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AVERAGING THEORY AT ANY ORDER FOR COMPUTING LIMIT

CYCLES OF DISCONTINUOUS PIECEWISE DIFFERENTIAL

SYSTEMS WITH MANY ZONES

JAUME LLIBRE, DOUGLAS D. NOVAES AND CAMILA A. B. RODRIGUES

Abstract This work is devoted to study the existence of periodic solutions for a family
of planar discontinuous differential systems Z(x, y; ε) with many zones. We show that
for |ε| 6= 0 sufficiently small the averaged functions at any order control the existence of
crossing limit cycles for systems in this family. We also provide some examples dealing
with nonlinear centers when ε = 0.
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1. Introduction and statement of the main results

In the qualitative theory of real planar differential system the determination of limit
cycles, defined by Poincaré [21], has become one of the main problems. The second part
of the 16th Hilbert problem deals with planar polynomial vector fields and proposes
to find a uniform upper bound H(n) (called Hilbert’s number) for the number of limit
cycles that these vector fields can have depending only on the polynomial degree n. The
averaging method has been used to provide lower bounds for the Hilbert number H(n)
see, for instance, [13]. The interest on this topic extends to what we call discontinuous
piecewise vector fields.

The increasing interest in the theory of nonsmooth vector fields has been mainly
motivated by its strong relation with Physics, Engineering, Biology, Economy, and other
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branches of science. In fact, their associated differential systems are very useful to model
phenomena presenting abrupt switches such as electronic relays, mechanical impact,
and neuronal networks, see for instance [2, 7, 23]. The extension of the averaging theory
to discontinuous piecewise vector field has been the central subject of investigation of
the following works [11, 12, 14, 17].

A piecewise vector field defined on an open bounded set U ⊂ Rn is a function
F : U → Rn which is continuous except on a set Σ of measure 0, called the set of
discontinuity of the vector field F . It is assumed that U\Σ is a finite collection of disjoint
open sets Ui, i = 1, 2, . . . ,m, such that the restriction Fi = F

∣∣
Ui

is continuous and

extendable to the compact set Ui. The local trajectory of F at a point p ∈ Ui is given
by the usual notion. However the local trajectory of F at a point p ∈ Σ needs to be given
with some care. In [8], taking advantage of the theory of differential inclusion (see [1]),
Filippov established some conventions for what would be a local trajectory at points
of discontinuity where the set Σ is locally a codimension one embedded submanifold of
Rn. For a such point p ∈ Σ, we consider a sufficiently small neighborhood Up of p such
that Σ splits Up \Σ in two disjoint open sets U+

p and U−p and denote F±(p) = F
∣∣
U±
p

(p).

In short, if the vectors F±(p) point at the same direction then the local trajectory of
F at p is given as the concatenation of the local trajectories of F± at p. In this case we
say that the trajectory crosses the set of discontinuity and that p is a crossing point. If
the vectors F±(p) point in opposite directions then the local trajectory of F at p slides
on Σ. In this case we say that p is a sliding point. For more details on the Filippov
conventions see [8, 10].

In this paper we are interested in establishing conditions for the existence of crossing
limit cycles for a class of planar discontinuous piecewise vector fields, that is limit
cycles which only crosses the set of discontinuity Σ. It is worth to say that if Σ is
locally described as h−1(0), being h : U → R a smooth function and 0 a regular value,
then 〈∇h(p), F+(p)〉〈∇h(p), F−(p)〉 > 0 is the condition in order that p is a crossing
point.

In the sequel we introduce a short review of the averaging theory for computing
isolated periodic solutions of differential equations. Then we set the class of planar
discontinuous piecewise differential equations that we are interested. After that the
rest of the section is devoted to the statement of our main result.

1.1. Background on the averaging theory for smooth systems. Let D be an
open bounded subset of R+ and consider Ck+1 functions Fi : R × D → R for i =
1, 2, . . . , k, and R : R × D × (−ε0, ε0) → R. We assume that all these functions are
2π-periodic in the first variable. Now consider the following differential equation

(1) r′(θ) =

k∑
i=0

εiFi(θ, r) + εk+1R(θ, r, ε),

and assume that the solution ϕ(θ, z) of the unperturbed system r′(θ) = F0(θ, r), such
that ϕ(0, ρ) = ρ, is 2π-periodic for every ρ ∈ D. Here the prime denotes the derivative
in the variable θ.
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A central question in the study of system (1) is to understand which periodic orbits of
the unperturbed system r′(θ) = F0(θ, r) persists for |ε| 6= 0 sufficiently small. In others
words to provide sufficient conditions for the persistence of isolated periodic solutions.
The averaging theory is one of the best tools to track this problem. Summarizing,
it consists in defining a collection of functions fi : D → R, for i = 1, 2, . . . , k, called
averaged functions, such that their simple zeros provide the existence of isolated periodic
solutions of the differential equation (1). In [15, 16] it was proved that these averaged
functions are

(2) fi(ρ) =
yi(2π, ρ)

i!
,

where yi : R × D → R for i = 1, 2, . . . , k, are defined recurrently by the following
integral equations

(3)

y1(θ, ρ) =

∫ θ

0
F1 (s, ϕ(s, ρ)) ds,

yi(θ, ρ) = i!

∫ θ

0

(
Fi (s, ϕ(s, ρ)) +

i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl

·∂LFi−l (s, ϕ(s, ρ))
l∏

j=1

yj(s, ρ)bj
)
ds, for i = 2, . . . , k.

Here ∂LG(φ, ρ) denotes the derivative order L of a function G with respect to the vari-
able ρ, and Sl is the set of all l-tuples of non-negative integers (b1, b2, . . . , bl) satisfying
b1 + 2b2 + · · ·+ lbl = l, and L = b1 + b2 + · · ·+ bl.

1.2. A class of planar discontinuous piecewise smooth vector fields. When
one consider the above problem in the world of discontinuous piecewise differential
systems it is not always true that the higher averaged functions (2) allow to study
the persistence of isolated periodic solutions. In [17, 12] this problem was considered
for general Filippov systems when F0(θ, r) ≡ 0 and it was proved that the averaged
function of first order can provide information in the persistence of crossing isolated
periodic solutions. Furthermore the authors have found conditions on those systems
in order to assure that the averaged function of second order also provides information
on the existence of crossing isolated periodic solutions. When F0(θ, r) 6≡ 0 but satisfies
the condition that the solution ϕ(θ, ρ) is 2π-periodic the authors in [14] have found
conditions on those systems in order to assure that the averaged function of first order
provides information on the existence of crossing isolated periodic solutions.

This work is devoted to study the existence of isolated periodic solutions for an ε-
family of planar discontinuous piecewise differential system (ẋ, ẏ)T = Z(x, y; ε). Here
the dot denotes derivative in the variable t. In short we shall provide sufficient conditions
in order to show that for |ε| 6= 0 sufficiently small the averaged functions (2) at any
order can be used for obtaining information on the existence of crossing limit cycles for
systems of this family.
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We start defining the family of smooth piecewise differential systems that we shall
study. The construction that we shall perform in the sequel has been done in [12]
for a particular class of systems. Let n > 1 be a positive integer, αn = 2π and
α = (α0, α1, . . . , αn−1) ∈ Tn is a n-tuple of angles such that 0 = α0 < α1 < α2 < · · · <
αn−1 < αn = 2π and let X (x, y; ε) = (X1, X2, . . . , Xn) be a n-tuple of smooth vector
fields defined on an open bounded neighborhood U ⊂ R2 of the origin and depending
on a small parameter ε in the following way

(4) Xj(x, y; ε) =
k∑
i=0

εiXj
i (x, y) for j = 1, 2, . . . , n.

For j = 1, 2, . . . , n let Lj be the intersection between the domain U with the ray starting
at the origin and passing through the point (cosαj , sinαj), and take Σ =

⋃n
j=1 Lj . We

note that Σ splits the set U\Σ ⊂ R2 in n disjoint open sectors. We denote the sector
delimited by Lj and Lj+1, in counterclockwise sense, by Cj , for j = 1, 2, . . . , n.

Now let ZX ,α : U → R2 be a discontinuous piecewise vector field defined as ZX ,α(x, y; ε)
= Xj(x, y; ε) when (x, y) ∈ Cj , and consider the following planar discontinuous piece-
wise differential system

(5) (ẋ, ẏ)T = ZX ,α(x, y; ε).

The above notation means that at each sector Cj we are considering the smooth dif-
ferential system

(6) (ẋ, ẏ)T = Xj(x, y; ε).

As our main hypothesis we shall assume that there exists a period annulus A home-
omorphic to {(x, y) ∈ U : 0 < |(x, y)| ≤ 1}, surrounding the origin, fulfilled by crossing
periodic solutions of the unperturbed system (ẋ, ẏ)T = ZX ,α(x, y; 0).

1.3. Standard form and main result. The averaging theory deals with periodic
nonautonomous differential systems in the standard form (1). Therefore in order to
use the averaging theory for studying system (5) it has to be written in the standard
form. A possible approach for doing this is to consider the polar change of variables
x = r cos θ and y = r sin θ. However the appropriate change of variables may depend
on the initial system (5). In general, for each j = 1, 2, . . . , n, after a suitable change of
variables system (6) reads

(7) r′(θ) =
ṙ(t)

θ̇(t)
=

k∑
i=0

εiF ji (θ, r) + εk+1Rj(θ, r, ε).

Now θ ∈ [αj−1, αj ], F
j
i : S1×D → R and Rj : R×D×(−ε0, ε0)→ R are Ck+1 functions

depending on the vector fields Xj
i , and they are 2π-periodic in the first variable, being

D an open bounded interval of R+ and S1 ≡ R/(2πZ). Furthermore system (5) becomes

(8) r′(θ) =

k∑
i=0

εiFi(θ, r) + εk+1R(θ, r, ε),
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where

(9)

Fi(θ, r) =
n∑
j=1

χ[αj−1,αj ](θ)F
j
i (θ, r), i = 0, 1, ..., k, and

R(θ, r, ε) =

n∑
j=1

χ[αj−1,αj ](θ)R
j(θ, r, ε),

where the characteristic function χA(θ) of an interval A is defined as

χA(θ) =

{
1 if θ ∈ A,
0 if θ 6∈ A.

X System (8) is now a nonautonomous periodic discontinuous piecewise differential
system having its set of discontinuity formed by Σ = ({θ = 0} ∪ {θ = α1} ∪ · · · ∪ {θ =
αn−1}) ∩ S1 ×D.

Denote by ϕ(θ, ρ) the solution of the system r′(θ) = F0(θ, r) such that ϕ(0, ρ) =
ρ. From now on this last system will be called unperturbed system. We assume the
following hypothesis:

(H1) For each z ∈ D the solution ϕ(θ, ρ) is defined for every θ ∈ S1, it reaches Σ only
at crossing points, and it is 2π-periodic.

In what follows we state our main result.

Theorem 1. Assume that for some l ∈ {1, 2, . . . , k} the functions defined in (2) satisfy
fs = 0 for s = 1, 2, . . . , l− 1 and fl 6= 0. Moreover we assume that the function ϕ(θ, ρ)
of the unperturbed system is a 2π-periodic function. If there exists ρ∗ ∈ D such that
fl(ρ

∗) = 0 and f ′l (ρ
∗) 6= 0, then for |ε| 6= 0 sufficiently small there exists a 2π-periodic

solution r(θ, ε) of system (8) such that r(0, ε)→ ρ∗ when ε→ 0.

The assumption D ⊂ R is not restrictive. In fact, if one consider D as being an open
subset of Rn the conclusion of Theorem 1 still holds by assuming that the Jacobian
matrix Jfl(ρ

∗) is nonsingular, that is det(Jfl(ρ
∗)) 6= 0. In this case the derivative

∂LG(φ, ρ) is a symmetric L-multilinear map which is applied to a “product” of L

vectors of Rn, denoted as
∏L
j=1 yj ∈ RnL (see [15]).

For the particular class of systems (8) Theorem 1 generalizes the main results of
[12, 14, 17], increasing the order of the averaging theory. It also generalizes the main
results of [11, 22] dealing now with nonvanishing unperturbed systems and allowing
more zones of continuity.

This paper is organized as follows. In section 2 we provide, explicitly, the formulae of
the averaged functions (2) for nonsmooth systems in the standard form (8). In section
3 we state some auxiliar results for proving Theorem 1. In section 4 we use Theorem
1 to give an estimative for the number of limit cycles of three types of planar systems:
nonsmooth perturbation of a linear center, a nonsmooth perturbation of a discontinuous
piecewise constant center, and a nonsmooth perturbation of an isocrhonous quadratic
center.
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2. The averaged functions

In this section we develop a recurrence to compute the averaged function (2) in the
particular case of the discontinuous differential equation (8). So consider the functions

zji : (αj−1, αj ]×D → R defined recurrently for i = 1, 2, . . . , k and j = 1, 2, . . . , n, as

(10)

z1
1(θ, ρ) =

∫ θ

0

(
F 1

1 (φ, ϕ(φ, ρ)) + ∂F 1
0 (φ, ϕ(φ, ρ))z1

1(φ, ρ)

)
dφ,

z1
i (θ, ρ) = i!

∫ θ

0

(
F 1
i (φ, ϕ(φ, ρ))

+
i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
· ∂LF 1

i−l(φ, ϕ(φ, ρ))
l∏

m=1

z1
m(φ, ρ)bm

)
dφ,

zji (θ, ρ) = zj−1
i (αj−1, ρ) + i!

∫ θ

αj−1

(
F ji (φ, ϕ(φ, ρ))

+
i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
· ∂LF ji−l(φ, ϕ(φ, ρ))

l∏
m=1

zjm(φ, ρ)bm
)
dφ.

Thus we have the next result.

Proposition 2. For i = 1, 2, . . . , k, the averaged function (2) of order i, is

(11) fi(ρ) =
zni (2π, ρ)

i!
.

Proof. For each i = 1, 2, · · · , k, define

(12) zi(θ, ρ) =
n∑
j=1

χ[αj−1,αj ](θ)z
j
i (θ, ρ).

Given θ ∈ [0, 2π] there exists a positive integer k̄ such that θ ∈ (αk̄−1, αk̄] and, therefore

zi(θ, ρ) = zk̄i (θ, ρ). Moreover using the expressions (9) and (12) we can write (10) into
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the form

(13)

z1
1(θ, ρ) =

∫ θ

0

(
F1(φ, ϕ(φ, ρ)) + ∂F0(φ, ϕ(φ, ρ))z1(φ, ρ)

)
dφ,

z1
i (θ, ρ) = i!

∫ θ

0

(
Fi(φ, ϕ(φ, ρ))

+
i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(φ, ϕ(φ, ρ))

l∏
m=1

zm(φ, ρ)bm
)
dφ,

zk̄i (θ, ρ) = zk̄−1
i (αk̄−1, ρ) + i!

∫ θ

αk̄−1

(
Fi(φ, ϕ(φ, ρ))

+
i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LFi−l(φ, ϕ(φ, ρ))

l∏
m=1

zm(φ, ρ)bm
)
dφ.

In the above equality we are denoting

∂LFi−l(φ, ϕ(φ, ρ)) =
n∑
j=1

χ[αj−1,αj ](φ)∂LF ji−l(φ, ϕ(φ, ρ)).

Proceeding recursively on k̄ we obtain

(14)

z1(θ, ρ) =

∫ θ

0

(
F1(φ, ϕ(φ, ρ)) + ∂F0(φ, ϕ(φ, ρ))z1(φ, ρ)

)
dφ,

zi(θ, ρ) =

k̄−1∑
p=1

∫ αp

αp−1

(
F pi (φ, ϕ(φ, ρ)) +

i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl

·∂LF pi−l(φ, ϕ(φ, ρ))
l∏

m=1

zpm(φ, ρ)bm
)
dφ+

∫ θ

αk̄−1

(
F k̄i (φ, ϕ(φ, ρ))

+

i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LF k̄i−l(φ, ϕ(φ, ρ))

l∏
m=1

zk̄m(φ, ρ)bm
)
dφ

= i!

∫ θ

0

(
Fi(φ, ϕ(φ, ρ)) +

i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl

·∂LFi−l(φ, ϕ(φ, ρ))

l∏
m=1

zm(φ, ρ)bm
)
dφ.

Computing the derivative in the variable θ of the expressions (14) and (3) for i = 1
we see that the functions z1(θ, ρ) and y1(θ, ρ) satisfy the same differential equation.
Moreover for each i = 2, · · · , k, the integral equations (3) and (14) which provides
respectively yi and zi are defined by the same recurrence. Therefore we conclude that
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yi and zi satisfy the same differential equations for i = 1, 2, · · · , k, which are linear
with variable coefficients (that is the Existence and Uniqueness Theorem holds). Now,
it only remains to prove that their initial conditions coincide. Let i ∈ {1, 2, . . . , k},
then yi(0, ρ) = 0 and by (13) zi(0, ρ) = 0, concluding that the initial conditions are the
same. Hence yi(θ, ρ) = zi(θ, ρ), conlcuding the Proposition. �

Note that when F0 6= 0 the recurrence defined in (10) is actually an integral equation.
Moreover in order to implement an algorithm to compute the averaged function, it may

be easier to write each zji in terms of the partial Bell polynomials, which are already
implemented in algebraic manipulators as Mathematica and Maple. For each pair of
nonnegative integers (p, q), the partial Bell polynomial is defined as

Bp,q(x1, x2, . . . , xp−q+1) =
∑
S̃p,q

p!

b1!b2! · · · bp−q+1!

p−q+1∏
j=1

(
xj
j!

)bj
,

where S̃p,q is the set of all (p− q + 1)-tuple of nonnegative integers (b1, b2, . . . , bp−q+1)
satisfying b1 + 2b2 + · · · + (p − q + 1)bp−q+1 = p, and b1 + b2 + · · · + bp−q+1 = q. In
the next proposition, following [20], we solve the integral equation (10) to provide the

explicit recurrence formula for zji in terms of the Bell polynomials.

Proposition 3. For each j = 1, 2, . . . , n let ηj(θ, ρ) be defined as

ηj(θ, ρ) =

∫ θ

αj−1

∂F j0 (φ, ϕ(φ, ρ))dφ.

Then for i = 1, 2, . . . , k and j = 1, 2, . . . , n the recurrence (10) can be written as follows
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z1
1(θ, ρ) = eη1(θ,ρ)

∫ θ

0
e−η1(φ,ρ)F 1

1 (φ, ϕ(φ, ρ))dφ,

zj1(θ, ρ) = eηj(θ,ρ)

(
zj−1

1 (αj−1, ρ) +

∫ θ

αj−1

e−ηj(φ,ρ)F j1 (φ, ϕ(φ, ρ))dφ

)
, for j = 2, . . .

z1
i (θ, ρ) = eη1(θ,ρ)i!

∫ θ

0
e−η1(φ,ρ)

[
F 1
i (φ, ϕ(φ, ρ))

+
i−1∑
l=1

l∑
m=1

1

l!
∂mF 1

i−l(θ, ϕ(θ, ρ))Bl,m(z1
1 , z

1
2 , . . . , z

1
l−m+1)

+

i∑
m=2

1

i!
∂mF 1

0 (θ, ϕ(θ, ρ))Bi,m(z1
1 , z

1
2 , . . . , z

1
i−m+1)

]
dφ, for i = 2, . . .

zji (θ, ρ) = eηj(θ,ρ)

(
zj−1
i (αj−1, ρ) + i!

∫ θ

αj−1

e−ηj(φ,ρ)

[
F ji (φ, ϕ(φ, ρ))

+

i−1∑
l=1

l∑
m=1

1

l!
∂mF ji−l(θ, ϕ(θ, ρ))Bl,m(zj1, z

j
2, . . . , z

j
l−m+1)

+
i∑

m=2

1

i!
∂mF j0 (θ, ϕ(θ, ρ))Bi,m(zj1, z

j
2, . . . , z

j
i−m+1)

]
dφ

)
, for i, j = 2, . . . .

Proof. We shall prove this proposition for i = 1, 2, . . . , k, and j = 1. The other cases
will follow in a similar way.

For i = j = 1, the integral equation (10) is equivalent to the following Cauchy
problem:

∂z1
1

∂θ
(θ, ρ) = F 1

1 (θ, ϕ(θ, ρ)) + ∂F 1
0 (θ, ϕ(θ, ρ))u with z1

1(0, ρ) = 0.

Solving the above linear differential equation we get

z1
1(θ, ρ) = eη1(θ,ρ)

∫ θ

0
e−η1(φ,ρ)F 1

1 (φ, ϕ(φ, ρ))dφ.

Now for i = 2, . . . , k and j = 1 the recurrence (10) can be written in terms of the
partial Bell polynomials as (for more details, see [20])

(15)

z1
i (θ, ρ) = i!

∫ θ

0

(
F 1
i (φ, ϕ(φ, ρ))

+

i∑
l=1

l∑
m=1

1

l!
∂mF 1

i−l(φ, ϕ(φ, ρ))Bl,m(z1
1 , z

1
2 , . . . , z

1
l−m+1)

)
dφ.

We note that the function z1
i appears in the right hand side of (15) only if l = i and

m = 1. In this case Bi,1(z1
1 , z

1
2 , . . . , z

1
i ) = z1

i for every i ≥ 1. So we can rewriting (15)
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as the following integral equation

z1
i (θ, ρ) = i!

∫ θ

0

(
F 1
i (φ, ϕ(φ, ρ))

+
i−1∑
l=1

l∑
m=1

1

l!
∂mF 1

i−l(φ, ϕ(φ, ρ))Bl,m(z1
1 , z

1
2 , . . . , z

1
l−m+1)

+
i∑

m=2

1

i!
∂mF 1

0 (φ, ϕ(φ, ρ))Bi,m(z1
1 , z

1
2 , . . . , z

1
i−m+1)

+
1

i!
∂F 1

0 (φ, ϕ(φ, ρ))Bi,1(z1
1 , z

1
2 , . . . , z

1
i )

)
dφ,

which is equivalent to the following Cauchy problem:

∂z1
i

∂θ
(θ, ρ) = i!

[
F 1
i (θ, ϕ(θ, ρ)) +

1

i!
∂F 1

0 (θ, ϕ(θ, ρ))z1
i

+

i−1∑
l=1

l∑
m=1

1

l!
∂mF 1

i−l(θ, ϕ(θ, ρ))Bl,m(z1
1 , z

1
2 , . . . , z

1
l−m+1)

+
i∑

m=2

1

i!
∂mF 1

0 (θ, ϕ(θ, ρ))Bi,m(z1
1 , z

1
2 , . . . , z

1
i−m+1)

]
,

z1
i (0, ρ) = 0.

Solving the above linear differential equation we obtain the expressions of z1
i (θ, ρ), for

i = 2, . . . , k, given in the statement of the proposition. �

3. Proof of the main result

In this section we shall present the proof of Theorem 1. This proof is based on a
preliminary result (see Lemma 4) which expands the solutions of the discontinuous
differential equation (8) in powers of ε.

From hypothesis (H1) the solution ϕ(θ, ρ) of the unperturbed system reads

ϕ(θ, ρ) =



ϕ1(θ, ρ) if 0 = α0 ≤ θ ≤ α1,
...

ϕj(θ, ρ) if αj−1 ≤ θ ≤ αj ,
...

ϕn(θ, ρ) if αn−1 ≤ θ ≤ αn = 2π,

such that, for each j = 1, 2, . . . , n, ϕj is the solution of the unperturbed system with
the initial condition ϕj(αj−1, ρ) = ϕj−1(αj−1, ρ).

Now for j = 1, 2, . . . , n let ξj(θ, θ0, ρ0, ε) be the solution of the discontinuous differ-
ential equation (7) such that ξj(θ0, θ0, ρ0, ε) = ρ0. We then define the recurrence

rj(θ, ρ, ε) = ξj(θ, αj−1, rj−1(αj−1, ρ, ε), ε), j = 2, . . . , n,
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with initial condition r1(θ, ρ, ε) = ξ1(θ, 0, ρ, ε). From hypothesis (H1) it is easy to see
that each rj(θ, ρ, ε) is defined for every θ ∈ [αj−1, αj ]. Therefore r(·, ρ, ε) : [0, 2π]→ R
defined as

r(θ, ρ, ε) =



r1(θ, ρ, ε) if 0 = α0 ≤ θ ≤ α1,

r2(θ, ρ, ε) if α1 ≤ θ ≤ α2,
...

rj(θ, ρ, ε) if αj−1 ≤ θ ≤ αj ,
...

rn(θ, ρ, ε) if αn−1 ≤ θ ≤ αn = 2π,

is the solution of the differential equation (8) such that r(0, ρ, ε) = ρ. Moreover the
equalities hold

(16) r1(0, ρ, ε) = ρ and rj(αj−1, ρ, ε) = rj−1(αj−1, ρ, ε),

for j = 1, 2, . . . , n. Clearly rj(θ, ρ, 0) = ϕj(θ, ρ) for all j = 1, 2, . . . , n.

Lemma 4. For j ∈ {1, 2, . . . , n} and θjρ > αj , let rj(·, ρ, ε) : [αj−1, θ
j
ρ) be the solution

of (7). Then

rj(θ, ρ, ε) = ϕj(θ, ρ) +
k∑
i=1

εi

i!
zji (θ, ρ) +O(εk+1),

where zji (θ, ρ) is defined in (10).

Proof. Fix j ∈ {1, 2, . . . , n}, from the continuity of the solution rj(θ, ρ, ε) and by the

compactness of the set [αj−1, αj ]×D × [−ε0, ε0] it is easy to obtain that∫ θ

αj−1

Rj(θ, rj(θ, ρ, ε), ε)ds = O(ε), θ ∈ [αj−1, αj ].

Thus integrating the differential equation (7) from αj−1 to θ, we get

(17) rj(θ, ρ, ε) = rj(αj−1, ρ, ε) +

k∑
i=0

εi
∫ θ

αj−1

F ji (φ, rj(φ, ρ, ε))dφ+O(εk+1).

Note that in the above expression the value of the initial condition rj(αj−1, ρ, ε) is not
substituted yet.

In the sequel we shall expand the right hand side of the above equality in Taylor
series in ε around ε = 0. To do that we first recall the Faá di Bruno’s Formula about
the l-th derivative of a composite function. Let g and h be sufficiently smooth functions
then

dl

dαl
g(h(α)) =

∑
Sl

l!

b1! b2!2!b2 · · · bl!l!bl
g(L)(h(α))

l∏
j=1

(
h(j)(α)

)bj
,

where Sl is the set of all l-tuples of non-negative integers (b1, b2, · · · , bl) satisfying

b1 + 2b2 + · · · + lbl = l, and L = b1 + b2 + · · · + bl. So expanding F ji (φ, rj(φ, ρ, ε)) in
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Taylor series in ε around ε = 0 we obtain

(18)

F ji (φ, rj(φ, ρ, ε)) = F ji (φ, rj(φ, ρ, 0))

+
k−i∑
l=1

εl

l!

(
∂l

∂εl
F ji (φ, rj(φ, ρ, ε))

) ∣∣∣
ε=0

+O(εk−i+1).

From the Faá di Bruno’s Formula we compute

(19)

∂l

∂εl
F ji (φ, rj(φ, ρ, ε))

∣∣∣
ε=0

=
∑
Sl

l!

b1! b2!2!b2 · · · bl!l!bl

·∂LF ji (φ, ϕj(φ, ρ))

l∏
m=1

wjm(φ, ρ)bm ,

where

wjm(φ, ρ) =
∂m

∂εm
rj(φ, ρ, ε)

∣∣∣
ε=0

.

Substituting (19) in (18) we have

(20)

F ji (φ, rj(φ, ρ, ε)) = F ji (φ, ϕj(φ, ρ))

+
k−i∑
l=1

∑
Sl

εl

b1! b2!2!b2 · · · bl!l!bl
∂LF ji (φ, ϕj(φ, ρ))

l∏
m=1

wjm(φ, ρ)bm ,

for i = 0, 1, ..., k − 1. Moreover for i = k we have that

(21) F jk (φ, rj(φ, ρ, ε)) = F jk (φ, ϕj(φ, ρ)) +O(ε).

Substituting (20) and (21) in (17) we get

(22)

rj(θ, ρ, ε) = rj(αj−1, ρ, ε) +

∫ θ

αj−1

(
k∑
i=0

εiF ji (φ, ϕj(φ, ρ))dφ

+
k−1∑
i=0

k−i∑
l=1

εl+i
∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl

·∂LF ji (φ, ϕj(φ, ρ))

l∏
m=1

wjm(φ, ρ)bm

)
dφ+O(εk+1).

Denote

Qj(φ, ρ, ε) =

k−1∑
i=0

k−i∑
l=1

εl+i
∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LF ji (φ, ϕj(φ, ρ))

l∏
m=1

wjm(φ, ρ)bm .
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After some transformations of the indexes i and l we obtain

(23) Qj(φ, ρ, ε) =
k∑
i=1

εi
i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
∂LF ji−l(φ, ϕj(φ, ρ))

l∏
m=1

wjm(φ, ρ)bm .

Therefore from (22) and (23) we have

(24) rj(θ, ρ, ε) = rj(αj−1, ρ, ε) +
k∑
i=0

εiIji (θ, ρ) +O(εk+1),

where for i = 0, . . . , k and j = 1, 2, . . . , n we are taking

(25)

Ij0(θ, ρ) =

∫ θ

αj−1

F j0 (φ, ϕj(φ, ρ))dφ, j = 1, 2, . . .

Iji (θ, ρ) =

∫ θ

αj−1

(
F ji (φ, ϕj(φ, ρ)) +

i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl

·∂LF ji−l(φ, ϕj(φ, ρ))
l∏

m=1

wjm(φ, ρ)bm
)
dφ, i, j = 1, 2, . . .

Note that for i = 1, . . . , k and j = 2, . . . , n the following recurrence holds

(26)

wji (θ, ρ) =
∂i

∂εi
rj(θ, ρ, ε)

∣∣∣
ε=0

=
∂i

∂εi
rj−1(αj−1, ρ, ε)

∣∣∣
ε=0

+ i!Iji (θ, ρ)

= wj−1
i (αj−1, ρ) + i!Iji (θ, ρ),

with the initial condition

(27) w1
i (θ, ρ) =

∂ir1

∂εi
(θ, ρ, ε)

∣∣∣
ε=0

=
∂i

∂εi

ρ+

k∑
q=0

εqI1
q (θ, ρ)

∣∣∣∣∣
ε=0

= i!I1
i (θ, ρ).

Putting (26) and (27) together we obtain

wji (θ, ρ) = i!
(
I1
i (α1, ρ) + I2

i (α2, ρ) + · · ·+ Ij−1
i (αj−1, ρ) + Iji (θ, ρ)

)
.

for i = 1, 2, . . . , k and j = 1, 2, . . . , n.

Claim 1. For j = 1, 2, . . . , n we have

rj(θ, ρ, ε) = ϕj(θ, ρ) +
k∑
i=1

εi

i!
wji (θ, ρ) +O(εk+1).
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This claim will be proved by induction on j. Let j = 1. Since ϕ1 is the solution of
(7) for ε = 0 and j = 1 with the initial condition ϕ1(0, ρ) = ρ we get

ϕ1(θ, ρ) = ρ+

∫ θ

0
F 1

0 (θ, ϕ1(φ, ρ))dφ.

Hence from (24), (16) and (27) it follows that

r1(θ, ρ, ε) = ρ+
k∑
i=0

εiI1
i (θ, ρ) +O(εk+1)

= ρ+

∫ θ

0
F 1

0 (θ, ϕ1(φ, ρ))dφ+

k∑
i=1

εi

i!
w1
i (θ, ρ) +O(εk+1)

= ϕ1(θ, ρ) +
k∑
i=1

εi

i!
w1
i (θ, ρ) +O(εk+1).

Therefore the claim is proved for j = 1.
Now using induction we shall prove the claim for j = j0 assuming that it holds for

j = j0 − 1, that is

(28) rj0−1(θ, ρ, ε) = ϕj0−1(θ, ρ) +
k∑
i=1

εi

i!
wj0−1
i (θ, ρ) +O(εk+1).

Since ϕj0 is the solution of (7) for ε = 0 and j = j0 with the initial condition
ϕj0(αj0−1, ρ) = ϕj0−1(αj0−1, ρ) we get

(29) ϕj0(θ, ρ) = ϕj0−1(αj0−1, ρ)+

∫ θ

αj0−1

F 1
0 (θ, ϕj(φ, ρ))dφ = ϕj0−1(αj0−1, ρ)+Ij00 (θ, ρ).

From (24), (16) and (26) we have

rj0(θ, ρ, ε) = rj0−1(αj0−1, ρ, ε) +

k∑
i=0

εiIj0i (θ, ρ) +O(εk+1)

= rj0−1(αj0−1, ρ, ε) + Ij00 (θ, ρ) +
k∑
i=1

εi
wj0i (θ, ρ)− wj0−1

i (αj−1, ρ)

i!
+O(εk+1).

Finally using (28) and (29) the above expression becomes

rj0(θ, ρ, ε) = ϕj0−1(αj0−1, ρ) + Ij00 (θ, ρ) +
k∑
i=1

εi

i!
wj0−1
i (αj0−1, ρ)

+
k∑
i=1

εi

i!
(wj0i (θ, ρ)− wj0−1

i (αj0−1, ρ)) +O(εk+1)

= ϕj0(θ, ρ) +
k∑
i=1

εi

i!
wj0i (θ, ρ) +O(εk+1).

This proves the Claim 1.
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The proof of Lemma 4 ends by proving the following claim.

Claim 2. The equality wji = zji holds for i = 1, 2, . . . , k and j = 1, 2, . . . , n.

Computing the derivative in the variable θ of the expressions (10) and (27), for
i = j = 1, we see, respectively, that the functions z1

1(θ, ρ) and w1
1(θ, ρ) satisfy the same

differential equation. Moreover for each i = 1, 2, . . . , k the integral equations (10) and

(26) (and the equivalent differential equations), which provides respectively zji and wji ,
are defined by the same recurrence for j = 2, . . . , n. Therefore we conclude that the

functions zji (θ, ρ) and wji (θ, ρ) satisfy the same differential equations for i = 1, 2, . . . , k
and j = 1, 2, . . . , n.

It remains to prove that their initial conditions coincide. Let i ∈ {1, 2, . . . , k}. For
j = 1 we have from (27) and (10) that w1

i (0, ρ) = 0 = z1
i (0, ρ). For j = 2, . . . , n the

initial conditions are defined by the recurrence zji (αj−1, ρ) = zj−1
i (αj−1, ρ) (see (10)),

which is the same recurrence for the initial conditions of wji (αj−1, ρ). Indeed from

(26) and (25) we see that for j = 2, . . . , n we have wji (αj−1, ρ) = wj−1
i (αj−1, ρ) +

i!Iji (αj−1, ρ) = wj−1
i (αj−1, ρ). Therefore zji (αj−1, ρ) = wji (αj−1, ρ) for every i =

1, 2, . . . , k and j = 1, 2, . . . , n.

Hence Claim 2 follows from the uniqueness property of the solutions of the differential
equations. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Since ϕ(θ, ρ) is 2π-periodic, using Lemma 4 we have

rn(2π, ρ, ε) = ϕn(2π, ρ) +
k∑
i=1

εi

i!
zni (2π, ρ) +O(εk+1)

= ρ+
k∑
i=1

εi

i!
zni (2π, ρ) +O(εk+1).

Therefore from (11) the following equality holds

(30) rn(2π, ρ, ε) = ρ+ εf1(ρ) + ε2f2(ρ) + · · ·+ εkfk(ρ) +O(εk+1).

Consider the displacement function

f(ρ, ε) = r(2π, ρ, ε)− ρ = rn(2π, ρ, ε)− ρ.
Clearly for some ε = ε̄ ∈ (−ε0, ε0) discontinuous differential equation (8) admits a
periodic solution passing through ρ̄ ∈ D if and only if f(ρ̄, ε̄) = 0. From (30) we have
that

f(ρ, ε) =

k∑
i=1

εifi(ρ) +O(εk+1).

By hypotheses fl(ρ
∗) = 0 and f ′l (ρ

∗) 6= 0. Using the Implicit Function Theorem for

the function F(ρ, ε) = f(ρ, ε)/εl we guarantee the existence of a differentiable function
ρ(ε) such that ρ(0) = ρ∗ and f(ρ(ε), ε) = 0 for every |ε| 6= 0 sufficiently small. This
completes the proof of Theorem 1. �
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4. Examples

In this section we present three applications of our main result (Theorem 1). In the
first two examples (subsections 4.1 and 4.2) we use the averaged functions (11) up to
order 7 to provide lower bounds for the maximum number of limit cycles admitted by
some piecewise linear systems with four zones. The first system is a piecewise linear
perturbation of the linear center (ẋ, ẏ) = (−y, x), and the second one is a piecewise
linear perturbation of a discontinuous piecewise constant center. As usual, the expres-
sions of the higher order averaged functions are extensive (see [11, 15]), so we shall
omit them here. We emphasize that our goal in these first two examples, by taking
particular classes of perturbations, is to illustrate the using of the higher order averaged
functions.

In the third example we study the quadratic isochronous center (ẋ, ẏ) = (−y+x2, x+
xy) perturbed inside a particular family of piecewise quadratic system with n zones.
Using the first order averaged function (11) we provide lower bounds, depending on n,
for the maximum number of limit cycles admitted by this system. We emphasize that
our goal in this last example, again by taking a particular class of perturbation, is to
illustrate the using of Theorem 1 to study discontinuous piecewise nonlinear system
with many zones.

The next proposition, proved in [6], is needed to deal with our examples.

Proposition 5. Consider n linearly independent functions hi : I → R, i = 1, 2, . . . , n.

(i) Given n−1 arbitraries values of ai ∈ I, i = 1, 2, . . . , n−1 there exist n constants
βk, i = 1, 2, . . . , n such that

(31) h(x)
.
=

n∑
k=1

βkhk(x),

is not the zero function and h(ai) = 0 for i = 1, 2, . . . , n− 1.
(ii) Furthermore, if all hi are analytical functions on I and there exists j ∈ {1, 2, . . . , n}

such that hj |I has constant sign, it is possible to get an h given by (31), such
that it has at least n− 1 simple zeroes in I.

4.1. Nonsmooth perturbation of the linear center. The bifurcation of limit cycles
from smooth and nonsmooth perturbations of the linear center (ẋ, ẏ) = (−y, x) is a
fairly studied problem in the literature, see for instance [3, 4, 9, 18, 19]. Here we
apply our main result (Theorem 1) to study these limit cycles when the linear center
is perturbed inside a particular of piecewise linear system with 4 zones. Following the
notation introduced in subsection 1.2 we take

(32)
Xj

0(x, y) =
(
− y, x

)
, for j = 1, . . . , n, and

Xj
i (x, y) =

(
aijx+ bj , 0

)
, for j = 1, . . . , n, and i = 1, . . . , k.
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with aij , bij ∈ R for all i, j. We consider the discontinuous piecewise differential
system (ẋ, ẏ)T = ZX ,α(x, y; ε) (see (5)) where X =

(
X1, . . . , X4) (see (4)) and α =

(α0, α1, α2, α3) = (0, π/2, π, 3π/2).

First of all, in order to apply our main result (Theorem 1) to study the limit cycles
of (ẋ, ẏ)T = ZX ,α(x, y; ε), we shall write it into the standard form (8). To do that
we consider the polar coordinates x = r cos θ, y = r sin θ. So the set of discontinuity
becomes Σ = {θ = 0}∪{θ = α1}∪{θ = α2}∪{θ = α3} and in each sector Cj (see (6)),
j = 1, 2, 3, 4, the differential system (ẋ, ẏ)T = ZX ,α(x, y; ε) reads

ṙ(t) =
7∑
i=1

εi(aijr cos2 θ + bij cos θ),

θ̇(t) = 1− 1

r

7∑
i=1

εi(aijr cos θ sin θ + bij sin θ).

Note that θ̇(t) 6= 0 for |ε| sufficiently small, thus we can take θ as the new independent

time variable by doing r′(θ) = ṙ(t)/θ̇(t). Then

(33) r′(θ) =
ṙ(t)

θ̇(t)
=

7∑
i=1

εiF ji (θ, r) + εk+1Rj(θ, r, ε), for j = 1, 2, 3, 4,

where F ji is the coefficient of εi in the Taylor series in ε of ṙ(t)/θ̇(t) around ε = 0.

From here we shall use the averaged functions (11) up to order 7 to study the isolated
periodic solutions of the piecewise differential equation defined by (33) or, equivalently,
the limit cycles of the piecewise differential system (ẋ, ẏ)T = ZX ,α(x, y; ε) defined by
(32). As we have said before, due to the complexity of the expressions of the higher
order averaged functions we shall not provided them explicitly. So we first describe the
methodology to obtain lower bounds for the number of their zeros, and consequently
for the number of limit cycles of (32).

Assume that one have computed the list of averaged functions fi, i = 1, . . . , k, and
that they are polynomials. The first step is to established a lower bound for the number
of zeros that f1 can have. To do that, one can build a vector M1 where each entry s
of M1 is given by the coefficient of rs of the function f1. Clearly M1 is a function on
the parameter variable v1 = {a1j : j = 1, . . . , 4} ∪ {b1j : j = 1, . . . , 4}. So taking the
derivative Dv1M1, a lower bound for the number of zeros of fi will be given by the rank
of the matrix Dv1M1 decreased by 1. For instance, in our first example system (33),
the averaged function f1 reads

f1(r) =

∫ π
2

0
F 1

1 (θ, r)dθ +

∫ π

π
2

F 2
1 (θ, r)dθ +

∫ 3π
2

π
F 3

1 (θ, r)dθ +

∫ 2π

3π
2

F 4
1 (θ, r)dθ

=
π

4
r(a11 + a12 + a13 + a14) + b11 − b12 − b13 + b14.
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Clearly f1 has at most one positive root and there exists parameters a1j ’s and b1j ’s for
which this zero exists. In this case

M1 =
(
b11 − b12 − b13 + b14 ,

1

4
π(a11 + a12 + a13 + a14)

)
,

Dv1M1 =

 0 0 0 0 1 −1 −1 1

π

4

π

4

π

4

π

4
0 0 0 0

 .

We note that the matrix Dv1M1 has maximum rank 2. Applying Theorem 1 for l = 1
we obtain at least one limit cycle for the differential system (32).

The next step is to chose parameters to assure that f1(r) ≡ 0. In our example
a11 = −(a12 + a13 + a14) and b11 = b12 + b13 − b14. To continue the analysis we repeat
the above procedure: build a vector M2 where each entry s of M2 is given by the
coefficient of rs of the function f2; define the parameter vector v2 = {a1j : i = 1, 2, j =
1, . . . , 4} ∪ {b1j : i = 1, 2, j = 1, . . . , 4}; and take the derivative Dv2M2. Again a lower
bound for the number of zeros of f2 is given by the rank of the matrix Dv2M2 decreased
by 1. In our example

f2(r) = r2 [π(a21 + a22 + a23 + a24) + 2(a12 + a13)(a13 + a14)]

+r [π(a12 + a13)(b13 − b14)− 4(a14b12 + (a12 + a14)b13

+a13(b12 + 2b13 − b14)− a12b14 − b21 + b22 + b23 − b24)]

+4(b12 + b13)(b13 − b14).

The function f2 is a polynomial of degree 2 in r. It is easy to see that the matrix
Dv2M2 has maximum rank again, that is 3. Applying Theorem 1 for l = 2 we obtain
at least two limit cycles for the differential system (32).

In general, after estimating a lower bound for the number of zeros of fl−1 we chose
parameters to assure that fl−1(r) ≡ 0. Then we follow the above steps: build a vector
Ml where each entry s of Ml is given by the coefficient of rs of the function fl; define the
parameter vector vl = {aij : i = 1, . . . l , j = 1, . . . , 4} ∪ {bij : i = 1, . . . l , j = 1, . . . , 4};
and take the derivative DvlMl. As above a lower bound for the number of zeros of fl
will be given by the rank of the matrix DvlMl decreased by 1.

In what follows, using the procedure described above, we provide a table showing the
lower bound N(l), l = 1, . . . , 7, for the maximum number of limit cycles of the piecewise
differential system (ẋ, ẏ)T = ZX ,α(x, y; ε), defined by (32), obtained by studying the
averaged function of order l.

l 1 2 3 4 5 6 7

N(l) 1 2 2 3 3 3 3
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4.2. Nonsmooth perturbation of a piecewise constant center. Consider the
discontinuous piecewise constant differential system

(34) (ẋ, ẏ)T = X(x, y) =


X1(x, y) if x > 0 and y > 0,

X2(x, y) if x < 0 and y > 0,

X3(x, y) if x < 0 and y < 0,

X4(x, y) if x > 0 and y < 0,

where

X1(x, y) =

{
−1 +

∑7
i=1 ε

i(ai1x+ bi1),

1,
X2(x, y) =

{
−1 +

∑7
i=1 ε

i(ai2x+ bi2),

−1,

X3(x, y) =

{
1 +

∑7
i=1 ε

i(ai3x+ bi3),

−1,
X4(x, y) =

{
1 +

∑7
i=1 ε

i(ai4x+ bi4),

1,

with aij , bij ∈ R for all i ∈ {1, 2, . . . , 7} and j ∈ {1, 2, 3, 4}.
First of all, in order to apply our main result (Theorem 1) to study the limit cycles of

the differential system (34), we shall write it into the standard form (8). Again, to do
that we consider polar coordinates x = r cos θ, y = r sin θ. So the set of discontinuity
becomes Σ = {θ = 0} ∪ {θ = α1} ∪ {θ = α2} ∪ {θ = α3}, with α0 = 0, α1 = π/2, α2 =
π, α3 = 3π/2, and α4 = 2π, and for each j = 1, 2, 3, 4 the differential system (ẋ, ẏ) =
Xj(x, y) reads

ṙ(t) = gj(θ) +

7∑
i=1

εi(aijr cos2 θ + bij cos θ),

θ̇(t) =
1

r

(
ĝj(θ)−

7∑
i=1

εi(aijr cos θ sin θ + bij sin θ)

)
,

where

g1(θ) = sin θ − cos θ ĝ1(θ) = sin θ + cos θ,

g2(θ) = −(sin θ + cos θ) ĝ2(θ) = sin θ − cos θ,

g3(θ) = − sin θ + cos θ ĝ3(θ) = −(sin θ + cos θ),

g4(θ) = sin θ + cos θ ĝ4(θ) = − sin θ + cos θ.

Note that for each j = 1, 2, 3, 4 and αj−1 ≤ θ ≤ αj , we have that θ̇(t) 6= 0 for |ε|
sufficiently small, thus we can take θ as the new independent time variable by doing
r′(θ) = ṙ(t)/θ̇(t). Then

(35) r′(θ) =
ṙ(t)

θ̇(t)
=

7∑
i=0

εiF ji (θ, r) + εk+1Rj(θ, r, ε),

where F ji is the coefficient related to εi in Taylor series in ε of ṙ(t)/θ̇(t) around ε = 0.
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From here we shall use the averaged functions (11) up to order 7 to study the
isolated periodic solutions of the piecewise differential equation defined by (35) or,
equivalently, the limit cycles of the piecewise differential system (34). Following the
same methodology described in subsection 4.1, we provide a table showing the lower
bound N(l), l = 1, . . . , 7, for the maximum number of limit cycles of (34) obtained by
studying the averaged function of order l.

l 1 2 3 4 5 6 7

N(k) 1 2 2 2 2 2 2

4.3. Nonsmooth perturbation of an isochronous quadratic center. In this sec-
tion we consider the quadratic isochronous center (ẋ, ẏ) = (−y+ x2, x+ xy) perturbed
inside a class of piecewise quadratic system with n zones. Following the notation in-
troduced in subsection 1.2 we take

X1
0 (x, y) =

(
− y + x2, x+ xy

)
, for j = 1, . . . , n, and

X1
i (x, y) =

(
ajx

2 + bjx+ cj , 0
)
, for j = 1, . . . , n,

where aj , bj and cj are real numbers for all j ∈ {1, 2, . . . , n}. We consider the dis-
continuous piecewise differential system (ẋ, ẏ)T = ZX ,α(x, y; ε) (see (5)) where X =(
X1, . . . , Xn) (see (4)) and α = (αj)

n−1
j=0 = (2jπ/n)n−1

j=0 .

As before, in order to apply our main result (Theorem 1) to study the limit cycles
of (ẋ, ẏ)T = ZX ,α(x, y; ε), we shall write it into the standard form (8). To do that we
consider a first change of coordinates x = −u/(v − 1), y = −v/(v − 1) (see [5]). Note
that this change keeps fixed all straight lines passing through the origin and therefore
does not change the set of discontinuity. In each sector Cj (see (6)), j = 1, 2, 3, 4, the
differential system (ẋ, ẏ)T = ZX ,α(x, y; ε) reads

(36)
u̇ = −v + ε

(
u

(
bj −

aj
v − 1

u

)
+ cj(1− v)

)
,

v̇ = u.

Now, as a second change of variables, we consider the polar coordinates u = r cos θ and
v = r sin θ. Taking θ as the new independent time variable by doing r′(θ) = ṙ(t)/θ̇(t),
system (36) becomes

r′(θ) = εF j(θ, r) +O(ε2),

where

F j(θ, r) = cos θ

(
cj + r

(
− cj sin θ + cos θ

(
bj +

ajr cos θ

1− r sin θ

)))
.

for j = 1, . . . , n.
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In this new coordinates the piecewise differential system (ẋ, ẏ)T = ZX ,α(x, y; ε) reads

(37) r′(θ) = εF (θ, r) +O(ε2),

where

F (θ, r) =

n∑
j=1

χ
[
2(j−1)π

n
, 2jπ
n

]
(θ)F j(θ, r).

Computing the first order averaged function f1 of (37) we obtain

f1(r) =
n∑
j=1

∫ 2jπ
n

2(j−1)π
n

F j(θ, r)dθ

=
1

4

[ n∑
j=1

4(aj + cj)

(
sin

(
2jπ

n

)
− sin

(
2(j − 1)π

n

))
+r

(
n∑
j=1

(
4π

n
+ sin

(
4jπ

n

)
− sin

(
4(j − 1)π

n

))
bj

+(aj − cj)
(

cos

(
4(j − 1)π

n

)
− cos

(
4jπ

n

)))

+
(r2 − 1)

r

 n∑
j=1

4aj ln

(
1− r sin

(
2(j − 1)π

n

))
+

(r2 − 1)

r

 n∑
j=1

−4aj ln

(
1− r sin

(
2jπ

n

))].
Since sin

(
2(j−1)π

n

)
= 0 for j = 1, and sin

(
2jπ
n

)
= 0 for j = n, the above expression

simplifies as

f1(r) =
1

4

[ n∑
j=1

4(aj + cj)

(
sin

(
2jπ

n

)
− sin

(
2(j − 1)π

n

))
+r

(
n∑
j=1

(
4π

n
+ sin

(
4jπ

n

)
− sin

(
4(j − 1)π

n

))
bj

+(aj − cj)
(

cos

(
4(j − 1)π

n

)
− cos

(
4jπ

n

)))

+
(r2 − 1)

r

 n∑
j=2

4(aj − aj−1) ln

(
1− r sin

(
2(j − 1)π

n

))].
Note that f1 is written as a linear combination of n+ 1 functions of the family

F =

{
1, r, hj(r)

.
=

(r2 − 1)

r
ln

(
1− r sin

(
2(j − 1)π

n

))
: j = 2, 3, . . . , n

}
.
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It is easy to see that this combination is linearly independent.

Regarding the functions hj ’s we have the following properties

(1) Let j ∈ {2, 3, . . . , n}. Then hj(r) ≡ 0 if and only if n is even and j = 1 + n/2.

(2) Let j1, j2 ∈ {2, 3, . . . , n}. Then hj1(r) ≡ hj2(r) if and only if n is even and
(j1 + j2 − 2) ∈ {n/2, 3n/2}.

From the above properties we first conclude that if n is odd then the function f1

is a linearly independent combination of n + 1 linearly independent functions. From
Proposition 5 we can find parameters such that f1 has n simple zeros.

If n = 2 then f1(r) = π(b1 + b2)r/2 which has no simple positive zeros. From now
on we assume that n is even and greater than 2. From property (1) we already know
that hj0 ≡ 0 for j0 = 1 + n/2. From property (2) it remains to analyze how many
pairs of integers (j1, j2), 2 ≤ j1 < j2 ≤ n, satisfy the equations 2(j1 + j2 − 2) = n and
2(j1 + j2 − 2) = 3n.

Let n be a positive integer. If n = 4n then both equations 2(j1 + j2 − 2) = n
and 2(j1 + j2 − 2) = 3n have n/4 − 1 solutions. If n = 4n + 2 then both equations
2(j1 + j2 − 2) = n and 2(j1 + j2 − 2) = 3n have (n − 2)/4 solutions. Therefore we
conclude that:

• If n = 4n then #F =
n

2
+ 2;

• If n = 4n+ 2 then #F =
n

2
+ 1;

Denote by N the maximum number of limit cycles of (ẋ, ẏ)T = ZX ,α(x, y; ε). Apply-
ing Proposition 5 and Theorem 1 we conclude that:

(i) If n is odd then N ≥ n;

(ii) If n = 2 then N ≥ 0 (no information!);

(iii) If n = 4k then N ≥ n

2
+ 1;

(iv) If n = 4k + 2 then N ≥ n

2
.
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[21] H. Poincaré, Memoire sur les coubes definies par une equation differentielle I, II, III, IV. J.
Math. Pures Appl. 7 (1881), 375–422. 8 (1882), 251–296. 1 (1885), 167–244. 2 (1886) 155–217.

[22] L. Wei and X. Zhang, Averaging theory of arbitrary order for piecewise smooth differential
systems and its application, J. Dyn. Diff. Equat. (2016), DOI:10.1007/s10884-016-9534-6.

[23] Various, Special issue on dynamics and bifurcations of nonsmooth systems, Phys. D 241 (2012),
1825–2082.


