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FINAL EVOLUTIONS FOR SIMPLIFIED MULTISTRAIN/TWO-STREAM

MODEL FOR TUBERCULOSIS AND DENGUE FEVER

JAUME LLIBRE, REGILENE D.S. OLIVEIRA, AND CLAUDIA VALLS

Abstract. The simplified multistrain/two-stream model for the tuberculosis and the Dengue
fever here considered has three compartments, one susceptible and the other two infectious. We
characterize all the final evolutions of this model under generic assumptions.

1. Introduction and statement of the main results

Recently it has become important the study of the resistant viral and bacterial strains, and
the treatment on their proliferation, see for instance [1, 2]. A way for analyzing these systems
is through the multistrain model, which is a simplification of the model considered by Castillo-
Chavez and Feng, see section 12 of [2], for the study of the tuberculosis model of Feng-Velasco-
Hernández [5] for analyzing the Dengue fever. Driessche and Watmough [4] studied this model
in terms of their reprodutive numbers and subthreshold epidemic equilibrium points.

This simplified model has a unique susceptible compartment (S), but has two infectious com-
partiment agents (I1, I2). The equation of this simplified model is

İ1 = β1I1S − (b+ γ1)I1 + νI1I2,

İ2 = β2I2S − (b+ γ2)I2 − νI1I2,

Ṡ = b− bS + γ1I1 + γ2I2 − (β1I1 + β2I2)S.

(1)

From their biological meaning the parameters of this system satisfy

(2) ν, b > 0, βi ≥ 0 and b+ γi > 0 for i = 1, 2.

System (1) has the Darboux invariant

I = (I1 + I2 + S − 1)ebt.

See section 2 for a definition of Darboux invariant. Let Q∗ be the open octant {I1 > 0}∩{I2 > 0}
in the space R3 of coordinates (I1, I2, S). We shall see that the existence of this invariant implies
that all the final evolutions of I1(t) and I2(t) when t → +∞ tend to the attractors contained in
the quadrant Q = {I1 + I2 + S = 1} ∩ {I1 ≥ 0} ∩ {I2 ≥ 0} adding the infinity, see the definition
of final evolution in section 2.

We recall that an equilibrium point p of a differential system is hyperbolic if the real part of
the eigenvalues of the linear part of that system at p are non–zero. As we shall see in section 3
the assumption that the equilibrium points of system (1) are hyperbolic is generic.
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In order to state our results on the final evolutions of system (1) we need to introduce some
definitions and some conditions. Let

I0 = β1 − β2 − ν,

I1 = β1 − b− γ1,

I2 = β2 − b− γ2,

I3 = β2(b+ γ1 − ν) + (b+ γ2)(ν − β1),

I4 = β1(b+ γ2 + ν)− (b+ γ1)(ν + β2)

and consider the following conditions

(I) I0 > 0, I1 > 0, I2 > 0, I3 > 0, I4 > 0,

(II) I0 ̸= 0, I1 > 0, I2 > 0, I3 < 0, I4 > 0,

(III) I0 ̸= 0, I1 > 0, I2 > 0, I3 > 0, I4 < 0,

(IV) I0 ̸= 0, I1 < 0, I2 < 0, and I3 < 0 or I4 < 0.

Under any of the conditions (I)–(IV), system (1) has the following four equilibrium points

p0 = (0, 0, 1),

p1 =

(
I1
β1

, 0,
b+ γ1
β1

)
,

p2 =

(
0,

I2
β2

,
b+ γ2
β2

)
,

p3 =

(
I3
νI0

,
I4
νI0

,
γ1 − γ2 − 1

I0

)
.

Our main result is the following.

Theorem 1. Assume that all equilibrium points of system (1) satisfying conditions (2) in the
closure of the quadrant Q adding the infinity, are hyperbolic. Then the following statements
hold.

(a) Under assumptions (I), except for p3 or for the initial conditions which are on the stable
manifold of p3, all other initial conditions in Q∗ satisfy that (I1(t), I2(t), S(t)) tends to
the equilibria p1 or p2 when t → +∞. The bassins of attraction of p1 and p2 in Q∗ are
separated by the stable manifolds of p3.

(b) Under assumptions (II), for all initial conditions in Q∗ we have (I1(t), I2(t), S(t)) → p1
when t → +∞.

(c) Under assumptions (III), for all initial conditions in Q∗ we have (I1(t), I2(t), S(t)))
→ p2 when t → +∞.

(d) Under assumptions (IV ), for all initial conditions in Q∗ we have (I1(t), I2(t), S(t))) → p0
when t → +∞.
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(e) For system (1) satisfying conditions (2) only the assumptions of statements (a), (b), (c)
and (d) hold.

Theorem 1 is proved in section 3.

We remark that the statement of Theorem 1 under our generic assumptions yields that, all
the equilibrium points of the quadrant Q adding the infinity are hyperbolic. It also provides the
final evolution for the infectious agents I1 and I2 according to the different initial conditions.

2. Basic definitions and results

2.1. Invariant surface. We say that f(I1, I2, S) = 0 is an invariant surface of system (1) if

∂f

∂I1
İ1 +

∂f

∂I2
İ2 +

∂f

∂S
Ṡ = K(I1, I2, S)f,

where K(I1, I2, S) is a polynomial. We note that an invariant surface has the property that if
a trajectory of system (1) has a point on this surface the whole trajectory is contained in the
surface.

Lemma 2. The plane I1 + I2 + S − 1 = 0 is an invariant surface for system (1).

Proof. The proof follows easily from the definition of invariant surface, where K(I1, I2, S) is the
constant −b. �

We note that the existence of this invariant plane is due to Nucci and Leach [7].

2.2. Darboux invariant. A function I(I1, I2, S, t) is an invariant of system (1) if it is constant
on the solutions of the system, i.e.

dI(I1, I2, S, t)

dt
=

∂I

∂I1
İ1 +

∂I

∂I2
İ2 +

∂I

∂S
Ṡ +

∂I

∂t
= 0,

on the trajectories of the system. When I(I1, I2, S, t) = g(I1, I2, S)e
kt where k is a non-zero real

constant, we say that the invariant I is a Darboux invariant.

Lemma 3. The function I = (I1 + I2 + S − 1)ebt is a Darboux invariant for system (1).

Proof. It follows immediately from the definition of Darboux invariant. �

2.3. The dynamics on the invariant plane. Since the plane I1 + I2 +S − 1 = 0 is invariant
for system (1) we shall study the dynamics of this system on this plane. So the equations of
system (1) on this invariant plane are

İ1 = I1(β1 − σ1 − β1I1 + (ν − β1)I2),

İ2 = I2(β2 − σ2 − (ν + β2)I1 − β2I2),
(3)

where σi = b+ γi for i = 1, 2.

The quadrant Q on the invariant plane I1+I2+S−1 = 0 is given by {(I1, I2) : I1 ≥ 0, I2 ≥ 0}.
To define the closure of Q adding the infinity (see Section 2.5) we shall use the so called Poincaré
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compactification of a polynomial differential system. Note that system (3) is a polynomial
differential system of degree 2 in the variables I1 and I2.

2.4. The compactification of the quadrant Q. Let

(4) X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

be the planar polynomial vector field of degree 2 associated to the polynomial differential system

ẋ = P (x, y), ẏ = Q(x, y).

The Poincaré compactified vector field p(X ) of X is an analytic vector field defined on the sphere
S2 as follows. For more details on this compactification see the chapter 5 of the book [6].

Let S2 = {y = (y1, y2, y3) ∈ R3; y21+y22+y23 = 1} and TyS2 be the tangent plane to S2 at point
y. The plane of definition of X is identified with the plane T(0,0,1)S2 and let f : T(0,0,1)S2 → S2
be the central projection. Using the map f we get two copies of X on S2 one in the northern
hemisphere and the other in the southern one. Let X ′ be the vector field D(f) ◦ X on S2 \ S1.
Here S1 = {y ∈ S2; y3 = 0} is the equator of S2 and corresponds to the infinity of the plane of
definition of X .

The vector field p(X ) is the unique analytical extension of y23X ′ to S2. On each hemisphere
of S2 \ S1 there is a copy of X . The dynamics of p(X ) near S1 provides the dynamics of X near
the infinity. The infinity S1 is invariant by the Poincaré compactification p(X ). The projection
(y1, y2, y3) 7→ (y1, y2) of the closed northern hemisphere on y3 = 0 is the Poincaré disc. Note
that its boundary is S1.

In order to have the equations of p(X ) on S2 we take six local charts (Ui, Fi) and (Vi, Gi),
where Ui = {y ∈ S2; yi > 0}, Vi = {y ∈ S2; yi < 0}, the diffeomorphisms Fi : Ui → R2 and
Gi : Vi → R2, for i = 1, 2, 3, which are the inverses of the central projections from the tangent
planes at the points (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1), respectively.
If we denote the points of Ui and Vi by z = (u, v), then z has different meaning depending on
the local charts that we are working. Therefore, after easy computations the differential systems
associated to the vector field p(X ) are

v2∆(z)

(
Q

(
1

v
,
u

v

)
− uP

(
1

v
,
u

v

)
,−vP

(
1

v
,
u

v

))
in U1,

v2∆(z)

(
P

(
u

v
,
1

v

)
− uQ

(
u

v
,
1

v

)
,−vQ

(
u

v
,
1

v

))
in U2,

∆(z)(P (u, v), Q(u, v)) in U3,

where ∆(z) = 1/
√
u2 + v2 + 1. For the Vi’s local charts the expressions are the same as the ones

of Ui’s changed of sign.

Note that v = 0 always denotes the points at the infinity S1 in the local charts U1, V1, U2 and
V2. From now on we cancel the factor ∆(z) > 0 from the expressions of p(X ) in the local charts
doing a rescaling of the time.

The equilibrium points of p(X ) which are in S1 are called infinite equilibrium points of p(X )
or of X .
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2.5. The Poincaré compactification of system (3). The equations of system (3) on the
invariant plane I1 + I2 + S − 1 = 0 in the local charts U1 and U2 write, respecively, as

(5)
u̇ = u((β1 − β2 − ν)(1 + u) + (σ1 − σ2 − β1 + β2)v),

v̇ = v(β1 + (β1 − ν)u+ (σ1 − β1)v),

and

(6)
u̇ = −u((β1 − β2 − ν)(1 + u) + (σ1 − σ2 − β1 + β2)v),

v̇ = v(β2 + (β2 + ν)u+ (σ2 − β2)v).

Since the straight lines I1 = 0 and I2 = 0 of system (3) are invariant and we are only interested
in the dynamics when I1 ≥ 0 and I2 ≥ 0, we restrict our attention to the quadrant Q which is
open at infinity. Doing the Poincaré compactification of system (3) we shall work in the closure
of Q in the Poincaré disc, this closure is the one that we have mentioned in section 1 saying that
we consider the closure of Q adding the infinity. This closure in what follows will be denoted by
Q.

It is easy to see that system (5) (respectively (6)) has a unique infinite equilibrium point u1
(respectively u2) in Q, namely the origin (0, 0) of the chart U1 (respectively U2).

The Poincaré compactification can also be done for the polynomial differential system (1)
defined in R3, see for instance [3]. Then we shall denote the closure of Q∗ adding the infinity as
Q∗.

Let X3 and X2 be the polynomial vector fields associated to the polynomial differential systems
(1) and (3), respectively. We note that the orbits of the compactified vector fields p(X3) and
p(X2) on Q∗ and Q, respectively, are defined for t ∈ (−∞,+∞), because Q∗ and Q are compact
sets. This a classical result which for instance follows easily from Theorem 1.2 of [6].

2.6. Final evolutions. Let ϕp(t) = (I1(t), I2(t), S(t)) be a solution of p(X3). We define the
ω–limit and the α–limit set of p, denoted by ω(p) and α(p) respectively, as

ω(p) = {q ∈ Q∗ : ∃{tn} with tn → +∞ and ϕp(tn) → q when n → +∞},

α(p) = {q ∈ Q∗ : ∃{tn} with tn → −∞ and ϕp(tn) → q when n → +∞}.

The ω-limit of the solution ϕp(t) of p(X3) with p ∈ Q∗ is called the final evolution of this
solution.

The next proposition will show that all the final evolutions of the orbits starting at points of
Q∗ are in Q.

Proposition 4. Let I(I1, I2, S, t) = (I1 + I2 + S − 1)ebt be a Darboux invariant of system (1).
If ϕp(t) is the solution of p(X3) with p ∈ Q∗, then ω(p) ∈ Q.

Proof. Set ϕp(t) = (I1(t), I2(t), S(t)). Since I is a Darboux invariant I(ϕp(t)) is constant. But

since b > 0 and ebt → +∞ when t → +∞, we have that I1(t) + I2(t) + S(t) − 1 → 0 when
t → +∞. So ω(p) ∈ Q. �
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Remark 5. Proposition 4 implies that in order to study the final evolutions of the orbits ϕp(t)
of p(X3) with p ∈ Q∗, it is sufficient to study the final evolutions of the orbits ϕp(t) of p(X2)
with p ∈ Q.

3. Proof of Theorem 1

The eigenvalues of the infinite and finite equilibrium points of the vector field p(X2) contained
in Q are: I0 and β1 for u1, −I0 and β2 for u2, I1 and I2 for p0, −I1 and −I4/β1 for p1, −I2 and
−I3/β2 for p2, the roots of the polynomial λ2 − Tλ+D, where

T = −β1I3 + β2I4
νI0

, D = −I3I4
νI0

,

for p3.

Since by assumptions our equilibrium points are hyperbolic, and from (2) we have that Ik ̸= 0,
for k = 0, 1, 2, 3, 4, we conclude that β1, β2 > 0 and ν > 0.

By remark 5 we can reduce the proofs of the statements of Theorem 1 to study the phase
portrait of p(X2) in the quadrant Q.

Proof of statement (a) of Theorem 1. Under assumption (I) and since the equilibrium points are
hyperbolic by Theorem 2.15 of [6] we have that u1 is an unstable node, u2 is a saddle, p0 is an
unstable node, p1 and p2 are stable nodes, and since the determinant of the equilibrium point
p3 is negative, p3 restricted to the invariant plane is a saddle. Then, by using the Poincaré–
Bendixson Theorem (see for instance Theorem 1.25 and Corollary 1.30 of [6]), the phase portrait
of p(X2) in Q is the one described in Figure 1.

Figure 1. Phase portrait on the quadrant Q under the assumption (I).

In order to complete the proof of this statement we must compute the dimension of the
invariant manifolds of the equilibrium point p3 in Q∗, which are the two eigenvalues of the
saddle p3 restricted to the invariant plane plus −b outside this plane. Hence p3 has two
negative eigenvalues and one positive eigenvalue. Consequently the stable manifold of p3 has
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dimension 2 and separate the bassins of attractions of the stable nodes p1 and p2 in Q∗. By
Remark 5 the proof of statement (a) is done. �

Proof of statement (b) of Theorem 1. Under assumption (II), I0 > 0 (respectively I0 < 0) and
since the equilibrium points are hyperbolic we have that u1 is an unstable node (respectively
a saddle), u2 is a saddle (respectively an unstable node), p0 is an unstable node, p1 is a stable
node, and p2 is saddle. Note that p3 does not belong to Q. Then, by the Poincaré–Bendixson
Theorem the phase portrait of p(X2) in Q is the one described in Figure 2(a) (respectively 2(b)).
This completes the proof of statement (b). �

Figure 2. Phase portraits on the quadrant Q under the assumption (II) for I0 > 0 in
(a) and for I0 < 0 in (b).

Proof of statement (c) of Theorem 1. Under assumption (III), I0 > 0 (respectively I0 < 0) and
since the equilibrium points are hyperbolic we have that u1 is an unstable node (respectively a
saddle), u2 is a saddle (respectively an unstable node), p0 is an unstable node, p1 is a saddle, and
p2 is stable node. Again p3 does not belong to Q. Then, by the Poincaré–Bendixson Theorem
the phase portrait of p(X2) in Q is the one described in Figure 3(a) (respectively 3(b)). This
completes the proof of statement (c). �

Proof of statement (d) of Theorem 1. Under assumption (IV), I0 > 0 (respectively I0 < 0) and
since the equilibrium points are hyperbolic we have that u1 is an unstable node (respectively
a saddle), u2 is a saddle (respectively an unstable node), and p0 is a stable node. Now p1, p2
and p3 do not belong to Q. Then, by the Poincaré–Bendixson Theorem the phase portrait of
p(X2) in Q is the one described in Figure 4(a) (respectively 4(b)). This completes the proof of
statement (d). �

Proof of statement (e) of Theorem 1. According to the signs of Ik for k = 0, 1, 2, 3, 4 the cases
which are not considered in the statements (a), (b), (c) and (d) of Theorem (1) are the following
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Figure 3. Phase portraits on the quadrant Q under the assumption (III) for I0 > 0
in (a) and for I0 < 0 in (b).

Figure 4. Phase portraits on the quadrant Q under the assumption (IV) for I0 > 0 in
(a) and for I0 < 0 in (b).

(V) I0 ̸= 0, I1 < 0, I2 > 0, I3 > 0, I4 > 0,

(VI) I0 ̸= 0, I1 > 0, I2 < 0, I3 > 0, I4 > 0,

(VII) I0 ̸= 0, I1 < 0, I2 < 0, I3 > 0, I4 > 0,

(VIII) I0 < 0, I1 > 0, I2 > 0, I3 > 0, I4 > 0.

Now we shall prove that these four cases are not realizable for system (3) satisfying (2), and
this will complete the proof of statement (e).

Under assumption (V) with I0 > 0 we have that u1 is an unstable node, u2 is a saddle, p0
is saddle, p2 is a stable node and p3 is a saddle. In this case the point p1 does not belong to
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Q. Then by using the Poincaré–Bendixson Theorem we get a contradiction because the two
unstable separatrices of the saddle p3 go to p2, and then the stable separatrix contained in the
region limited by the two unstable separatrices cannot have its α–limit.

Under assumption (V) with I0 < 0 we have that u1 is a saddle, u2 is an unstable node, p0 is
saddle, p2 is a stable node and p3 is a focus or a node. In this case the point p1 does not belong
to Q. Then from the unstable node u2 there is an orbit Γ1 going to u1 and an orbit Γ2 going
to p0, the orbits starting at u1 between Γ1 and Γ2 need a separatrice contained in the interior
of Q due to the fact that Γ1 and Γ2 have different ω–limits. But there is no separatrices in this
case in the interior of Q, and this is a contradiction.

The proof that the vector field p(X2) cannot satisfy the assumption (VI) follows in the same
way than the proof that under the assumptions (V) the vector field p(X2) cannot satisfy as-
sumptions (V) but using the point p1 of assumption (V I) instead of the point p2 of assumption
(V).

The proof that the vector field p(X2) cannot satisfy the assumption (VII) with I0 > 0 is the
same than the proof under the assumption (V) with I0 > 0 but using the point p2 instead of the
point p0. The proof that the vector field p(X2) cannot satisfy the assumption (VII) with I0 < 0
is the same than the proof under the assumption (V) with I0 < 0.

The proof that the vector field p(X2) cannot satisfy the assumption (VIII) follows as the proof
under the assumptions (V) with I0 < 0 using the point p2 for the assumption (VIII) instead of
the point p0 for the assumption (V).

This completes the proof of statement (e) of Theorem 1. �

3.1. Generic conditions. Under the assumptions that the finite and infinite equilibrium points
in Q are hyperbolic we get that Ik for k = 0, 1, 2, 3, 4 cannot be zero. Then in the space of
parameters

(β1, β2, b+ γ1, b+ γ2, ν) ∈ E := [0,+∞)2 × (0,+∞)3,

the subspaces satisfying conditions (I), (II), (III) and (IV) are open sets, and the union of these
subspaces is dense in E. This density is due to the fact that all the other possible conditions,
which are conditions (V), (VI), (VII) and (VIII) are empty as we have proved in the proof of
statement (e) of Theorem 1. This shows that conditions (I), (II), (III) and (IV) are generic.

4. Discussion

We have studied the simplified multistrain/two-stream model for the tuberculosis and the
Dengue fever with three compartiments, one susceptible and the other two infectious provided
by the differential system (1). Under generic assumptions we have characterized in Theorem
1 all the final evolutions of this model. As we have proved there are only two possible final
evolutions. In the first one only one of the two infectious compartiments tends to zero, and
in the second one both infectious compartiments tend to zero. Additionally we characterize
the conditions in function of the parameters of the system which provide these different final
evolutions.
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