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PERIODIC SOLUTIONS OF THE NATHANSON’S AND THE

COMB-DRIVE FINGER MODELS

JAUME LLIBRE1, DANIEL E. NUÑEZ2 AND ANDRÉS RIVERA2

Abstract. We provide sufficient conditions for the existence and stability of

periodic solutions of the second–order non–autonomous differential equation
of the Nathanson’s model

ẍ+ x+ aẋ−
b(v0 + δv(ωt))2

(1− x)2
= 0,

and of the comb-drive finger model

ẍ+ x+ aẋ−
4b(v0 + δv(ωt))2x

(1− x2)2
= 0,

where x ∈ R, c, β, v0 and δ are positive parameters, v(ωt) is a 2π/ω–periodic
function. The results are obtained using the averaging theory.

1. Introduction and statement of the main results

In Micro-Electro-Mechanical Systems (MEMS) the electrostatic actuators are
the most used devices due to its wide variety of applications, mainly in sensing
and actuation. Because the cheap production and the high performance of this
technology, MEMS devices can be found all around us nowadays, for example in
crash air-bag deployment systems in cars, gyroscopes for smart-phones, kidney
dialysis to monitor the inlet and outlet pressures of blood (see [13]), but also in
several resonant sensors [1], accelerometers [7], micro-pumps [17] and micro-valves
[15]. An excellent review of the many applications of these devices can be found
in [21, 22] and the references there in. In the last several years a large number of
electrostatic actuators have been studied both from the numerical [5, 6, 19] and
experimental point of view, [14, 19]. However, the number of documents devoted
to a rigorously mathematical analysis of these devices is relatively low. In order to
understand the dynamics of this devices, the first approach was introduced into the
literature by Nathanson in [14] (1967) by means of a “lumped” mass-spring model
were the elastic behaviour of the system is modelled by a linear spring and the
electrostatic forces are computed considering of a simple parallel plate capacitor.

Up to our knowledge, the first mathematical analysis of periodic solutions for
the Nathanson’s model appears in [2] (2007) by means of shooting techniques and
later in [9] (2013) using degree theory and lower and upper solution method where
the authors prove the existence, multiplicity and stability of periodic solutions.
Recently in [8] (2017) using the Leray-Schauder continuation theorem, the authors
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Figure 1. Idealized Nathanson’s model with spring force x,
damping force aẋ, voltage source V̂ (t) and initial gap between
the moveable top electrode and the bottom fixed electrode is 1.

prove the existence of symmetric periodic solutions for other electrostatic actuator
known in the literature as a Comb-drive finger. Motivated by the successful use
of well-developed mathematical techniques for the study of some canonical MEMS,
the aim of this document is provide sufficient conditions for the existence and
stability of periodic solutions of the equation of motions of two special types of
electrostatic actuators, namely, the Nathanson’s model (or Parallel-Plate capacitor
model) which is based on the resonant gate transistor [14] and the Comb-drive
finger model [8, 21].

Both models deals with the motion of one moveable capacitor plate under Coulomb

forces and a DC-AC voltage V̂ (t) = v̂0 + δ̂v(ωt). Here v̂0 represents the DC-voltage

and δ̂v(ωt) represents the AC-voltage, where v(ωt) is a 2π/ω–periodic function.
For the Nathanson’s model the moveable plate is attached to a linear spring and
moves parallel to a stationary one in a media with positive viscosity coefficient (see
figure 1). In appropriate units, the equation motion for the moveable capacitor is
given by the following non-dimensional second-order-differential equation

ẍ+ x+ aẋ− bV̂ 2(t)

(1− x)2
= 0,

where x ∈ (−∞, 1) and the dot denotes derivative with respect to the time t. For
the Comb-drive finger model the moveable plate (finger) is now located between two
fixes ones (see figure 2). Again, in appropriate units, the transversal motions of the
finger is ruled by the following non-dimensional second-order-differential equation

ẍ+ x+ aẋ− 4bV̂ 2(t)x

(1− x2)2
= 0,

where x ∈ (−1, 1). In both models, a and b are positive parameters related to
physically properties of the device, more precisely

a =
γ√
km

, b =
ε0A

2kd3
,

where γ is the damping coefficient, k is the stiffness of the linear spring, m is
the mass of the moveable plate, ε0 is the absolute dielectric constant of vacuum
(ε0 = 8.85 × 10−12), A is the overlapping area between the plates, and d is initial
gap between them.
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Figure 2. Idealized Comb-drive finger model with spring force x,
damping force aẋ, voltage source V̂ (t) and initial gap between the
moveable electrode and each fixed electrode is 1.

It is well know that for this kind of MEMS, there is the so called pull-in phe-
nomenon. This emerges when the electrostatic force overcomes the resorting force
in the device leading to its collapse (the electrodes collide).

For the Nathanson’s model, when a DC voltage v̂0 is applied, the balance of the
forces leading to the following relation between k, d,A and the applied voltage

(1) v̂20 =
8kd3

27ε0A
,

in the literature, this DC voltage are known as pull-in voltage which we denoted
by vpull,N . On the other hand, for the Comb-drive finger model, the pull-in voltage
vpull,C satisfies

v2pull,C =
27

16
v2pull,N .

A straightforward computation shows that b =
4

27v2pull,N
, in consequence the

previous models can be written as

ẍ+ x+ aẋ− V 2(t)

(1− x)2
= 0,

and

ẍ+ x+ aẋ− V2(t)x

(1− x2)2
= 0,

where V (t) =

√
4

27

V̂ (t)

vpull,N
and V(t) =

V̂ (t)

vpull,C
. More precisely,

V (t) = v0 + δv(ωt), where v0 =

√
4

27

v̂0
vpull,N

, δ =

√
4

27

δ̂

vpull,N
,

and

V(t) = ϑ0 + λv(ωt), where ϑ0 =
v̂0

vpull,C
, λ =

δ̂

vpull,C
,

(2)

Is clear from (1) that a small value of d produces small values of vpull,N too
(also for vpull,C). For instance, if we take reference state values for the Nathanson’s
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model

A = 1.6××10−9 [m2], a = 1.78× 10−6 [kg/s], k = 0.17 [N/m]

taken from [12], a gap d = 3×10−6m gives vpull,N = 9.8 [V ], and for d = 3×10−8m
we obtain vpull,N = 0.0098 [V ]. For qualitative and methodological purposes, we
will assume a low viscosity regimen for both models by means of the following scaling
a→ ε with ε positive and small and a low voltage regimen for a Nathanson’s model
with a small d by means of the following scaling

v0 → ε1/2v0, δ → ε1/2δ,

These assumptions allow to study the existence of periodic solutions of the fol-
lowing second–order non–autonomous differential equations

(3) ẍ+ x+ ε

(
ẋ− (v0 + δv(ωt))2

(1− x)2

)
= 0,

and

(4) ẍ+ x+ εẋ− (ϑ0 + λv(ωt))2x

(1− x2)2
= 0,

where v0, δ, ϑ, λ are positive parameters defined in (2), v(ωt) is a T = 2π/ω–periodic
function. In particular for (3) we assume ω = q/p with q and p coprime positive
integers and ε is a small parameter, also we shall provide information on the kind
of stability of their periodic solutions.

In general to determine analytically the periodic solutions of a differential sys-
tem is a very difficult work, many times impossible to do. But the structure of
Nathanson model (3) suggests the use of the averaging theory as an alternative
technique to find periodic solutions with non constant sign bifurcating from the pe-
riodic solutions of the harmonic oscillator ẍ+ x = 0. On the other hand, for (4) it
is possible to prove under general conditions the locally asymptotically stability of
the equilibrium x ≡ 0, which prevents the non existence of periodic solutions near
to it. These are some reasons explaining why the averaging theory applied to the
comb-drive finger model does not provide information on its periodic solution. So
for studying the periodic solutions of the comb-drive finger model (4) we shall use
the lower and upper solution approach. In section 2 we provide more information
about the averaging theory that we shall use for studying the periodic solutions of
the differential equation (3), and of the lower and upper solution method for the
existence of periodic solution for the differential equation (4).

Our main results on the periodic solutions of the Nathanson’s and comb-drive
finger models are the following ones.

Theorem 1. We define the functions

h(t) =
1

2pπ

(
y0 cos t− x0 sin t− (v0 + δv (qt/p))

2

(1− x0 cos t− y0 sin t)2

)
,

and

f1(x0, y0) = −
∫ 2pπ

0

h(t) sin t dt, f2(x0, y0) =

∫ 2pπ

0

h(t) cos t dt.
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Then for every ε 6= 0 sufficiently small, q and p coprime positive integers, and for
every real (x∗0, y

∗
0) solution of the system

(5) f1(x0, y0) = 0, f2(x0, y0) = 0,

satisfying

(6) det

(
∂(f1, f2)

∂(x0, y0)

∣∣∣∣
(x0,y0)=(x∗

0 ,y
∗
0 )

)
6= 0,

the Nathanson’s model (3) has a 2pπ–periodic solution x(t, ε) which tends to the
periodic solution

(7) x(t) = x∗0 cos t+ y∗0 sin t,

of the differential equation ẍ+x = 0 when ε→ 0 traveled p times. Moreover, if the
real part of all the eigenvalues of the matrix

(8)

(
∂(f1, f2)

∂(x0, y0)

∣∣∣∣
(x0,y0)=(x∗

0 ,y
∗
0 )

)
are negative the periodic solution x(t, ε) is stable, and if some of those real parts is
positive the periodic solution x(t, ε) is unstable.

Theorem 1 is proved using the averaging theory in section 3.

In what follows we present the following corollary of Theorem 1.

Corollary 1. Under the assumptions of Theorem 1 consider the Nathanson’s model
(3) with p = q = 1 and v(t) = sin t. Then for ε 6= 0 sufficiently small the differential
equation (3) has a 2π–periodic solution x(t, ε) tending to the periodic solution (7)
of the differential equation ẍ+ x = 0 when ε→ 0, for each real zero (x∗0, y

∗
0) of the

system
(9)

f1(x0, y0) =
1

2 |x0 + 1| (1− x20 − y20)
3/2

(x20 + y20)
3

(
|x0 + 1|

(
1− x20 − y20

)3/2
(
ax0

(
x20 + y20

)3
+ 4bδ

(
v0
(
y40 − x40

)
+ δy0

(
y20 − 3x20

)))
+2b(x0 + 1)

(
v20y0

(
x20 + y20

)3 − 2δv0
(
x60 − x40 − 3x20y

4
0 − 2y60 + y40

)
+δ2y0

(
3x60 + x40

(
6y20 − 9

)
+ 3x20

(
y40 − 2y20 + 2

)
+ 3y40 − 2y20

) ))
,

f2(x0, y0) = − 1

2 (1− x20 − y20)
3

(x20 + y20)
3

((
1− x20 − y20

)3/2(
2bδx0

(
2v0y0

(
x20 + y20

) (
3x20 + 3y20 − 2

)
+ δ
(
x60 − 3x40

+x20
(
−3y40 + 6y20 + 2

)
− 2y60 + 9y40 − 6y20

))
− ay0

(
1− x20 − y20

)3/2(
x20 + y20

)3 )
+ 2bx0

(
1− x20 − y20

) (
v20
√

1− x20 − y20
(
x20 + y20

)3
+4δv0y0

(
1− x20 − y20

)2 (
x20 + y20

)
− 2δ2

(
x20 − 3y20

) (
1− x20 − y20

)2 ))
,

satisfying (6) the Nathanson’s model (3) has a 2π–periodic solution x(t, ε) which
tends to the periodic solution (7) of the differential equation ẍ+x = 0 when ε→ 0.
Moreover, if the real part of all the eigenvalues of the matrix (8) corresponding to
the previous functions f1 and f2 are negative the periodic solution x(t, ε) is stable,
and if some of those real parts is positive the periodic solution x(t, ε) is unstable.
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Corollary 1 is proved at the end of section 3.

Under the assumptions of Corollary 1 and taking the values

v0 =
1

2

√
4

27
, δ =

1

4

√
4

27
,

the system (9) only provides a unique periodic solution associated to its zero

(x∗0, y
∗
0) = (−0.0368200491..,−0.0028977591..),

for which the determinant (6) is 0.2517304269.., and the eigenvalues of the matrix
(8) are 0.5 ± 0.0415984005..i. So the corresponding periodic solution is locally
stable.

We define

VM := max
t∈[0,T ]

V(t), Vm := min
t∈[0,T ]

V(t), λ :=
Vm
VM

,

and when 0 < VM < 1,

λc :=

√
VM

4− 3VM
.

Under these definitions we are able to present our results on the comb-drive model.

Theorem 2. Assume the conditions

(i) 0 < VM < 1.

(ii) 0 ≤ ε < 2
√

1− V2
M .

(iii) T < 2/

√
1− (V2

m +
ε2

4
).

Then the equilibrium x ≡ 0 of the comb-drive model (4) is locally asymptotically
stable.

Theorem 3. Assume that 0 < VM < 1 then there exists a positive T -periodic so-
lution ϕ(t) of the comb-drive model (4) such that√

1− VM < ϕ(t) <
√

1− Vm,

for all t ∈ R. Moreover, if λ > λc and ε is small enough, then the periodic solution
ϕ(t) is unstable.

Remark 1. Due to the odd symmetry of the differential equation (4) the Theorem 3
implies the existence of a negative T -periodic solution −ϕ(t) which is also unstable.

Combining the previous results we have:

Corollary 2. Under the assumptions of Theorem 2 for ε = 0 and λ > λc the
comb-drive model (4) has the equilibrium x ≡ 0 locally asymptotically stable for ε
small enough. Moreover, it has a couple of T -periodic solutions with defined sign
which are unstable.

Theorem 2 and Theorem 3 are proved using the Floquet’s theory and the lower
and upper solution method of section 3.
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2. Some methods for computing periodic solutions

In this section we present the basic results from the averaging theory and the
lower and upper solution technique that we need for proving the results stated in
section 1.

2.1. Averaging. Consider the differential system

(10) ẋ = F0(t,x),

where Ω is an open subset of Rn and F0 : R×Ω→ Rn is a C2 function T–periodic
in the first variable. Assume that system (5) has a submanifold of dimension n of
T–periodic solutions contained in Ω.

We study which T–periodic solutions of the differential system (4) persist as
periodic solutions of the perturbed differential system

(11) ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

where ε 6= 0 is sufficiently small, and the functions F1 : R × Ω → Rn and F2 :
R × Ω × (−ε0, ε0) → Rn are C2 functions T–periodic in the first variable. As
we shall see in what follows under convenient assumptions the averaging theory
provides a solution of this problem.

Let x(t, z, ε) be the solution of the differential system (11) such that x(0, z, ε) =
z. Suppose that x(t, z, 0) is a periodic solution of the unperturbed differential sys-
tem (10). We consider the first variational differential equations of the unperturbed
system along the periodic solution x(t, z, 0), i.e.

(12) ẏ = DxF0(t,x(t, z, 0))y,

where y is an n × n matrix. Let Mz(t) be the fundamental matrix of the linear
differential system (12) such that Mz(0) is the n× n identity matrix.

We have assumed that there is an open set V such that Cl(V ) ⊂ Ω and for each
z ∈ Cl(V ) the orbit x(t, z, 0) is T–periodic. Note that the set Cl(V ) is isochronous
for the differential system (10), because it is formed only by T–periodic orbits.
Therefore we can provide an answer to the problem of the persistence for ε suffi-
ciently small of T–periodic solutions from the periodic solutions x(t, z, 0) contained
in Cl(V ) as follows.

The next result is proved in [3], but it was already stated in Malkin [10] and
Roseau [16], see also [18, 20].

Theorem 4 (Perturbations of an isochronous set of periodic solutions). Suppose
that there is an open and bounded set V with Cl(V ) ⊂ Ω such that the solution
x(t, z, 0) for all z ∈ Cl(V ) is T–periodic. Define the function F : Cl(V )→ Rn

(13) F(z) =
1

T

∫ T

0

M−1z (t)F1(t,x(t, z, 0))dt.

If there is a ∈ V with F(a) = 0 and det ((dF/dz) (a)) 6= 0, then there exists a T–
periodic solution x(t, ε) of system (11) such that x(0, ε) → a as ε → 0. Moreover,
if the real part of all the eigenvalues of the matrix (dF/dz) (a) are negative, the
periodic solution x(t, ε) is stable, and if some of those real parts is positive the
periodic solution x(t, ε) is unstable.
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We note that Theorem 4 detects periodic solutions of the differential system (10)
which can be continued to periodic solutions of the differential system (11).

2.2. Lower and upper solutions. Now we present a brief introduction to the
notion of lower and upper solution for the second–order differential equations. For
more information on this method, the definitions and the theorems presented in
this subsection see [4].

Consider a second–order differential equation of the form

(14) ẍ = g(t, x, ẋ),

where g : D → R, D = R × (a, b) × R is a continuous function −∞ ≤ a < b ≤ ∞,
∂xg is continuous on D and

g(t+ T, x, ẋ) = g(t, x, ẋ) ∀(t, x, ẋ) ∈ D,

where T > 0 the period of the function g with respect to the variable t.

The problem of finding T -periodic solutions x(t) of the second–order differential
equation (14) with ẋ(0) = ẋ(T ) = 0 is equivalent to solve the following periodic
boundary problem

(15) ẍ = g(t, x, ẋ), x(0) = x(T ), ẋ(0) = ẋ(T ) = 0.

A function α ∈ C2((0, T ))∩C1([0, T ]) is a lower–solution of (15) relative to the
domain D if

(i) For all t ∈ [0, T ], α(t) ∈ (a, b) and α̈(t) ≥ g(t, α(t), α̇(t)).

(ii) α(0) = α(T ), α̇(0) ≥ α̇(T ).

A function β ∈ C2((0, T )) ∩ C1([0, T ]) is upper–solution of (15) relative to the
domain D if the inequalities of the previous definition hold in the reversed order.

Define

(16) E := {(t, x, v) ∈ D |α(t) ≤ x ≤ β(t)} ,

and suppose that g satisfies

(17) |g(t, x, v)| ≤ ψ(|v|), ∀(t, x, v) ∈ E,

where ψ : [0,+∞)→ (0,+∞) is some positive continuous function such that

(18)

∫ ∞
0

m

ψ(m)
dm =∞.

The condition (18) is known as the Nagumo condition for the function g on E. Now
we cite a classical result which allows to obtain periodic solutions using lower and
upper solutions.

Theorem 5. Let α, β ∈ C2([0, T ]) be a of lower– and upper–solution of the bound-
ary problem (15) relative to the domain D respectively, such that α(t) ≤ β(t) for
all t ∈ [0, T ], E be defined as in (16), ψ : R+ → R be a positive continuous func-
tion satisfying (18), and g : E → R be a continuous function which satisfies (17).
Then the boundary problem (15) has at least one solution ϕ ∈ C2([0, T ]) such that
α(t) ≤ ϕ(t) ≤ β(t) for all t ∈ [0, T ].
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3. Proof of Theorem 1

We write the second–order differential equation (3) as the differential system of
first order

(19)
ẋ = y,

ẏ = −x− ε
(
ẋ− (v0 + δv(ωt))2

(1− x)2

)
.

This differential system is written into the normal form (11) for applying to it the
averaging theory described in section 2, where using the notation of that section
we have

x = (x, y),

F0(t,x) = (y,−x),

F1(t,x) =

(
0, ẋ− (v0 + δv(ωt))2

(1− x)2

)
,

F2(t,x) = (0, 0),

z = (x0, y0).

Solving the unperturbed differential system (10) corresponding to system (19),
we obtain that it has the 2π–periodic solutions (x(t, z), y(t, z)) given by

x(t, x0, y0) = x0 cos t+ y0 sin t, y(t, x0, y0) = y0 cos t− x0 sin t.

Now we compute the fundamental matrix Mz(t) associated to the variational
differential system (12) corresponding to the unperturbed differential system (19).
Thus an easy computation provides

Mz(t) = M(t) =

(
cos t sin t

− sin t cos t

)
.

We compute the averaged function (13), i.e.

F(x0, y0) =
1

2pπ

∫ 2pπ

0

M−1(t)F1(t, x(t, x0, y0), y(t, x0, y0))dt

= (f1(x0, y0), f2(x0, y0)) ,

where these last two functions are the ones defined in the statement of Theorem 1.
Therefore, by Theorem 3 it follows that for every ε 6= 0 sufficiently small and for
every (x∗0, y

∗
0) solution of system (5) satisfying (6), the non–autonomous differential

equation (3) has a 2pπ–periodic solution x(t, ε) which tends to the 2pπ–periodic
solution (7) of the differential equation ẍ + x = 0 when ε → 0 traveled p times.
Moreover, if the real part of all the eigenvalues of the matrix (8) are negative the
periodic solution x(t, ε) is stable, and if some of those real parts is positive the
periodic solution x(t, ε) is unstable. This completes the proof of Theorem 1.

Proof of Corollary 1. Take q = p = 1. Then we compute the two functions f1(x0, y0)
and f2(x0, y0) defined in the statement of Theorem 1 and we get the functions (9).
Hence, by Theorem 1 the proof of the corollary follows. �
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4. Proof of Theorems 2 and 3

For the proofs of the Theorems 2 and 3 we need the following preliminary results.

Lemma 6. Consider a differential equation of the form

(20) ü+ qε(t, u, u̇) = 0,

where qε(t, u, u̇) = εu̇+ q(t)u and ε ∈ R+, q ∈ C(R/TZ). The change of variable

(21) y = eεt/2u,

transforms the equation (20) into the Hill’s equation

(22) ÿ +Qε(t)y = 0,

with Qε(t) = q(t)− 1

4
ε2. Moreover, if λ1, λ2 are the Floquet’s multipliers of equa-

tion (20) and µ1, µ2 are the Floquet’s multipliers of equation (22), then

λi = e−εT/2µi, i = 1, 2.

Proof. The first claim is a well known fact and can be consulted in [11] page 51.
For the second part consider y1, y2 the Floquet’s solutions of (22) with multipliers
λ1, λ2 respectively. Define

ui(t) = e−εt/2yi(t), i = 1, 2.

Then u1, u2 are solutions of (20) and moreover are Floquet solutions. In fact,

ui(t+ T ) = e−ε(t+T )/2yi(t+ T ),

= e−εT/2µie
−εt/2yi(t)

= λiui(t), ∀t ∈ R.
�

For the following lemma we need some preliminary definitions and results. Let
a(t) ∈ C(R/TZ) and consider the Hill’s equation

(23) ÿ + a(t)y = 0,

with the corresponding Floquet multipliers ρi = ρi[a], i = 1, 2. Equation (23) is
stable if for any solution y(t) there exists a positive constant M such that

sup
t
{|y(t)|+ |ẏ(t)|} < M,

otherwise, we say that equation (23) is unstable. Moreover (22) is stable if and only
the Floquet’s multipliers satisfy some of the following conditions

(I) ρ1 = ρ2 /∈ R, |ρ1,2| = 1,

(II) ρ1,2 = ±1 and the monodromy matrix is equal to ±Id being Id the identity
matrix,

and is unstable if

(III) ρ1,2 = ±1 and the monodromy matrix is not equal to ±Id.
(IV) |ρ1| < 1 < |ρ2|, ρi ∈ R, i = 1, 2.

Equation (23) is called
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• Elliptic if condition (I) holds.

• Parabolic Stable if the condition (II) holds.

• Parabolic Unstable if the condition (III) holds.

• Hyperbolic if the condition (IV) holds.

Lemma 7. For the differential equation (20) the following statements hold.

(a) If (22) is hyperbolic for ε = 0 then the solution u ≡ 0 of (20) is hyperbolic
for ε small enough.

(b) If (22) is elliptic then solution u ≡ 0 of (20) is locally asymptotically stable
for ε small enough.

(c) If (22) is elliptic for ε = 0 then the solution u ≡ 0 of (20) is locally
asymptotically stable for ε small enough.

Proof. (a) It is easy to check that the Floquet’s multipliers µ1,0, µ2,0 of equation
(22) for ε = 0 verify |µ1,0| < 1 < |µ2,0|. Furthermore, the Floquet’s multipliers
µ1(ε), µ2(ε) are continuous functions and satisfy that µ1(0) = µ1,0, µ2(0) = µ2,0.
Thus equation (22) is hyperbolic for ε small enough and we get |µ1(ε)| < 1 <
|µ2(ε)| for ε � 1. By Lemma 6 the Floquet’s multipliers λ1, λ2 satisfy λi(e) =
e−εT/2µi(e), i = 1, 2. Therefore we deduce that |λ1(e)| < 1 and |λ2(e)| = e−εT/2

µ2(e) > 1 for ε� 1 because |λ2(0)| = |µ2,0| > 1.

(b) If equation (22) is elliptic then its solutions are bounded, i.e. for each solu-
tions y(t) there exits a positive constant M such that |y(t)|+ |ẏ(t)| ≤M, ∀t ∈ R.
From Lemma 6 the corresponding solutions u(t) = e−εt/2y(t) of equation (20) are
convergent to zero when t→∞, i.e. |u(t)|+ |u̇(t)| → 0, when t→∞. The stability
of u ≡ 0 is an easy consequence of the stability of y ≡ 0 for (22) using the relation
u = e−εt/2y.

(c) This statement follows directly from statement (b) because the ellipticity
implies the strong ellipticity, i.e. the Hill’s equation (22) remains elliptic for small
values of ε. �

Proof of Theorem 2. The variational equation at x = 0 of equation (4) is given by

ü+ qε(t, u, u̇) = 0,

with qε(t, u, u̇) = εu̇ + (1 − V2(t))u. The change of variable (21) transform this
equation into the Hill’s equation (22) with Qε(t) = 1 − (V2(t) + 1

4ε
2). From the

hypothesis (ii) and (iii) we have

0 < Qε(t) < 1− (Vm +
1

4
ε2) <

4

T 2
.

Therefore T

∫ T

0

Qε(t)dt < 4. From the classical Lyapunov-Borg criterion (see [11])

the ellipticity of (22) follows. A direct application of Lemma 7 statement (b)
completes the proof. �

Proof of Theorem 3. A straightforward computation shows that the roots in (0, 1)
of the equations

(1− x2)2 = V2
M , (1− x2)2 = V2

m,
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are constant lower– and upper–solutions respectively for equation (4). Thus xL :=√
1− VM is a lower–solution and xU :=

√
1− Vm is an upper–solution of (4) that

verify 0 < xL < xU < 1. Notice that the function g(t, x, v) = −εv − x +
V2x

(1− x2)2
satisfies the hypothesis of Theorem 5 on the region D = R× (0, 1)× R

with E := {(t, x, v) ∈ D |xL ≤ x ≤ xU}. The Nagumo condition (18) is satisfied
because

|g(t, x, v)| ≤ ε|v|+ C, with C = xU +
VMxU

(1− x2U )2

and ∫ ∞
0

m

εm+ C
dm =∞.

Hence, by Theorem 5 it follows that there exists a T -periodic solution ϕ(t) of
equation (4) such that

(24) xL ≤ ϕ(t) ≤ xU ,
for all t ∈ R. In order to study the stability properties of the solution ϕ(t) we
consider the associated variational equation

ü+ εu̇+ q̂(t)u = 0, with q̂(t) = 1− (1 + 3ϕ2(t))V2(t)

(1− ϕ2(t))3
.

Using (24) and doing some elementary computations we obtain

q̂∗ < q̂(t) < q̂∗,

where

q̂∗ := 1− (4− 3Vm)V2
M

V3
m

, q̂∗ := 1− (4− 3VM )V2
m

V3
M

.

We claim that q̂∗ < 0 if λ > λc. Indeed,

q̂∗ < 0⇔ V3
M − 4V2

m + 3VMV2
m < 0⇔ VM

4− 3VM
<
( Vm
VM

)2
⇔ λc < λ.

Notice that if ε = 0 we have the hyperbolic Hill’s equation

(25) ü+ q̂(t)u = 0

because q̂(t) < q̂∗ < 0 for all t ∈ R. Applying statement (a) of Lemma 7 we obtain
that ϕ(t) is hyperbolic and therefore unstable. �

Concluding Remarks

In Theorem 1 we provide the functions whose simple zeros allow to compute the
periodic solutions of the Nathanson’s model and also how to study the stability of
these periodic solutions. As an application of our results for the function v(ωt) =
sin t, we have computed explicitly the function whose zeros provide the periodic
solutions of the Nathanson’s model, see Corollary 1.

In the comb-drive finger model the generic character of attraction of the origin
prevents the non–appearance of oscillatory periodic solutions. Thus, using the lower
and upper solution techniques and before reaching the pull in voltage, we have been
able to capture two periodic solutions ±ϕ(t) with period equal to the AC–voltage
each one having constant sign. These periodic solutions are generically unstable for
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the viscosity coefficient ε low enough. The generic condition is related to a critical
value λc for the ratio λ = Vm/VM , namely λ > λc. Moreover, the equilibrium
zero is a local attractor for ε small enough and coexists with the periodic solutions
±ϕ(t) for ε small enough and high frequencies for the AC–voltage. This makes that
the MEMS devices a nonlinear oscillator that usually stabilizes at the origin. The
following question remains open. What happens with the stability of the periodic
solution ϕ(t) if λ ≤ λc? The variational equation (25) with ε = 0 is still hyperbolic
below the critical value λc?. The difficulty here is that it is not possible to apply
directly the well known criteria of stability for Hill’s equations. Can be the zero
equilibrium an attractor for higher values of ε and lower frequencies?
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riana Cali, Facultad de Ingenieŕıa, Calle 18 No. 118–250 Cali, Colombia

E-mail address: denunez@javerianacali.edu.co,amrivera@javerianacali.edu.co


