, y) = y, ẏ = Q(x, y) = −x+

k
∏

i=1

(x2 + y2 − r2i ),

of degree 2k depending of k parameters ri for i = 1, 2, . . . , k such that
0 < r1 < r2 < · · · < rk. We denote the vector field of this system by
X.

It is easy to show that the function

(3) V (x, y) =

k
∏

i=1

(x2 + y2 − r2i ),

satisfies the equality

∂V

∂x
ẋ+

∂V

∂y
ẏ = V

(

∂P

∂x
+
∂Q

∂y

)

.

Therefore V is an inverse integrating factor of system (2), for more
details see for instance [2].

By multiplying the vector field X by the integrating factor 1/V sys-
tem (2) becomes a Hamiltonian system. If we compute the Hamiltonian
H of that system for k = 1 we obtain

(4) H(x, y) = e−2x(x2 + y2 − r21),

for k = 2 we have

(5) H(x, y) = e−2x(r2
1
−r2

2
)(x2 + y2 − r21)(x

2 + y2 − r22)
−1,

and for k = 3 we get

H(x, y) =e−2x(r2
1
−r2

2
)(r2

1
−r2

3
)(r2

2
−r2

3
)(x2 + y2 − r21)

(r2
2
−r2

3
)

(x2 + y2 − r22)
(r2

3
−r2

1
)(x2 + y2 − r23)

(r2
1
−r2

2
).(6)

An important property of systems (2), which will help for charateriz-
ing their phase portraits, is that all the circles fi(x, y) = x2+y2−r2i = 0
for i = 1, 2, . . . , k are invariant algebraic curves of system (2), i.e. they
are formed by orbits of systems (2), because they satisfy that

Xfi = Kifi,
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where Ki is the polynomial 2y
∏k

j=1,j 6=i(x
2 + y2 − r2j ), see Chapter 8 of

[2] for additional information on the invariant algebraic curves.

In this paper we prove that polynomial differential systems (2) pro-
vide a new family of centers of degree 2k for all k = 1, 2, . . .. Moreover,
we classify the global phase portraits of systems (2) in the Poincaré
disc for k = 1, 2, 3.

Theorem 1. For k = 1, 2, ... the polynomial differential systems (2)
have a unique singular point in the interior of the circle x2 + y2 = r21
and this singular point is a center.

Theorem 1 is proved in section 3.

Theorem 2. For k = 1 the polynomial differential systems (2) have a

phase portrait in the Poincaré disc topologically equivalent to the phase

portrait of Figure 1.

Theorem 3. For k = 2 the polynomial differential systems (2) have

a phase portrait in the Poincaré disc topologically equivalent to one of

the three phase portraits of Figure 3.

Theorem 4. For k = 3 the polynomial differential systems (2) have

a phase portrait in the Poincaré disc topologically equivalent to one of

the seven phase portraits of Figure 5.

Theorems 2, 3 and 4 are proved in section 4.

In section 2 we recall basic definitions and results for proving our
theorems.

2. Preliminary results

2.1. Poincaré compactification. In this section we summarize some
basic results about the Poincaré compactification, which was done by
Poincaré in [11]. He provided a tool for studying the behaviour of a
planar polynomial differential system near the infinity. For more details
on the Poincaré compactification, see Chapter 5 of [2].

Let X = P
∂

∂x1
+Q

∂

∂x2
be a polynomial vector field of degree d. We

consider the Poincaré sphere S
2 = {y = (y1, y2, y3) ∈ R

3 : y21+y
2
2+y

2
3 =

1}, its tangent plane to the point (0, 0, 1) is identified with R
2. Now

we consider the central projection f : R2 → S
2 of the vector field X,

which sends every point x ∈ R
2 to the two intersection points of the

straight line passing through the point x and the origin of coordinates
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with the sphere S
2. We note that the equator S1 = {y ∈ S

2 : y3 = 0}
of the sphere is in bijection with the infinity of R2. The differential
Df sends the vector field X on R

2 into a vector field X′ defined on
S
2 \ S1, which is formed by two symmetric copies of X with respect to

the origin of coordinates.

We can extend the vector field X′ analytically to a vector field on
S
2 multiplying X′ by yd3 . This new vector field is denoted by p(X)

and it is called the Poincaré compactification of the polynomial vector
field X on R

2. The dynamics of p(X) near S
1 corresponds with the

dynamics of X in the neighborhood of the infinity. Since S2 is a curved
surface, for working with the vector field p(X) on S

2, we need the
expressions of this vector field in the local charts (Ui, φi) and (Vi, ψi),
where Ui = {y ∈ S

2 : yi > 0}, Vi = {y ∈ S
2 : yi < 0}, φi : Ui −→ R

2

and ψi : Vi −→ R
2 for i = 1, 2, 3, with φi(y) = −ψi(y) = (ym/yi, yn/yi)

for m < n and m,n 6= i. In the local chart (U1, φ1) the expression of
p(X) is

u̇ = vd
[

−uP

(

1

v
,
u

v

)

+Q

(

1

v
,
u

v

)]

, v̇ = −vd+1P

(

1

v
,
u

v

)

.

In (U2, φ2) the expression of p(X) is

u̇ = vd
[

P

(

u

v
,
1

v

)

− uQ

(

u

v
,
1

v

)]

, v̇ = −vd+1Q

(

u

v
,
1

v

)

,

and for (U3, φ3) is

u̇ = P (u, v), v̇ = Q(u, v).

The expressions for p(X) in the local chart (Vi, ψi) is the same than in
the local chart (Ui, φi) multiplied by (−1)d−1 for i = 1, 2, 3. The points
of S1 in any local chart have its v coordinate equal to zero.

We note that the equator S1 is invariant by the vector field p(X). The
infinite singular points of X are the singular points of p(X) which lie in
S
1. Note that if y ∈ S

1 is an infinite singular point, then −y is also an
infinite singular point and these two points have the same (respectively
opposite) stability if the degree of vector field is odd (respectively even).

The image of the northern hemisphere of S2 onto the plane y3 = 0
under the projection π(y1, y2, y3) = (y1, y2) is called the Poincaré disc

which is denoted by D. The integral curves of S2 are symmetric with
respect to the origin, therefore it is sufficient to investigate the flow
of p(X) only in the closed northern hemisphere. In order to draw the
phase portrait on the Poincaré disc it is needed to project by π the
phase portrait of p(X) on the northern hemisphere of S2.
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We note that the points (u, 0) are the points of the infinity in the
local charts Ui and Vi with i = 1, 2. Moreover, we remark that for
studying the infinite singularities it is sufficient to study them on the
local chart U1, and to check if the origin of the local chart U2 is or not
a singularity.

2.2. Topological equivalence of two polynomial vector fields.
Let X1 and X2 be two polynomial vector fields on R

2. We say that
they are topologically equivalent if there exists a homeomorphism on the
Poincaré disc D which preserves the infinity S

1 and sends the orbits of
π(p(X1)) to orbits of π(p(X2)), preserving or reversing the orientation
of all the orbits.

A separatrix of the Poincaré compactification π(p(X)) is one of fol-
lowing orbits: all the orbits at the infinity S

1, the finite singular points,
the limit cycles, and the two orbits at the boundary of a hyperbolic
sector at a finite or an infinite singular point, see for more details on
the separatrices [6, 8].

The set of all separatrices of π(p(X)), which we denote by ΣX, is a
closed set (see [8]).

A canonical region of π(p(X)) is an open connected component of
D\ΣX. The union of the set ΣX with an orbit of each canonical region
form the separatrix configuration of π(p(X)) and is denoted by Σ′

X
. We

denote the number of separatrices of a phase portrait in the Poincaré
disc by S, and its number of canonical regions by R.

Two separatrix configurations Σ′
X1

and Σ′
X2

are topologically equiva-

lent if there is a homeomorphism h : D −→ D such that h(Σ′
X1

) = Σ′
X2

.

According to the following theorem which was proved by Markus [6],
Neumann [8] and Peixoto [9], it is sufficient to investigate the separatrix
configuration of a polynomial differential system, for determining its
global phase portrait.

Theorem 5. Two Poincaré compactified polynomial vector fields π(p(X1))
and π(p(X2)) with finitely many separatrices are topologically equiv-

alent if and only if their separatrix configurations Σ′
X1

and Σ′
X2

are

topologically equivalent.

3. Proof of Theorem 1

It is easy to see that all singular points of system (2) have coordinates

(x, 0) where x is a root of the equation f(x) = −x+
∏k

i=1(x
2−r2i ) = 0.
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First we shall show that the equation f(x) = 0 for all k has a root

in the interval (−r1, r1). Since f(0) = (−1)k
∏k

i=1 r
2
i , if k is even then

f(0) > 0, and if k is odd then f(0) < 0. Moreover, f(r1) = −r1 < 0
and f(−r1) = r1 > 0, therefore if k is even then f(0)f(r1) < 0 and if
k is odd then f(0)f(−r1) < 0, and these imply that the function f(x)
for all k has at least one zero in the interval (−r1, r1).

If k is even and x ∈ (0, r1), then f(x) is strictly decreasing and, if x ∈
(−r1, 0) then f(x) is positive. Hence for k even, the equation f(x) = 0
has only one root in the interval (−r1, r1). By similar argument, we can
easily show that if k is odd, then the equation f(x) = 0 has exactly one
root in the interval (−r1, r1). Thus system (2) has a unique singular
point inside the circle x2 + y2 = r21.

The Jacobian matrix of the system at any singular point (x, 0) is as
follows

M =

(

0 1
f ′(x) 0

)

,

with

tr (M) = 0, det(M) = −f ′(x) = 1−
k
∑

j=1

2x
k
∏

i=1,i 6=j

(x2 − r2i ),

tr and det represent the trace and determinant of a matrix, respectively.
Let (x, 0) be the singular point inside the disc of radius r1. If k is even,
then x ∈ (0, r1) and det(M) > 0. If k is odd, then x ∈ (−r1, 0) and
det(M) > 0. Hence the singular point (x, 0) is either a focus or a
center, because its eigenvalues are purely imaginary. Since system (2)
has a first integral defined in the interior of the disc of radius r1, it
follows that the singular point (x, 0) is a center. This completes the
proof of Theorem 1.

4. Global phase portrait of system (2)

4.1. Infinite singular points. Here we study the infinite singular
points of system (2) for all k. The Poincaré compactification of system
(2) in local chart (U1, φ1) is

u̇ = −v2k−1(1 + u2) +

k
∏

i=1

(1 + u2 − r2i v
2), v̇ = −v2ku.

It is obvious that there is no singular point in this local chart.
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S = 9, R = 3

Figure 1. The phase portrait in the Poincaré disc of system
(2) for k = 1.

The expression for p(X) in the local chart (U2, φ2) has the form

u̇ = v2k−1(1 + u2)− u

k
∏

i=1

(1 + u2 − r2i v
2),

v̇ = v2ku− v
k
∏

i=1

(1 + u2 − r2i v
2).

So the unique infinite singular point in U2 is the origin which is a
hyperbolic stable node. Since the degree of system (2) is even, the
origin of the chart V2 is a hyperbolic unstable node.

4.2. Proofs of Theorems 2, 3 and 4. In general system (2) has two
important properties that we use for drawing its phase portrait. These
properties are:

(i) Since system (2) has the inverse integrating factor (3), its cor-
responding first integral is defined in the whole plane except
perhaps on the circles x2 + y2 = r2i . Therefore system (2) can-
not have any focus as a singular point.

(ii) System (2) is invariant by the change (x, y, t) 7→ (x,−y,−t).
Thus, the phase portrait of this system is symmetric with re-
spect to the x-axis.

Proof of Theorem 2. System (2) with k = 1 has the two finite singular

points P± =

(

1±
√

1 + 4r21
2

, 0

)

. The Jacobian matrix at the point

P± is

M± =

(

0 1

±
√

1 + 4r21 0

)

.
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a b

r1-r1 r2
-r2

(a)

a

b

r2r1-r1
-r2

c

(b)

a b
c

d

r2
r1-r1-r2

(c)

Figure 2. The graphics for all different cases of fixed points
of g(x) when k = 2.

Therefore P+ is a hyperbolic saddle, and P− is a center.

By using the symmetry (x, y, t) 7→ (x,−y,−t), the first integral (4),
and the result of subsection 4.1, it follows that the global phase portrait
of system (2) for k = 1 in the Poincaré disc is topologically equivalent
to the phase portrait of Figure 1. �

Proof of Theorem 3. For finding the finite singular points (x, y) of sys-
tem (2) with k = 2, we must take y = 0, and find the real zeros of the
equation f(x) = −x+(x2−r21)(x

2−r22) = 0. In other words, it is enough
to find the fixed points of the polynomial g(x) = (x2 − r21)(x

2 − r22).
Since g(0) = r21r

2
2 > 0 and function g has four real roots ±r1,±r2, we

have exactly one of the following three cases:

(i) f has two simple positive roots, see Figure 2(a).
(ii) f has one double negative and two simple positive roots, see

Figure 2(b).
(iii) f has two simple negative and two simple positive roots, see

Figure 2(c).

The Jacobian matrix at every singular point (x, 0) of system (2) with
k = 2 is

M =

(

0 1
4x3 − 2x(r21 + r22)− 1 0

)

.
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(a) S = 9, R = 3

(c) S = 13, R = 5

(b) S = 11, R = 4

Figure 3. The phase portraits in the Poincaré disc of system
(2) for k = 2

It is easy to see that trM = 0 and detM = −f ′(x).

In case (i) the polynomial f(x) has only two simple positive roots
x = a and x = b satisfying 0 < a < r1 < r2 < b, −f ′(a) > 0 and
−f ′(b) < 0, see Figure 2(a). Therefore in this case system (2) with
k = 2 has two singular points (a, 0) and (b, 0), which are a center and
a hyperbolic saddle, respectively.

For case (ii) the polynomial f(x) has one negative double root x = a,
and two simple positive roots x = b and x = c, where −r2 < a < −r1 <
0 < b < r1 < r2 < c, −f ′(a) = 0, −f ′(b) > 0 and−f ′(c) < 0, see Figure
2(b). Thus in this case system (2) with k = 2 has three singular points
(a, 0), (b, 0) and (c, 0), where (a, 0) is a nilpotent singular point, and
(b, 0) and (c, 0) are a center and a hyperbolic saddle, respectively. Here
for determining the local phase portrait of the nilpotent singular point
(a, 0), we use the index theory. Based on the Poincaré-Hopf theorem,
for every vector field on S

2 with finitely many singular points, the sum
of their (topological) indices is two, see for instance [2]. By applying
this theorem to the Poincaré sphere with the Poincaré compactification
of our system, it is easy to see that the index of the singular point
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(a, 0) is zero. Since the flow of a Hamiltonian system preserve the
area, and the unique nilpotent singular points with index zero are the
saddle-nodes and the cusps (see Theorem 3.5 of [2]), it follows that the
singular point (a, 0) is a cusp.

In case (iii) the polynomial f(x) has two simple negative roots x = a
and x = b, and two simple positive roots x = c and x = d, where
−r2 < a < b < −r1 < 0 < c < r1 < r2 < d, −f ′(a) > 0, −f ′(b) < 0,
−f ′(c) > 0 and −f ′(d) < 0, see Figure 2(c). Therefore in this case
system (2) with k = 2 has four singular points (a, 0), (b, 0), (c, 0)
and (d, 0), where (a, 0) and (c, 0) are centers, and (b, 0) and (d, 0) are
hyperbolic saddles.

Hence, by using the symmetry (x, y, t) 7→ (x,−y,−t), the first inte-
gral (5), and that at infinity we have a pair of nodes at the origins of
the local charts U2 and V2, the first stable and the second unstable (see
subsection 4.1), it follows that the global phase portrait of system (2)
for k = 2 for each of three cases (i), (ii) and (iii) in the Poincaré disc
is topologically equivalent to the one of the phase portrait (a), (b) and
(c) of Figure 3, respectively. �

Proof of Theorem 4. In a similar to the proof of Theorem 3, for finding
the finite singular points (x, y) of system (2) with k = 3, we must have
y = 0 and x must be a real zero of the equation f(x) = −x + (x2 −
r21)(x

2 − r22)(x
2 − r23) = 0. Hence, it is enough to find the fixed points

of the polynomial function g(x) = (x2 − r21)(x
2 − r22)(x

2 − r23). Since
g(0) = −r21r

2
2r

2
3 < 0 and the polynomial g(x) has six real roots ±r1,±r2

and ±r3, we have exactly one of the following nine cases for the roots
of the polynomial f(x).

(i) One simple negative and one simple positive roots, see Figure
4(a).

(ii) One simple negative, one double positive and one simple posi-
tive roots, see Figure 4(b).

(iii) One simple negative and three simple positive roots, see Figure
4(c).

(iv) Three simple negative and three simple positive roots, see Fig-
ure 4(d).

(v) Three simple negative and one simple positive roots, see Figure
4(e).

(vi) One double negative, one simple negative and one simple posi-
tive roots, see Figure 4(f).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 4. The graphics for all different cases of fixed points
of g(x) when k = 3.
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(vii) One double negative, one simple negative, one double positive
and one simple positive roots, see Figure 4(g).

(viii) One double negative, one simple negative and three simple pos-
itive roots, see Figure 4(h).

(ix) Three simple negative, one double positive and one simple pos-
itive roots, see Figure 4(i).

The three invariant algebraic curves x2 + y2 = r2i for i = 1, 2, 3, play
an important role in drawing the phase portraits for system (2) with
k = 3. Actually, if there is one singular point inside and one singular
point outside of an invariant algebraic curve, then these two singular
points do not have any connection, i.e. there are no orbits going from
one to the other.

Case (i): In this case we have two singular points (a, 0) and (b, 0)
where −r3 < −r2 < −r1 < a < 0 < r1 < r2 < r3 < b. By com-
puting the Jacobian matrix in each singular point, we can conclude
that (a, 0) is a center and (b, 0) is a hyperbolic saddle. The symme-
try (x, y, t) 7→ (x,−y,−t) and the first integral (6) together with the
result of subsection 4.1 force to the system to have a phase portrait
topologically equivalent to the phase portrait of Figure 5(a).

Case (ii): Then system (2) has three singular points (a, 0), (b, 0)
and (c, 0), where −r3 < −r2 < −r1 < a < 0 < r1 < b < r2 < r3 < c.
Again, by computing the Jacobian matrix in each singular point we
have (a, 0) is a center and (c, 0) is a hyperbolic saddle. Using the index
theory as it is done in case (ii) for k = 2, we can conclude that (b, 0) is a
nilpotent cusp. Since the cusp (b, 0) is the only singular point between
the two invariant algebraic curves x2 + y2 = r21 and x2 + y2 = r22, it
implies the existence of a cuspidal loop which surrounds the center
(a, 0) and the invariant algebraic curve x2 + y2 = r21. By using the
symmetry (x, y, t) 7→ (x,−y,−t) and the first integral (6), we also
obtain a homoclinic loop passing through (c, 0) and surrounding all
the finite singular points and all the three invariant algebraic curves.
By taking into account the result of subsection 4.1, the phase portrait of
system (2) in this case is topologically equivalent to the phase portrait
of Figure 5(b).

Case (iii): Then the system has four singular points (a, 0), (b, 0),
(c, 0) and (d, 0), where −r3 < −r2 < −r1 < a < 0 < r1 < b <
c < r2 < r3 < d. By computing the Jacobian matrix in each of these
singular points, we have that (a, 0) and (c, 0) are centers, and (b, 0) and
(d, 0) are hyperbolic saddles. Due to the fact that the singular point
(b, 0) is located between the two centers (a, 0) and (c, 0), and inside
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(a) S = 9, R = 3 (b) S = 11, R = 4 (c) S = 13, R = 5

(d) S = 17, R = 7 (e) S = 13, R = 5 (f) S = 15, R = 6

(g) S = 15, R = 6

Figure 5. The global phase portraits in the Poincaré disc
of system (2) for k = 3

the invariant algebraic curve x2 + y2 = r22, the point (b, 0) is a saddle
having two homoclinic loops. The left homoclinic loop surrounds the
center (a, 0) and the invariant algebraic curve x2 + y2 = r21 and the
right one surrounds the center (c, 0). The point (d, 0) is a hyperbolic
saddle on the right side of r3. Two of its separatrics form a homoclinic
loop which surrounds the other three singular points and the three
algebraic invariant circles. The symmetry (x, y, t) 7→ (x,−y,−t), the
first integral (6) and the result of subsection 4.1 show that the phase
portrait of system (2) in this case is topologically equivalent to the
phase portrait of Figure 5(c).



14 J. LLIBRE, M. MOUSAVI AND A. NABAVI

Case (iv): We have six singular points (a, 0), (b, 0), (c, 0), (d, 0),
(e, 0) and (f, 0), where −r3 < a < b < −r2 < −r1 < c < 0 < r1 <
d < e < r2 < r3 < f . The singular points (a, 0), (c, 0) and (e, 0)
are centers and (b, 0), (d, 0) and (f, 0) are hyperbolic saddles. With a
similar discussion as to the one of the previous case we obtain that the
phase portrait of the system is topologically equivalent to the phase
portrait of Figure 5(d).

Case (v): Doing a similar discussion to the case (iii), we obtain
that the phase portrait of the system is topologically equivalent to the
phase portrait of Figure 5(c).

Case (vi): Working in a similar way to the case (ii), we obtain that
the phase portrait of the system is topologically equivalent to the phase
portrait of Figure 5(b).

Case (vii): We have four singular points (a, 0), (b, 0), (c, 0) and
(d, 0), where −r3 < a < −r2 < −r1 < b < 0 < r1 < c < r2 < r3 < d.
By obtaining the Jacobian matrix in each singular point we get that
(b, 0) is a center and (d, 0) is a hyperbolic saddle. By using the index
theory and Corollary 2 in chapter 3 of [10], it follows that the singular
point (b, 0) inside the invariant algebraic curve x2 + y2 = r21, and the
singular point (a, 0) inside the invariant algebraic curve x2+y2 = r23, are
cusps. Using the invariant algebraic curves together with the symmetry
(x, y, t) 7→ (x,−y,−t) and the first integral (6) we obtain that the phase
portrait of the system is topologically equivalent to the phase portrait
of Figure 5(e).

Case (viii): Again in this case using similar arguments to previous
cases we conclude that there are five singular points (a, 0), (b, 0), (c, 0),
(d, 0) and (e, 0), where −r3 < a < −r2 < −r1 < b < 0 < r1 < c < d <
r2 < r3 < e. The singular points (b, 0) and (d, 0) are centers, (e, 0) and
(c, 0) are hyperbolic saddles and (a, 0) is a cusp. In this case the phase
portrait is topologically equivalent to the one of Figure 5(f).

Case (ix): The phase portrait of system (2) in this case is topolog-
ically equivalent to the phase portrait that it is shown in Figure 5(g).
Similar to the case (viii), we have five singular points (a, 0), (b, 0),
(c, 0), (d, 0) and (e, 0), where −r3 < a < b < −r2 < −r1 < c < 0 <
r1 < d < r2 < r3 < e. The singular points (a, 0) and (c, 0) are centers,
(b, 0) and (e, 0) are hyperbolic saddles and (d, 0) is a cusp.

This completes the proof of Theorem 4. �
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Henri Poincaré, vol. I, Gauthier-Villars, Paris, 1951, pp 3–84.
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