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BRANCHING OF LIMIT CYCLES FROM FAMILIES OF PERIODIC

SOLUTIONS IN PIECEWISE DIFFERENTIAL SYSTEMS

JAUME LLIBRE, DOUGLAS D. NOVAES AND CAMILA A. B. RODRIGUES

Abstract.Consider a differential system on the form

x′ = F0(t, x) +
k∑
i=1

εiFi(t, x) + εk+1R(t, x, ε),

where Fi : S1 × D → Rm and R : S1 × D × (−ε0, ε0) → Rm are piecewise Ck+1

functions and T -periodic in the variable t. Assuming that the unperturbed system
x′ = F0(t, x) has a d-dimensional submanifold of periodic solutions with d < m we
use the Lyapunov-Schmidt reduction method and the averaging theory to study the
existence of limit cycles of the above differential system.

Keywords Lyapunov-Schmidt reduction · periodic solution · averaging method · non-
smooth differential system · piecewise smooth differential system
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1. Introduction and Statement of the main result

1.1. Introduction. The study of the existence of invariant sets, in especial periodic
solutions, is very important for understanding the dynamics of a differential system.
A limit cycle of a differential system is a periodic solution isolated in the set of all
periodic solutions of the differential system. It is well known that there exists a relation
between the periodic solutions of a system and the zeros of a Poincaré map and the
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displacement function. In this sense the averaging theory is one of the important tools
to detect periodic solutions in m-dimensional systems on the form

(1) x′ = F0(t, x) +
k∑
i=1

εiFi(t, x) + εk+1R(t, x, ε).

A classical introduction to the averaging theory can be found in [21, 22]. Consider
the unperturbed system x′ = F0(t, x) and its set of initial conditions whose orbits are
periodic denoted here by Z. Assume that the set Z is a d-dimensional submanifold of
Rm such that either dim(Z) = d = m) or dim(Z) = d < m.

When dim(Z) = d = m we have many works that study the number of limit cycles
of system (1). Assuming that k ∈ {1, 2}, F0 ≡ 0 and F1, F2 are T - periodic functions in
the first variable and locally Lipschitz in the second variable Buica and Llibre proved
in [3] that the number of limit cycles of (1) is controlled by the number of zeros of some
functions called average functions that depend on F1 if k = 1 and of F1 and F2 if k = 2.
In [7] the authors studied the case where F0 is zero or not and Fi are analytic functions
for every k = 1, 2, . . . , n, and in [16] it was studied the averaging theory at any order
when the functions Fi are only continuous and T -periodic on the first variable.

The averaging theory can be extended to discontinuous differential systems. The
study of discontinuous differential systems is important in many fields of the applied
sciences because many problems of physics, engineering, economics, and biology are
modeled using differential equations with discontinuous right-hand side, see for in-
stance [2, 6, 20]. So, there is a natural interest in studying the averaging theory for
discontinuous systems. This was the main objective of the works [11, 12, 14, 18].

When dim(Z) = d < m only the averaging theory is not enough to study the number
of limit cycles of the systems and other techniques need to be employed together, as
the Lyapunov-Schmidt reduction method. In the case that Fi are smooth functions we
have the works [4, 5, 8]. If the functions Fi are not smooth or even continuous we have
the works [13, 14], where the authors studied some classes of these systems.

A piecewise smooth vector field defined on an open bounded set U ⊂ Rm is a function
F : U → Rm which is smooth except on a set Σ of zero measure, called the discontinuity
set of the vector field F . We suppose that U \ Σ is a finite union of disjoint open sets
Ui, i = 1, 2, . . . , n, where the restriction Fi = F

∣∣
Ui

can be extended continuously to Ui.

The orbit of F at a point p ∈ Ui is defined as usual for a differential system. But if
p ∈ Σ then the definition of this orbit through p is more delicate. In [9] Filippov used
the theory of differential inclusion (see [1]) to give the definition of what is a local orbit
at the points of discontinuity where the set Σ is locally a codimension one embedded
submanifold of Rm. If p ∈ Σ and Up is a small neighborhood of p then we divide Up \Σ
in two disjoint open sets U+

p and U−p and write F±(p) = F
∣∣
U±p

(p).

In short, let S ⊂ Σ be an embedded hypersurface in S1 × D and TpS denotes the
tangent space of S at the point p. Let l(p) be the segment connecting the vectors F+(p)
and F−(p) and the crossing region of the hypersurface S is the set Σc(S) = {p ∈ S :
l(p) ∩ TpS = ∅}. For a point p on the crossing region the local orbit of F at p is given
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as the concatenation of the local trajectories of F± at p. In this case we say that the
orbit crosses the set of discontinuity and that p is a crossing point. When p is not a
crossing point we say that p is a sliding point and the local trajectory of F at p slides
on Σ. For more details on the Filippov conventions see [9, 10].

In what follows we describe how to use the averaging theory and Lyapunov-Schmidt
reduction method for computing isolated periodic solutions of the piecewise smooth
differential systems. Then, we set the class of non-autonomous discontinuous piecewise
smooth differential equations that we are interested as well as our main result (Theorem
A).

1.2. Lyapunov-Schmidt reduction. Consider the function

(2) g(z, ε) =

k∑
i=0

εigi(z) +O(εk+1),

where gi : D → Rm is a Ck+1 function, k ≥ 1, for i = 0, 1, . . . , k, in which D an
open bounded subset of Rm. For d < m, let V be an open bounded subset of Rd and
β : V → Rm−d a Ck+1 function such that

(3) Z = {zα = (α, β(α)) : α ∈ V } ⊂ D.

The main hypothesis is

(Hα) the function g0 vanishes on the d-dimensional submanifold Z of D.

In [5] the authors used the Lyapunov-Schmidt reduction method to develop the
bifurcation functions of order i, for i = 0, 1, . . . , k, which for |ε| 6= 0 sufficiently small
control the existence of branches of zeros z(ε) of system (2) that bifurcate from z(0) ∈
Z. In this subsection we present the results developed in that work and those that we
shall need later on.

First we present some notation. Consider the projections onto the first d coordinates
and onto the last m − d coordinates denoted by π : Rd × Rm−d → Rd and π⊥ : Rd ×
Rm−d → Rm−d, respectively. Also, for a point z ∈ Z we write z = (a, b) ∈ Rd × Rm−d.

Let L be a positive integer, let x = (x1, x2, . . . , xm) ∈ D, t ∈ R and yj = (yj1, . . . , yjm) ∈
Rm for j = 1, . . . , L. Given G : R ×D → Rm a sufficiently smooth function, for each
(t, x) ∈ R×D we denote by ∂LG(t, x) a symmetric L–multilinear map which is applied

to a “product” of L vectors of Rm, which we denote as
⊙L

j=1 yj ∈ RmL. The definition
of this L–multilinear map is

∂LG(t, x)
L⊙
j=1

yj =
n∑

i1,...,iL=1

∂LG(t, x)

∂xi1 . . . ∂xiL
y1i1 . . . yLiL .

We define ∂0 as the identity functional.
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The bifurcation functions fi : V → Rd of order i are defined for i = 0, 1, . . . , k as

(4) fi(α) = πgi(zα) +
i∑
l=1

∑
Sl

1

c1! c2!2!c2 . . . cl!l!cl
∂Lb πgi−l(zα)

l⊙
j=1

γj(α)cj ,

where the γi : V → Rm−d, for i = 1, 2, . . . , k, are defined recursively as

(5)

γ1(α) = −∆−1
α π⊥g1(zα) and

γi(α) = −i!∆−1
α

(∑
S′i

1

c1! c2!2!c2 . . . ci−1!(i− 1)!ci−1
∂I
′
b π
⊥g0(zα)

i−1⊙
j=1

γj(α)cj

+
i−1∑
l=1

∑
Sl

1

c1! c2!2!c2 . . . cl!l!cl
∂Lb π

⊥gi−l(zα)
l⊙

j=1

γj(α)cj
)
.

We denote by Sl the set of all l-tuples of non-negative integers (c1, c2, . . . , cl) such that
c1 + 2c2 + . . . + lcl = l, L = c1 + c2 + . . . + cl, and by S′i the set of all (i − 1)-tuples
of non-negative integers (c1, c2, . . . , ci−1) such that c1 + 2c2 + . . . + (i − 1)ci−1 = i,

I ′ = c1 + c2 + . . .+ ci−1 and ∆α =
∂π⊥g0

∂b
(zα).

About the zeros of the function (2) the authors proved in [5] the following result.

Theorem 1. Let ∆α denote the lower right corner (m − d) × (m − d) matrix of the
Jacobian matrix Dg0(zα). Additionally to hypothesis (Hα) we assume that

(i) for each α ∈ V , det ∆α 6= 0; and
(ii) f1 = f2 = . . . = fk−1 = 0 and fk is not identically zero.

If there exists α∗ ∈ V such that fk(α
∗) = 0 and det(Dfk(α

∗)) 6= 0, then there exists a
branch of zeros z(ε) with g(z(ε), ε) = 0 and |z(ε)− zα∗ | = O(ε).

1.3. The averaging theory. In [5], using Theorem 1, the authors studied high order
bifurcation of periodic solutions of the following T -periodic Ck+1 with k ≥ 1 differential
system

(6) x′ = F (t, x, ε) = F0(t, x) +

k∑
i=1

εiFi(t, x) +O(εk+1), (t, z) ∈ S1 ×D,

where the prime denotes the derivative with respect to the independent variable t,
usually called the time. In their work they assumed that the manifold Z, defined in
(3), is such that all solutions of the unperturbed system

x′ = F0(t, x),

starting at points of Z are T -periodic and dimZ ≤ m.

Consider the variational equation

(7) y′ =
∂F0

∂x
(t, x(t, z, 0))y,
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where x(t, z, 0) denotes the solution of system (6) when ε = 0, and we denote a funda-
mental matrix of system (7) by Y (t, z). The average function of order i of system (6)
is defined as

(8) gi(z) = Y −1(T, z)
yi(T, z)

i!
,

where

(9)

y1(t, z) = Y (t, z)

∫ t

0
Y (s, z)−1F1 (s, x(s, z, 0)) ds,

yi(t, z) = i!Y (t, z)

∫ t

0
Y (s, z)−1

(
Fi (s, x(s, z, 0))

+
∑
S′i

1

b1! b2!2!b2 . . . bi−1!(i− 1)!bi−1
∂I
′
F0(s, x(s, z, 0))

i−1⊙
j=1

yj(s, z)
bj

+
i−1∑
l=1

∑
Sl

1

b1! b2!2!b2 . . . bl!l!bl
∂LFi−l(s, x(s, z, 0))

l⊙
j=1

yj(s, z)
bj

)
ds.

Using the functions gi stated in (8) are defined the functions fi and γi given by (4)
and (5), respectively. Under some assumptions and with Theorem 1 it was proved that
the simple zeros of the functions fi provide the existence of isolated periodic solutions
of the differential system (6). By a simple zero of a function f we mean a point a such
that f(a) = 0 and det(Df(a)) 6= 0, where Df(a) denotes the Jacobian matrix of f at
the point a.

Remark 1. The functions yi(t, z) could be defined recurrently by an integral equation
as done in other works (see [11, 16, 17]). Indeed, we define

(10)

y1(t, z) =

∫ t

0

(
F1 (s, x(s, z, 0)) + ∂F0(s, x(s, z, 0))y1(s, z)

)
ds,

yi(t, z) = i!

∫ t

0

(
Fi (s, x(s, z, 0)) +

i∑
l=1

∑
Sl

1

b1! b2!2!b2 . . . bl!l!bl

·∂LFi−l (s, x(s, z, 0))
l⊙

j=1

yj(s, z)
bj
)
ds, for i = 2, . . . , k,

and it is not difficult to see that solving this integral equations we obtain the formulae
(9).

For more details on the results of this subsection 1.2 see [5].

1.4. Standard form and main result. Let n > 1 be a positive integer. For i =

0, 1, . . . , k and j = 1, 2, . . . , n let F ji : S1 ×D → R and Rj : S1 ×D × (−ε0, ε0)→ R be
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functions Ck+1 where D is an open subset of Rm and S1 ≡ R/(TZ). We define

Fi(t, x) =

n∑
j=1

χ[tj−1,tj ](t)F
j
i (t, x), i = 0, 1, ..., k, and

R(t, x, ε) =
n∑
j=1

χ[tj−1,tj ](t)R
j(t, x, ε),

where χA(t) is the characteristic function of A defined as

χA(t) =

{
1 if t ∈ A,

0 if t 6∈ A.

The notation t ∈ S1 ≡ R/(TZ) means that all the above functions are T -periodic in
the variable t.

Consider the discontinuous and T -periodic differential system

(11) x′ = F (t, x, ε) =
k∑
i=0

εiFi(t, x) + εk+1R(t, x, ε),

and the submanifold Z of periodic solutions of the unperturbed system

(12) x′ = F0(t, x).

The set Σ of discontinuity of system (11) is given by

Σ = ({t = 0 ≡ T} ∪ {t = t1} ∪ . . . ∪ {t = tn−1}) ∩ S1 ×D,
where 0 < t1 < t2 < . . . < tn−1 < T .

For each j = 1, 2, . . . , n and t ∈ [tj−1, tj ] we have the differential system

(13) x′ =
k∑
i=0

εiF ji (t, x) + εk+1Rj(t, x, ε).

To continue we need to give some definition about system (11). For each z ∈ D
and ε sufficiently small we denote by x(·, z, ε) : [0, t(z,ε)) → Rm the solution of system
(11) such that x(0, z, ε) = z, where [0, t(z,ε)) is the interval of definition for the solution
x(t, z, ε).

Consider the submanifold Z = {zα = (α, β0(α)) : α ∈ V̄ }, where V is an open
bounded subset of Rm, and β0 : V → Rd−m is a Ck function with k ≥ 1. Notice that for
each zα ∈ Z, (ti, x(ti, zα, 0) ∈ Σc), for i ∈ {0, 1, . . . , k}. Indeed, for each j = 1, 2, . . . , n,
the set of discontinuity can be locally described by h−1

j (0), where f : S1 × D → R
is hj(t, x) = t − tj . It is known that to show that we are in the crossing region it is
sufficient to prove that 〈∇hj(t, x), F j(t, x)〉〈∇hj(t, x), F j+1(t, x)〉 > 0 (see [16]), where
∇hj(t, x) denotes the gradient vector of the function hj(t, x). Here, ∇hj(t, x) = (1, 0)
and 〈∇hj(t, x), F j(t, x)〉〈∇hj(t, x), F j+1(t, x)〉 = 1 > 0.

In [15], the averaging theory was developed assuming dim(Z) = m. Here, we are
interested in the case dim(Z) < m. Accordingly, we shall extend the average functions
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(8) and the bifurcation functions (4) obtained in [5] to this class of discontinuous dif-
ferential system, providing then sufficient conditions in order to control which periodic
solutions of Z, with dimZ = d < m, persists to ε 6= 0 sufficiently small.

For system (12) we consider the fundamental matrix Y (t, z) of the variational system

(14) y′ =
∂

∂x
F0(t, x(t, z, 0))y,

where Y is an m×m matrix. Notice that, for each j = 1, 2, . . . , n, if xj(t, z, ε) denotes
the solution of (13) for tj−1 ≤ t ≤ tj , the function t 7→ (∂xj/∂z)(t, z, 0) is a solution
of (14) for tj−1 ≤ t ≤ tj . Recall that the right product of a solution of the variational
equation (14) by constant matrix is still a solution of (14). Therefore, the solution
Y (t, z) can be built as follows:

Y (t, z) =


Y1(t, z) if 0 = t0 ≤ t ≤ t1,
Y2(t, z) if t1 ≤ t ≤ t2,
...

Yn(t, z) if tn−1 ≤ t ≤ tn = T ,

where

(15)
Y1(t, z) =

∂x1

∂z
(t, z, 0), and

Yj(t, z) =
∂xj
∂z

(t, z, 0)

(
∂xj
∂z

(tj−1, z, 0)

)−1

Yj−1(tj−1, z), for j = 2, 3, . . . , n.

Our main result says that the simple zeros of the bifurcation functions (4) also
controls the branching of isolated periodic solutions of the nonsmooth system (11).
The derivatives ∂jFi(s, z), which appears in (4), are computed as follows:

∂jFi
∂z

(s, z) =
n∑
j=1

χ[tj−1,tj ](s)
∂jF ji
∂zj

(s, z).

Theorem A. Let ∆α denote the lower right corner (m − d) × (m − d) matrix of the
matrix Id − Y −1(T, z). We assume that the functions defined by (4) and (8) satisfy
f1 = f2 = . . . = fk−1 = 0 and that for each α ∈ V , det(∆α) 6= 0. If there exists
α∗ ∈ V such that fk(α

∗) = 0, and that det(Dfk(α
∗)) 6= 0, then there exists a T -periodic

solution ϕ(t, ε) of (11) such that |ϕ(0, ε)− zα∗ | = O(ε).

The paper is organized as follows. In section 2 we present the explicit formulae (8)
for the average functions of the nonsmooth differential system (11). In section 3 we
prove Theorem A and in Section 4 we give two applications of TheoremA.

2. An algorithm for the bifurcation functions

In this section we will provide an algorithm for computing the average functions,
defined in (10), for the nonsmooth case. Their expressions are defined recurrently and
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using Bell polynomials, which can be implemented more easily. This is because soft-
wares such as Mathematica and Maple have already implemented these polynomials.
In [19], it was proved that the average functions defined for smooth cases can be com-
puted using Bell polynomials and in [15] the authors did the same for the nonsmooth
case. For each pair of nonnegative integers (p, q), the partial Bell polynomial is defined
as

Bp,q(x1, x2, . . . , xp−q+1) =
∑
S̃p,q

p!

b1!b2! . . . bp−q+1!

p−q+1∏
j=1

(
xj
j!

)bj
,

where S̃p,q is the set of all (p− q + 1)-tuple of nonnegative integers (b1, b2, . . . , bp−q+1)
satisfying b1 +2b2 + . . .+(p−q+1)bp−q+1 = p, and b1 +b2 + . . .+bp−q+1 = q. Moreover,
if g and h are sufficiently smooth functions, then using Bell polynomials we have that

dl

dxl
g(h(x)) =

l∑
m=1

g(m)(h(x))Bl,m(h′(x), h′′(x), . . . , h(l−m+1)(x)).

2.1. Average Functions. In this section we develop a recurrence to compute the
average function (8) in the particular case of the discontinuous differential equation (11).

So, consider the functions wji : (tj−1, tj ]×D → R defined recurrently for i = 1, 2, . . . , k
and j = 1, 2, . . . , n, as
(16)

w1
1(t, z) =

∫ t

0

(
F 1

1 (s, x(s, z, 0)) + ∂F 1
0 (s, x(s, z, 0))w1

1(s, z)

)
ds,

w1
i (t, z) = i!

∫ t

0

(
F 1
i (s, x(s, z, 0))+

i∑
l=1

∑
Sl

1

b1! b2!2!b2 . . . bl!l!bl
· ∂LF 1

i−l(s, x(s, z, 0))
l⊙

m=1

w1
m(s, z)bm

)
ds,

wji (t, z) = wj−1
i (tj−1, z) + i!

∫ t

tj−1

(
F ji (s, x(s, z, 0))+

i∑
l=1

∑
Sl

1

b1! b2!2!b2 . . . bl!l!bl
· ∂LF ji−l(s, x(s, z, 0))

l⊙
m=1

wjm(s, z)bm
)
ds.

Since F0 6= 0 the recurrence defined in (16) is an integral equation and the next lemma
solves it using Bell polynomials.
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Lemma 2. For i = 1, 2, . . . , k and j = 1, 2, . . . , n the recurrence (16) can be written as
follows

w1
1(t, z) = Y1(t, z)

∫ t

0
Y −1

1 (s, z)F 1
1 (s, x(s, z, 0))ds,

wj1(t, z) = Yj(t, z)

(
Y −1
j (tj−1, z)w

j−1
1 (tj−1, z) +

∫ t

tj−1

Y −1
j (s, z)F j1 (s, x(s, z, 0))ds

)
,

w1
i (t, z) = Y1(t, z)

∫ t

0
Y −1

1 (s, z)
(
i!F 1

i (s, x(s, z, 0))

+
i∑

m=2

∂mF 1
0 (s, x(s, z, 0)).Bi,m(w1

1, . . . , w
1
i−m+1),

+

i−1∑
l=1

l∑
m=1

i!

l!
∂mF 1

i−l(s, x(s, z, 0)).Bl,m(w1
1, . . . , w

1
l−m+1)

)
ds,

wji (t, z) = Yj(t, z)
[
Y −1
j (tj−1, z)w

j−1
i (tj−1, z) +

∫ t

tj−1

Y −1
j (s, z)

(
i!F ji (s, x(s, z, 0))

+
i∑

m=2

∂mF j0 (s, x(s, z, 0)).Bi,m(wj1, . . . , w
j
i−m+1),

+

i−1∑
l=1

l∑
m=1

i!

l!
∂mF ji−l(s, x(s, z, 0)).Bl,m(wj1, . . . , w

j
l−m+1)

)
ds.
]

Proof. The idea of the proof is to relate the integral equations (16) to the Cauchy
problem and then solve it. For example, if i = j = 1 the integral equation is equivalent
to the following Cauchy problem

∂w1
1

∂t
(t, z) = F 1

1 (t, x(t, z, 0)) + ∂F 1
0 (t, x(t, z, 0))w1

1 with w1
1(0, z) = 0,

and solving this linear differential equation we get the expression of w1
1(t, z) described

in the statement of the lemma. For more details see [15]. �

Now, we provide a formula for the average functions (8) for the class of discontinuous
differential systems studied in this paper.

Proposition 3. For i = 1, 2, . . . , k, the average function (8) of order i is

gi(z) = Y −1
n (T, z)

wni (T, z)

i!
.

Proof. For each i = 1, 2, . . . , k we define

wi(t, z) =
n∑
j=1

χ[tj−1,tj ](t)w
j
i (t, z).
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Given t ∈ [0, T ] there exists a positive integer k̄ such that t ∈ (tk̄−1, tk̄] and, therefore,

wi(t, z) = wk̄i (t, z). By the proof of Proposition 2 of [15] we obtain

(17)

w1(t, z) =

∫ t

0

(
F1(s, x(s, z, 0)) + ∂F0(s, x(s, z, 0))w1(s, z)

)
ds,

wi(t, z) ·∂LFi−l(s, x(s, z, 0))
l⊙

m=1

wm(s, z)bm
)
ds.

Since by Remark 1 we can consider the functions (9) given implicitly, we compute the
derivatives in the variable t of the functions (17) and (10) for i = 1, and we see that the
functions w1(t, z) and y1(t, z) satisfy the same differential equation. Moreover, for each
i = 2, . . . , k, the integral equations (10) and (17), which provide respectively yi and
wi, are defined by the same recurrence. Then the functions yi and wi satisfy the same
differential equations for i = 1, 2, . . . , k, and their initial conditions coincide. Indeed,
let i ∈ {1, 2, . . . , k}, since yi(0, z) = 0 and, by (17), wi(0, z) = 0, it follows that the
initial conditions are the same. Applying the Existence and Uniqueness Theorem on the
solutions of the differential system we get yi(t, z) = wi(t, z), for all i ∈ {1, 2, . . . , k}. �

2.2. Bifurcation Functions. In this section we shall write the bifurcation functions
(4) and the functions γi(α) given by (5) in terms of Bell polynomials.

Claim 1. The bifurcation function (4) is given by

fi(α) = πgi(zα) +

i∑
l=1

l∑
m=1

1

l!
∂mb πgi−l(zα)Bl,m(γ1(α), . . . , γl−m+1(α)),

where

γ1(α) = −∆−1
α π⊥g1(zα) and

γi(α) = −∆−1
α

( i−1∑
l=0

i!

l!

l∑
m=1

∂mb π
⊥gi−l(zα)Bl,m(γ1(α), . . . , γl−m+1(α))

+

i∑
m=2

∂mb π
⊥g0(zα)Bi,m(γ1(α), . . . , γi−m+1(α))

)
.

Proof. The expressions (4) was obtained in [5] using the Faá di Bruno’s formula for the
L-th derivative of a composite function. This claim follows just by applying the version
of the Faá di Bruno’s formula in terms of the Bell polynomials (see [19, 5]). �
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3. Proof of Theorem A

For j = 1, 2, . . . , n let ξj(t, t0, z0, ε) be the solution of the discontinuous differential
system (13) such that ξj(t0, t0, z0, ε) = z0. Then, we define the recurrence

x1(t, z, ε) = ξ1(t, 0, z, ε)

xj(t, z, ε) = ξj(t, tj−1, xj−1(tj−1, z, ε), ε), j = 2, . . . , n.

Since we are working in the cross region it is easy to see that, for |ε| 6= 0 sufficiently
small, each xj(t, z, ε) is defined for every t ∈ [tj−1, tj ]. Therefore x(·, z, ε) : [0, T ] → R
is defined as

x(t, z, ε) =



x1(t, z, ε) if 0 = t0 ≤ t ≤ t1,
x2(t, z, ε) if t1 ≤ t ≤ t2,
...

xj(t, z, ε) if tj−1 ≤ t ≤ tj ,
...

xn(t, z, ε) if tn−1 ≤ t ≤ tn = T .

Notice that x(t, z, ε) is the solution of the differential equation (12) such that x(0, z, ε) =
z. Moreover, the following equality hold

xj(tj−1, z, ε) = xj−1(tj−1, z, ε),

for j = 1, 2, . . . , n.

The next lemma expands the solution xj(·, z, ε) around ε = 0.

Lemma 4. For j ∈ {1, 2, . . . , n} and tjz > tj , let xj(·, z, ε) : [tj−1, tj) be the solution of
(13). Then

xj(t, z, ε) = xj(t, z, 0) +
k∑
i=1

εi

i!
wji (t, z) +O(εk+1).

Proof. First, fixed j ∈ {1, 2, . . . , n}, we use the continuity of the solution xj(t, z, ε) and

the compactness of the set [tj−1, tj ]×D × [−ε0, ε0] to get that∫ t

tj−1

Rj(s, xj(s, z, ε), ε)ds = O(ε), t ∈ [tj−1, tj ].

Thus, integrating the differential equation (13) from tj−1 to t, we get

(18)

xj(t, z, ε) = xj(tj−1, z, ε) +

k∑
i=0

εi
∫ t

tj−1

F ji (s, xj(s, z, ε))ds+O(εk+1), and

xj(t, z, 0) = xj(tj−1, z, 0) +

∫ t

tj−1

F j0 (s, xj(s, z, 0))ds.

By the differentiable dependence of the solutions of a differential system on its pa-
rameters the function ε 7→ xj(t, z, ε) is a Ck+1 map. Then, the next step is to compute
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the Taylor expansion of F ji (t, xj(t, z, ε)) around ε = 0 and for this we use the Faá di
Bruno’s Formula about the l-th derivative of a composite function, which guarantees
that if g and h are sufficiently smooth functions then

dl

dαl
g(h(α)) =

∑
Sl

l!

b1! b2!2!b2 . . . bl!l!bl
g(L)(h(α))

l⊙
j=1

(
h(j)(α)

)bj
,

where Sl is the set of all l-tuples of non-negative integers (b1, b2, . . . , bl) satisfying b1 +
2b2 + . . .+ lbl = l, and L = b1 + b2 + . . .+ bl.

For each i = 0, 1, ..., k − 1, expanding F ji (s, xj(s, z, ε)) around ε = 0 we get
(19)

F ji (s, xj(s, z, ε)) = F ji (s, xj(s, z, 0))+

k−i∑
l=1

∑
Sl

εl

b1! b2!2!b2 . . . bl!l!bl
∂LF ji (s, xj(s, z, 0))

l⊙
m=1

rjm(s, z)bm ,

where

rjm(s, z) =
∂m

∂εm
xj(s, z, ε)

∣∣∣
ε=0

,

and for i = k

(20) F jk (s, xj(s, z, ε)) = F jk (s, xj(s, z, 0)) +O(ε).

Substituting (19) and (20) in (18) we get

xj(t, z, ε) = xj(tj−1, z, ε) +

∫ t

tj−1

(
k∑
i=0

εiF ji (s, xj(s, z, 0))ds

+
k−1∑
i=0

k−i∑
l=1

εl+i
∑
Sl

1

b1! b2!2!b2 . . . bl!l!bl

·∂LF ji (s, xj(s, z, 0))
l⊙

m=1

rjm(s, z)bm

)
ds+O(εk+1).

Then, the proof of the lemma ends using the next two claims.

Claim 2. For j = 1, 2, . . . , n we have

xj(t, z, ε) = xj(t, z, 0) +

k∑
i=1

εi

i!
rji (t, z) +O(εk+1).

Claim 3. The equality rji = wji holds for i = 1, 2, . . . , k and j = 1, 2, . . . , n.

�

Proof of Theorem A. Consider the displacement function

(21) h(z, ε) = x(T, z, ε)− z = xn(T, z, ε)− z
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It is easy to see that x(·, z, ε) is a T -periodic solution if and only if h(z, ε) = 0.
Moreover, to study the zeros of (21) is equivalent to study the zeros of

(22) g(z, ε) = Y −1
n (T, z)h(z, ε).

From Lemma 4 we have that

(23) xn(T, z, ε) = xn(T, z, 0) +
k∑
i=1

εi

i!
wni (T, z) +O(εk+1),

for all (t, z) ∈ S1 ×D. Replacing (23) in (22) it follows that

(24)

g(z, ε) = Y −1
n (T, z)

(
xn(T, z, 0)− z +

k∑
i=1

εi

i!
wni (T, z) +O(εk+1)

)

= Y −1
n (T, z)(xn(T, z, 0)− z) +

k∑
i=1

gi(z) +O(εk+1)

=
k∑
i=0

gi(z) +O(εk+1),

where g0(z) = Y −1
n (T, z)(xn(T, z, 0)− z).

From hypothesis (H) the function g0(z) vanishes on the submanifold Z, therefore
hypothesis (Hα) holds for the function (24). In order to take the derivative of g0(z)
with respect to the variable z we have the next claim.

Claim 4. For every j ∈ {1, 2, . . . , n}

Yj(tj , z) =
∂xj
∂z

(tj , z, 0).

The proof will be done by induction on j. For j = 1 the claim is exactly the definition.
Suppose that the claim is valid for j = j0 − 1 and we shall prove it for j = j0. Since
xj(tj−1, z, ε) = xj−1(tj−1, z, ε) for all j = 1, 2, . . . , n we have

Yj0(tj0 , z) =
∂xj0
∂z

(tj0 , z, 0)

(
∂xj0
∂z

(tj0−1, z, 0)

)−1

Yj0−1(tj0−1, z)

=
∂xj0
∂z

(tj0 , z, 0)

(
∂xj0−1

∂z
(tj0−1, z, 0)

)−1 ∂xj0−1

∂z
(tj0−1, z, 0)

=
∂xj0
∂z

(tj0 , z, 0).

Hence if z ∈ Z then

∂g0

∂z
(z) = Y −1(T, z)

(
∂x

∂z
(T, z, 0)− Id

)
= Y −1(T, z)(Y (T, z)− Id)

= Id− Y −1(T, z),
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which has by assumption its lower right corner (m−d)×(m−d) matrix ∆α nonsingular.
From here, the result follows from Proposition 3 and Theorem 1. �

4. Examples

This section is devoted to present some applications of Theorem A. The first one is
as 3D piecewise smooth system for which the plane y = 0 is the discontinuous manifold
and admits a surface z = f(x, y) foliated by periodic solutions. The second one is a 3D
piecewise smooth system for which the algebraic variety xy = 0 is the discontinuous set
and the plane z = 0 has a piecewise constant center. For these systems, we compute
some of the bifurcations functions in order to study the persistence of periodic solutions.

4.1. Nonsmooth perturbation of a 3D system. Let f : R2 → R and g : R2 → R
be differential functions such that g(x, y) = f(x, y) +x∂yf(x, y)− y∂xf(x, y). Consider
the nonsmooth vector field

(25) Xε(x, y, z) =


X+
ε (x, y, z), y > 0

X−ε (x, y, z), y < 0

where

X+
ε (x, y, z) =

(
−y + ε(a0 + a1z) + ε2(a2 + a3z), x, −z + g(x, y)

)
, and

X−ε (x, y, z) =
(
−y, x+ εb1z + ε2(b2 + b3)z, −z + g(x, y)

)
,

with a0, a1, a2, b1, b2, b3 ∈ R. Denote the discontinuous se by Σ = {(x, y, z) ∈ R3 :
y = 0}.

Notice that the surface z = g(x, y) is an invariant set of the unperturbed vector field

X0. Indeed, considering the function f̂(x, y, z) = z − f(x, y), we get

〈∇f̂(x, y, z), X0(x, y, z)〉
∣∣
z=f(x,y)

= 0.

Moreover, since X0(x, y, f(x, y)) =
(
− y, x, x∂yf(x, y) − y∂xf(x, y)

)
we conclude that

the invariant set z = f(x, y) is foliate by periodic solutions.

Next result gives suficient conditions in order to guarantee the persistence of some
periodic solution. Consider the function

(26) f1(r) = a1

∫ π

0
f(r cosφ, r sinφ) cosφdφ+ b1

∫ 2π

π
f(r cosφ, r sinφ) sinφdφ.

Theorem 5. Consider the piecewise vector field (25). Then, for each r∗ > 0, such
that f1(r∗) = 0 and f ′1(r∗) 6= 0, there exists a crossing limit cycle ϕ(t, ε) of X of period
Tε = 2π +O(ε) such that ϕ(t, ε) = (x∗, y∗, f(x∗, y∗)) +O(ε) with |(x∗, z∗)| = r∗.
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In order to apply Theorem A for proving Theorem 5 we need to write system (25) in
the standard form. Considering cylindrical coordinates x = r cos θ, y = r sin θ, z = z,
the set of discontinuity becomes Σ = {θ = 0} ∪ {θ = t1} with t0 = 0, t1 = π and
t2 = 2π. The differential system (ẋ, ẏ, ż) = X+

ε (x, y, z) in cylindrical coordinates writes

r′(t) = ε(a0 + a1z) cos θ + ε2(a2 + a3z) cos θ,

z′(t) = g(r cos θ, r sin θ)− z,

θ′(t) = 1− ε(a0 + a1z) sin θ

r
− ε2 (a2 + a3z) sin θ

r
,

and the differential system (ẋ, ẏ, ż) = X−ε (x, y, z) becomes

r′(t) = εb1z sin θ + ε2(b2 + b3z) sin θ,

z′(t) = g(r cos θ, r sin θ)− z,

θ′(t) = 1 + ε
b1z cos θ

r
+ ε2 (a2 + a3z) cos θ

r
.

(27)

Notice that, for each j = 1, 2 and tj−1 ≤ θ ≤ tj , we have θ̇(t) 6= 0 for |ε| 6= 0
sufficiently small. Thus, in a sufficiently small neighborhood of the origin we can take
θ as the new independent time variable. Accordingly, system (27) becomes

ṙ(θ) =
r′(t)

θ′(t)
= F01(θ, r, z) + εF11(θ, r, z) + ε2F2(θ, r, z) +O1(ε3),

ż(θ) =
z′(t)

θ′(t)
= F02(θ, r, z) + εF12(θ, r, z)) + ε2F22(θ, r, z) +O2(ε3).

Considering the notation of Theorem A we have Fi(θ, r, z) = (Fi1(θ, r, z), Fi2(θ, r, z))
for each i ∈ {1, 2}. Moreover, for each i ∈ {1, 2} the function Fi(θ, r, z) is written in

the form Fi(θ, r, z) =
∑2

j=1 χ[tj−1,tj ](θ)F
j
i (θ, r, z).

Defining f̃(θ, r) = f(r cos θ, r sin θ) and g̃(θ, r) = g(r cos θ, r sin θ) we write explicitly

the expressions of F0, F
j
1 and F j2 for j ∈ {1, 2},

F0(θ, r, z) = (0, g̃(θ, r)− z),

F 1
1 (θ, r, z) =

(
(a0 + a1z) cos θ,

(a0 + a1z) sin θ

r
(g̃(θ, r)− z)

)
,

F 2
1 (θ, r, z) =

(
b1z sin θ, −b1z cos θ

r
(g̃(θ, r)− z)

)
,

F 1
2 (θ, r, z) =

(
(a2 + a3z) cos θ +

(a0 + a1z)
2 sin θ cos θ

r
,

sin θ

r2

(
(a0 + a1z)

2 sin θ

+(a2 + a3z)r) (g̃(θ, r)− z)
)
,

F 2
2 (θ, r, z) =

(
(b2 + b3z) sin θ − b21z

2 sin θ cos θ

r
,

cos θ

r2

(
b21z cos θ − (b2 + b3z)r

)
(g̃(θ, r)− z)

)
.
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The unperturbed systems is smooth and its solution (r(θ, r0, z0), z(θ, r0, z0)) with
initial condition (r0, z0) is given by

(28) r(θ) = r(θ, r0, z0) = r0, z(θ) = z(θ, r0, z0) = e−θ
(
z0 +

∫ θ

0
esg̃(s, r0)ds

)
.

Consequently, a fundamental matrix solution of (14) is given by

Y (θ, r0, z0) =
∂(r, z)

∂(r0, z0)
(θ, r0, z0) =

 1 0

G(θ, r0) e−θ

 ,

where G(θ, r0) is the derivative of z(θ, r0, z0) with respect to the variable r0. Notice
that, from (28), G(θ, r0) does not depend on z0.

Let ε0 > 0 be a real positive number and consider the set Z ⊂ R2 such that Z =
{(r, f̃(0, r)) : r > ε0}. Notice that for (r0, z0) = (r0, f̃(0, r0)) ∈ Z we have z(θ, r0, z0) =

f̃(θ, r0) = f(r0 cos θ, r0 sin θ). Indeed, let w(θ) = f(r0 cos θ, r0 sin θ). So

w′(θ) = ∂xf(r0 cos θ, r0 sin θ)(−r0 sin θ) + ∂yf(r0 cos θ, r0 sin θ)(r0 cos θ)

= g(r0 cos θ, r0 sin θ)− f(r0 cos θ, r0 sin θ)

= g(r0 cos θ, r0 sin θ)− w(θ)

= g̃(θ, r0)− w(θ).

The second equality holds because g(x, y) = f(x, y) + x∂yf(x, y)− y∂xf(x, y). Hence,
for (r0, z0) ∈ Z the solution z(θ, r0, z0) is 2π-periodic. Moreover,

Id− Y −1(2π, r, z) =

 0 0

? 1− e2π

 .

Consequently, ∆α = 1 − e2π 6= 0. Accordingly, all the hypotheses of Theorem A are
satisfied.

Proof of Theorem 5. Denote by (r, zr) a point in Z, that is zr = f̃(0, r). Notice that
the bifurcation function of first order is f1(r) = πg1(r, zr), where g1 is defined in (8).

Indeed, from definition f1(r) = πg1(r, zr) +
∂πg0

∂b
(r, zr)γ1(r). But

g0(r, z) = Y −1(2π, r, z)((r, z(2π, r, z)))− (r, z(0, r, z))) = (0, ?),

and then πg0 ≡ 0. Moreover,
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w1
1(θ, r, z) =

(
a0 sin θ + a1

∫ θ

0
z(φ) cosφdφ, G(θ, r)

(
a0 sin θ + a1

∫ θ

0
z(φ) cosφdφ

)
−

e−θ
∫ θ

0

(
eφG(φ, r)(a0 + a1z(φ)) cosφ+ sinφ

eφ(g̃(φ, r)− z(φ))(a0 + a1z(φ))

r

)
dφ

)
,

w2
1(θ, r, z) =Y (θ, r, z)

[
Y −1(π, r, z)w1

1(π, r, z) +

∫ θ

π
Y −1(φ, r, z)F 2

1 (φ, r(φ), z(φ))dφ

]

=Y (θ, r, z)

(
a1

∫ π

0
z(φ) cosφdφ+ b1

∫ θ

π
z(φ) sinφdφ,∫ π

0

eφ((a0 + a1z(φ))(sinφ(g(r cosφ, r sinφ)− z(φ))− r cosφG(φ, r))

r
dφ

+

∫ θ

π
−b1e

φz(φ)(cosφ(g(r cosφ, r sinφ)− z(φ)) + r sinφG(φ, r))

r
dφ

)
.

Since g1(r, z) = Y −1(2π, r, z)w2
1(2π, r, z) and f1(r) = πg1(r, zr) it follows that

(29) f1(r) = a1

∫ π

0
f(r cosφ, r sinφ) cosφdφ+ b1

∫ 2π

π
f(r cosφ, r sinφ) sinφdφ.

So, from Theorem A, each positive simple zero of (26) provides an isolated periodic
solution of system (25). This concludes this proof. �

The next result is an application of Theorem 5. We shall use in its statement the
concept of Bessel functions, which are defined as the canonical solutions y(x) of Bessel’s
differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0, α ∈ C.

This equation has two linearly independent solutions. Using Frobenius’ method we
obtain one of these solutions, which is called a Bessel function of the first kind, and is
denoted by Jα(x). More details about this function can be found in [23].

Corollary 6. Consider the piecewise vector field (25).

(a) If f(x, y) = cosx, then the piecewise smooth vector field X admits a sequence
of limit cycles ϕi(t, ε) of X of period Tε such that Tε = 2π + O(ε), ϕn(t, ε) =
(x∗n, y

∗
n, cos(x∗n)) +O(ε), and |(x∗n, z∗n)| = nπ/2.

(b) If f(x, y) = sinx, then the piecewise smooth vector field X admits a sequence
of limit cycles ϕi(t, ε) of X of period Tε such that Tε = 2π + O(ε), ϕi(t, ε) =
(x∗n, y

∗
n, sin(x∗n)) + O(ε), and |(x∗n, z∗n)| = r∗n, where each rn is a zero of the

Bessel Function of First Kind, J1(r).
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Proof. For f(x, y) = cosx, the bifurcation function (29) reads f1(r) = −(2b1 sin r)/r,
and for f(x, y) = cos(x), the bifurcation function (29) reads f1(r) = a1πJ1(r). There-
fore the result follows directly from Theorem 5. �

Notice that Theorem 5 cannot be applied when f1 is identically zero, which is the
case when f(x, y) = 2x2 − y2 for instance. For these cases we define the function

f2(r) =

∫ π

0

(
a1 cos s

(
G(s, r)

∫ s

0
cosφ(a0 + a1f̃(φ, r))dφ

− e−s
∫ s

0
eφ(a0 + a1f̃(φ, r))(r cosφG(φ, r) + (f̃(φ, r)− g̃(φ, r))dφ

+ a2 + a3f̃(φ, r) +
sin s

r
(a0 + a1f̃(s, r))2

))
ds

+
e−2π(1 + eπ)

2(1− e2π)
(a1e

π − b1)

[ ∫ π

0
eφG(φ, r) cosφ(a0 + a1f̃(φ, r))dφ

+

∫ π

0

eφ sinφ

r
(a0 + a1f̃(φ, r))(g̃(φ, r)− f̃(φ, r))dφ

+ b1

∫ 2π

π
eφG(φ, r) sinφf̃(φ, r)dφ+

b1
r

∫ 2π

π
eφ cosφ(g̃(φ, r)− f̃(φ, r))dφ

]
+

∫ 2π

π

(
2

r
(−b21 cos s(f̃(s, r))2 + sin s(b2 + b3f̃(s, r)))

+ 2b1 sin s

(
G(s, r)

∫ π

0
cosφ(a0 + a1f̃(φ, r)) + b1G(s, r)

∫ s

π
sinφf̃(φ, r)dφ

+ e−s
(∫ π

0
−eφ cosφG(φ, r)(a0 + a1f̃(φ, r)) +

eφ sinφ

r
(g̃(φ, r)− f̃(φ, r))dφ

+ b1

∫ s

π
eφ
(

cosφ

r
(f̃(φ, r)− g̃(φ, r))−G(φ, r) sinφ

)
dφ

)))
ds.

(30)

Theorem 7. Consider the piecewise vector field (25). Assume that f1 ≡ 0. Then, for
each r∗ > 0, such that f2(r∗) = 0 and f ′2(r∗) 6= 0, there exists a crossing limit cycle
ϕ(t, ε) of X of period Tε such that Tε = 2π +O(ε), ϕ(t, ε) = (x∗, y∗, f(x∗, y∗)) +O(ε),
and |(x∗, z∗)| = r∗.

Proof. As we saw before πg0 ≡ 0. So, from (4), we compute the bifurcation function of
order 2 as

(31) f2(r) =
∂πg1

∂b
(r, zr)γ1(r) + πg2(r, zr),
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where γ1(r) = − 1

1− e2π
π⊥g1(r, zr) and

π⊥g1(r, zr) =

∫ π

0

eφ((a0 + a1f̃(φ, r))(sinφ(g(r cosφ, r sinφ)− f̃(φ, r))− r cosφG(φ, r, z))

r
dφ

− b1
∫ 2π

π

eφf̃(φ, r)(cosφ(g(r cosφ, r sinφ)− f̃(φ, r)) + r sinφG(φ, r, z))

r
dφ.

From Proposition 3, we have g2(r, zr) = Y −1(2π, r, z)w2
2(2π, r, z)/2, where wji (2π, r, z)

is given in Lemma 2. All these functions may be computed to get (31) as (30). Again,
from Theorem A, each positive simple zero of (30) provides an isolated periodic solution
of system (25). This concludes this proof. �

The next result is an application of Theorem 7.

Corollary 8. Consider the piecewise vector field (25) and let f(x, y) = 2x2 − y2.
Assuming a2

1 + b21 6= 0 define

(32)

A0 =
−80b2(1− eπ)

(1 + eπ)4(15a1b1 − b21 − 14a2
1)− 5π(1− eπ)(b11 + 10a2

1)
,

A1 =
40a0((1 + eπ)(b1 − a1)− a1π(1− eπ)

(1 + eπ)4(15a1b1 − b21 − 14a2
1)− 5π(1− eπ)(b11 + 10a2

1)
,

and D = −4A3
1 − 27A2

0.

(i) If D > 0 then the piecewise smooth vector field admits at least one limit cycle.
Moreover, if A1 < 0 and A0 > 0, then the piecewise smooth vector field admits
at least two limit cycles;

(ii) If D ≤ 0 and A0 < 0, then the piecewise smooth vector field admits at least one
limit cycle.

Moreover, in both cases we have a limit cycle ϕ(t, ε) of X of period Tε such that Tε =
2π +O(ε), ϕ(t, ε) = (x∗n, y

∗
n, 2(x∗n)2 − (y∗n)2) +O(ε), and |(x∗n, z∗n)| = r∗n.

Proof. For f(x, y) = 2x2 − y2 the bifurcation function (30) becomes

f2(r) = −2b2 +
a0 ((eπ(1− π) + 1 + π) a1 − (1 + eπ) b1)

eπ − 1
r

+

(
− (eπ(56− 50π) + 56 + 50π) a2

1 + 60 (1 + eπ) a1b1 − (eπ(4− 5π) + 4 + 5π) b21
)

40 (eπ − 1)
r3.

(33)

Dividing f2 by a2
1 + b21 6= 0, we see that the equation f2(r) = 0 is equivalent to f̃2(r)

.
=

A0 +A1r + r3 = 0, where A0 and A1 are given in (32).

Notice that f̃2(r) is a polynomial function of degree 3, so it has at least one real root

and can be written as f̃2(r) = r3−(r1 +r2 +r3)r2 +(r1r2 +r1r3 +r2r3)r−r1r2r3, where
ri, i = 1, 2, 3 are the zeros of the polynomial. Moreover, the sign of its discriminant
D = −4A3

1 − 27A2
0 carries information about its number of real roots.
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If D > 0 the polynomial f̃2(r) has three simple real roots r1, r2 and r3. Since the
polynomial has no quadratic term, it follows that r1 + r2 + r3 = 0 and then at least
one of these roots must be positive. Moreover, if A1 < 0 and A0 > 0 then there are
two changes of sign between the terms of the polynomial and then by Descartes Sign
Theorem we get the two positive roots.

If D ≤ 0 then there is a pair of complex roots or a double real root. In both cases
the condition A0 < 0 implies that at least one root is positive.

Now, from Theorem A, each positive simple zero of (33) provides an isolated periodic
solution of system (25). This concludes this proof. �

4.2. Nonsmooth perturbation of a nonsmooth center. In this example we con-
sider a discontinuous differential system in R3 defined in 4 zones (n = 4). Consider the
nonsmooth vector field

(34) X(u, v, w) =


X1(u, v, w) if u > 0 and v > 0,

X2(u, v, w) if u < 0 and v > 0,

X3(u, v, w) if u < 0 and v < 0,

X4(u, v, w) if u > 0 and v < 0,

where

X1(u, v, w) = (−1 + ε(a1x+ b1), 1, −w + ε(c1x+ d1)) ,

X2(u, v, w) = (−1 + ε(a2x+ b2), −1, −w + ε(c2x+ d2)) ,

X3(u, v, w) = (1 + ε(a3x+ b3), −1, −w + ε(c3x+ d3)) ,

X4(u, v, w) = (1 + ε(a4x+ b4), 1, −w + ε(c4x+ d4)) ,

with aj , bj , cj , dj ∈ R for all j.

Writing in cylindrical coordinates u = r cos θ, v = r sin θ, w = w, the set of disconti-
nuity is Σ = {θ = 0}∪ {θ = t1}∪ {θ = t2}∪ {θ = t3} with t0 = 0, t1 = π/2, t2 = π, t3 =
3π/2 and t4 = 2π. For each j = 1, 2, 3, 4 the differential system (u̇, v̇, ẇ) = Xj(u, v, w)
in cylindrical coordinates writes

r′(t) = gj(θ) +
k∑
i=1

εi(aijr cos2 θ + bij cos θ),

w′(t) = −w +
k∑
i=1

εi(cijr cos θ + dij cos θ),

θ′(t) =
1

r

(
ĝj(θ)−

k∑
i=1

εi(aijr cos θ sin θ + bij sin θ)

)
,
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where

g1(θ) = sin θ − cos θ, ĝ1(θ) = sin θ + cos θ,

g2(θ) = −(sin θ + cos θ), ĝ2(θ) = sin θ − cos θ,

g3(θ) = − sin θ + cos θ, ĝ3(θ) = −(sin θ + cos θ),

g4(θ) = sin θ + cos θ, ĝ4(θ) = − sin θ + cos θ.

Notice that, for each j = 1, 2, 3, 4 and tj−1 ≤ θ ≤ tj , θ̇(t) 6= 0 for |ε| sufficiently
small. Thus, in a sufficiently small neighborhood of the origin we can take θ as the new
independent time variable by doing r′(θ) = ṙ(t)/θ̇(t) and w′(θ) = ẇ(t)/θ̇(t). Taking θ
as the new independent time variable we have

r′(θ) = F j01(θ, z) + εF j11(θ, z) +O1(ε2),

w′(θ) = F j02(θ, z) + εF j12(θ, z) +O2(ε2).
(35)

Here, z = (r, w) and the prime denotes the derivative with respect to θ. The expressions

of F j01 and F j02 for j = 1, 2, 3, 4 are given by

F 1
01 =

r(sin θ − cos θ)

sin θ + cos θ
, F 1

02 =
−rw

sin θ + cos θ
, F 2

01 =
r(sin θ + cos θ)

cos θ − sin θ
, F 2

02 =
rw

cos θ − sin θ
,

F 3
01 =

r(sin θ − cos θ)

sin θ + cos θ
, F 3

02 =
rw

sin θ + cos θ
, F 4

01 =
r(sin θ + cos θ)

cos θ − sin θ
, F 4

02 =
−rw

cos θ − sin θ
.

The expressions of F j11 and F j12 for j = 1, 2, 3, 4 are also easily computed. Nevertheless,
we shall omit these expressions because of their size.

For each j ∈ {1, 2, 3, 4}, the differential system (35) is 2π-periodic in the variable θ
and is written in the standard form with

F ji (θ, z) =
(
F ji1(θ, z), F ji2(θ, z)

)
,

for i = 0, 1. Now, for each j ∈ {1, 2, 3, 4} we compute the solution xj(θ, z, 0) of the
unperturbed system

ṙ(θ) = F j01(θ, z), ẇ(θ) = F j02(θ, z).

and this solution is

x1(θ, z, 0) =
(

r
sin θ+cos θ , we

− r sin θ
sin θ+cos θ

)
,

x2(θ, z, 0) =
(

−r
cos θ−sin θ , we

− r sin θ
cos θ−sin θ

−2r
)
,

x3(θ, z, 0) =
(

−r
sin θ+cos θ , we

− r sin θ
sin θ+cos θ

−2r
)
,

x4(θ, z, 0) =
(

r
cos θ−sin θ , we

− r sin θ
cos θ−sin θ

−4r
)
.
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We note that in each quadrant the denominators of these four solutions never vanish.

Let 0 < r0 < r1 be positive real numbers and consider the set Z ⊂ R2 such that
Z = {(α, 0) : r0 < α < r1}. The solution x(θ, z, 0) of the unperturbed system x′(θ) =
F0(θ, z) satisfies x(θ, z, 0) = xj(θ, z, 0), for θ ∈ [tj−1, tj ], and x(2π, z, 0) − x(0, z, 0) =
(0, z(1 − e−4r)). Consequently, for each zα ∈ Z, the solution x(θ, z, 0) is 2π-periodic
and system (34) satisfies hypothesis (H). Moreover, the fundamental matrix Y (θ, z) is
given by

Y (θ, z) =


Y1(θ, z) if 0 = t0 ≤ θ ≤ π/2,
Y2(θ, z) if π/2 ≤ θ ≤ π,
Y3(θ, z) if π ≤ θ ≤ 3π/2,

Y4(θ, z) if 3π/2 ≤ θ ≤ 2π,

where Yj(t, z) are defined by (15). So

Y1(θ, z) =

 1
g4(θ) 0

− e
− r sin θ
g4(θ) w sin θ
g4(θ) e

− r sin θ
g4(θ)

 ,

Y4(θ, z) =

 1
g3(θ) 0

− e
− r sin θ
g3(θ)

−4r
w(sin θ+4g3(θ))
g3(θ) e

− r sin θ
g3(θ)

−4r

 .

Hence,

Y1(0, z)−1 − Y4(2π, z)−1 =

 0 0

−4w 1− e4r

 ,

and then det(∆α) = 1 − e4r 6= 0 if zα = (α, 0) ∈ Z. Thus, we can compute the
bifurcation functions (4) for system (34). For doing this we first obtain the functions
(16) corresponding to this system,

g0(θ, z) = (0, w(1− e4r)),

w4
1(2π, z) =

(1

2
r(r(a1 + a2 + a3 + a4) + 2(b1 − b2 − b3 + b4)),

1

3
e−4r(−r2w(6a1 + 3a2 + 2a3)− 3r(w(4b1 − 2b2 − b3)

+e2r(−e2rc4 + c2 + c3) + c1) + 3(er − 1)(er(c2 + d2)

+e2r(c3 − d3) + e3r(d4 − c4) + c1 + d1))
)
,

and

(36) g1(z) = Y4(2π, z)−1w4
1(2π, z).
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So, the bifurcation function (4) corresponding to the function (36) becomes

f1(α) =
1

2
α(α(a1 + a2 + a3 + a4) + 2(b1 − b2 − b3 + b4)),

which has a simple zero α∗. So, from Theorem A, we get the existence of an isolated
periodic solution of system (35) for ε sufficiently small.
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Gestió d’Ajuts Universitaris i de Recerca grant 2017 SGR 1617, the European project
Dynamics-H2020-MSCA-RISE-2017-777911, and by the European Community grants
FP7-PEOPLE-2012-IRSES-316338 and FP7-PEOPLE-2012-IRSES-318999. DDN is
partially supported by a FAPESP grant 2016/11471-2 and by the European Commu-
nity grants FP7-PEOPLE-2012-IRSES-316338 and FP7-PEOPLE-2012-IRSES-318999.
CABR is partially supported by a Ph.D. CNPq Fellowship number 140292/2017-9.

References

[1] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
[2] M. di Bernardo, C. J. Budd, A. R. Champneys, and P. Kowalczyk, Piecewise-Smooth

Dynamical Systems: Theory and Applications, Springer, 2008.
[3] A. Buica, and J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull.

Sci. Math, 128 (2004), 7–22.
[4] A. Buica, J. Françoise and J. Llibre, Periodic solution for non nonlinear periodic differential

systems with a small parameter, Comunications on Pure and Applied Analysis 6, (2007), 103–111.
[5] M. Cândido, J. Llibre and D.D. Novaes, Persistence of periodic solutions for higher order

perturbed differential systems via Lyapunov-Schmidt reduction, Nonlinearity 30 (2017), 3560–3586.
[6] S. Coombes, Neuronal networks with gap junctions: A study of piecewise linear planar neuron

models, SIAM J. Appl. Math. 7 (2008), 1101–1129.
[7] J. Gine, M. Grau, and J. Llibre Averaging theory at any order for computing periodic orbits ,

Physica D. 250 (2013), 58–65.
[8] J. Gine, J. Llibre, K. Wu andX. Zhang Averaging methods of arbitrary order, periodic solutions

and integrability, Journal of Differential Equations. 260 (2016), 4130–4156.
[9] A. F. Filippov, Differential Equations with Discontinuous Righthand Side, Mathematics and Its

Applications, Kluver Academic Publishers, Dordrecht, 1988.
[10] M. Guardia, T.M. Seara, M.A. Teixeira, Generic Bifurcations of low codimension of Planar

Filippov Systems , J. Differential Equations 250 (2011), 1967–2023.
[11] J. Itikawa, J. Llibre and D. D. Novaes, A new result on averaging theory for a classe of

discontinuous planar differential systems with applications, Rev. Mat. Iberoam. 33 (2017), 1247–
1265.

[12] J. Llibre, A.C. Mereu and D.D. Novaes, Averaging theory for discontinuous piecewise differ-
ential systems, J. Differential Equation 258 (2015), 4007–4032.

[13] J. Llibre and D. D. Novaes, Improving the averaging theory for computing periodic solutions of
the differential equations, Z. Angew. Math. Phys. ZAMP, 66 (2015), 1401–1412.

[14] J. Llibre and D.D. Novaes, On the periodic solutions of discontinuous piecewise differential
systems, preprint, 2016, arXiv:1504.03008.



24 J. LLIBRE, D.D. NOVAES AND C.A.B. RODRIGUES

[15] J. Llibre, D. D. Novaes and C.A.B. Rodrigues, Averaging theory of any order for computing
limit cycles of discontinuous piecewise differential systems with many zones, Physica D: Nonlinear
Phenomena (2017), 353–354.

[16] J. Llibre, D.D. Novaes and M. A. Teixeira, Higher order averaging theory for finding periodic
solutions via Brouwer degree, Nonlinearity 27 (2014), 563–583.

[17] J. Llibre, D.D. Novaes and M. A. Teixeira, Corrigendum: Higher order averaging theory for
finding periodic solutions via Brouwer degree (2014 Nonlinearity 27 563), Nonlinearity 27 (2014),
2417.

[18] J. Llibre, D.D. Novaes and M.A. Teixeira, On the birth of limit cycles for non-smooth dy-
namical systems, Bull. Sci. Math. 139 (2015), 229–244.

[19] D.D. Novaes, An Equivalent Formulation of the Averaged Functions via Bell Polynomi-
als., In Extended Abstracts Spring 2016: Nonsmooth Dynamics. Trends in Mathematics 8,
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