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1. Introduction and statement of the main result

We consider in R
3 the autonomous system of differential equations

ẋ =−ax+ y+ yz,

ẏ = x−ay+bxz,

ż = cz−bxy,

(1.1)

where a,b,c are real parameters with b > 0. This system arise in mechanical, electrical and fluid–
dynamical contexts, see for more details the articles of Miyaji, Okamoto and Craik [14, 15] and
the references quoted there. This system was proposed and studied by Pehlivan [16]. The system
extends a previous study of Craik and Okamoto [1], including linear forcing and damping.

Pehlivan showed that system (1.1) displays simultaneously unbounded and chaotic solutions.
This phenomenon has been studied in more depth by Miyaji, Okamoto and Craik who also find that
can be accompanied by three distinct period–doubling cascades of periodic orbits to chaos.

Chaotic systems are nonlinear deterministic systems which exhibits a complex and unpre-
dictable behavior, hence it is a very interesting phenomenon in nonlinear dynamical systems and
it has been intensively studied starting with the Lorenz system. The majority of the known chaotic
system have one or more quadratic non-linearities.

Pehlivan system as the Lorenz system are two polynomial differential systems in R
3, with very

different dynamics. For the Lorenz system their invariant algebraic surfaces defined by their Dar-
boux polynomials are very well known, see [12]. In this paper we provide the invariant algebraic
surfaces of the Pehlivan system. Moreover for the Lorenz system also their polynomial, rational and
Darboux first integrals were studied in [17, 18]. Here we also provide the polynomial, rational and
Darboux first integrals of the Pehlivan system.

As far as we know this rich dynamical system (1.1) has never been investigated from the inte-
grability point of view. The main goal of this paper is to characterize the polynomial and rational
first integrals of system (1.1). For doing this we need to provide a complete characterization of the
invariant algebraic surfaces of system (1.1) depending on its parameters. In order to obtain such
invariant algebraic surfaces we shall use the Darboux theory of integrability which gives a link
between the algebraic geometry of the system and its first integrals, see for more details about this
theory [5–7, 9–11, 13].

It is well known that the existence of a first integral for three–differential system allows to reduce
the study of its dynamics in one dimension, and that the existence of two independent first integrals
allows to describe completely the dynamics of the system. These arguments justify the study of the
integrability of a differential system. The Darboux theory of integrability is classical. The Darboux
integrability essentially captures the elementary first integrals, i.e. the first integrals given by ele-
mentary functions, which are the ones that roughly speaking can be obtained by composition of
exponential, trigonometric, logarithmic and polynomial functions, see for more details about the
Darboux integrability the Chapter 8 of [5], and the references quoted there. The Darboux integrabil-
ity in dimension three is based in the existence of invariant algebraic surfaces f (x,y,z) = 0, where
f (x,y,z) is a polynomial, called a Darboux polynomial. A sufficient number of such polynomials
taking into account their multiplicity (through the so–called exponential factors) force the existence
of first integrals.

Historically, the theory received mainly contributions from Darboux [3] who gave a link
between the algebraic geometry and the search of first integrals and showed how to construct a



first integral of a polynomial differential system in the plane having sufficient number of invariant
algebraic curves. Poincaré noticed the difficulty in obtaining an algorithm to compute Darboux first
integrals and Singer proved the relation for polynomial differential system in the plane to have a
Liouvillian first integral in terms of a Darbouxian integrating factor.

Let U be an open and dense subset of R3. A nonconstant function H : U → R is called a first
integral of system (1.1) on U if H(x(t),y(t),z(t)) is constant for all of the values of t for which
(x(t),y(t),z(t)) is a solution of system (1.1) contained in U . So H is a first integral of system (1.1)
if and only if

(−ax+ y+ yz)
∂H
∂x

+(x−ay+bxz)
∂H
∂y

+(cz−bxy)
∂H
∂ z

= 0,

for all (x,y,z) ∈U . If H is a polynomial (respectively a rational function) we say that H is a poly-
nomial (respectively rational) first integral.

Let R[x,y,z] be the ring of the polynomials in the variables x, y and z with coefficients in the
field R.

Given g ∈ [x,y,z] the surface g(x,y,z) = 0 is called an invariant algebraic surface of system
(1.1) and g is called a Darboux polynomial if there exists k ∈ [x,y,z] such that

(−ax+ y+ yz)
∂g
∂x

+(x−ay+bxz)
∂g
∂y

+(cz−bxy)
∂g
∂ z

= kg. (1.2)

The polynomial k satisfying (1.2) is called the cofactor of the invariant surface g(x,y,z) = 0 and it
has degree at most 1. The name of invariant algebraic surface comes from the fact that if a solution
of system (1.1) has a point on the such surface the whole solution is contained in it.

Let U be an open and dense subset of R
3. We recall that two functions f ,g : U → R

3 are
functionally independent or simply independent if their gradients are linearly independent at all
points of U except perhaps in a zero Lebesgue set. Differential system (1.1) is completely integrable
if it has two first integrals which are functionally independent.

The aim of this paper is to study the existence of first integrals of system (1.1) that can be
described by functions of Darboux type (see (1.3)). In general, for a given differential system it is
difficult to determine the existence or nonexistence of first integrals.

An exponential factor F(x,y,z) of system (1.1) is an exponential function of the form F =

exp(g/h) with g,h ∈ C[x,y,z] coprime, denoted by (g,h) = 1, and satisfying

(yz−ax+ y)
∂F
∂x

+(bxz+ x−ay)
∂F
∂y

+(−bxy+ cz)
∂F
∂ z

= �F

for some �(x,y,z) ∈ C[x,y,z] a polynomial of degree at most one, which is called the cofactor of F .
A first integral H of system (1.1) is called a generalized Darboux first integral or here simply a

Darboux first integral if it has the form

G= f λ1
1 · · · f

λp
p F μ1

1 · · ·Fμq
q , (1.3)

where f1, ..., fp are Darboux polynomials and F1, ...,Fq are exponential factors and λj,μk ∈ C for
j = 1, ..., p and k = 1, ...,q.

Note that polynomial first integrals and rational first integrals are Darboux first integrals.
The main results of this paper are the following five theorems.



Theorem 1.1. If c = a = 0 and b = 1, then system (1.1) is completely integrable with the two
independent first integrals H1(x,y,z) = 2z+ z2 + x2 and H2(x,y,z) = x2 − y2.

Theorem 1.2. Assume c2 + a2 �= 0 and b > 0. System (1.1) has an invariant algebraic surface if
and only if a+ c = 0 or b = 1. The irreducible invariant algebraic surfaces are described in Table
1 with their corresponding cofactors.

Table 1. The invariant algebraic surfaces of system (1.1) with its correspond-
ing cofactors.

Parameters Irreducible invariant algebraic surface Cofactor

a+c = 0 b(x2 −y2 − z2)+ z2 = 0 −2a
b = 1 x+y = 0 1−a+ z
b = 1 x−y = 0 −1−a− z

Theorem 1.3. Assume c2 + a2 �= 0 and b > 0. System (1.1) has a polynomial first integral if and
only if a = 0 and b = 1. This first integral is x2 − y2.

Theorem 1.4. Assume c2 +a2 �= 0 and b > 0. System (1.1) has no rational first integrals which are
not polynomial.

Theorem 1.5. For all a,c ∈ R and b > 0, except when a = c = 0, or a = 0 and b = 1, system (1.1)
has no Darboux first integrals.

The proofs of these theorems are given in Sections 3 and 4. Similar results on the integrability
of a polynomial Lotka–Volterra differential system in R

3 can be found in [8].

2. Preliminary results

Before to proof the main results of this paper we will introduce some well-known results. The first
was proved in [5].

Lemma 2.1. Let f be a polynomial and f = ∂ rods
j=1 f

α j
j its decomposition into irreducible factors

in C[x,y,z]. Then f is a Darboux polynomial if and only if all the fj are Darboux polynomials.
Moreover, if k and kj are the cofactors of f and fj, then k = ∑s

j=1 α jk j.

The second result whose proof and geometrical meaning is given in [2] is the following.

Proposition 2.1. The following statements hold.

(a) If E = exp(g0/g) is an exponential factor for the polynomial system (1.1) and g is not a
constant polynomial, then g = 0 is an invariant algebraic hypersurface.

(b) Eventually eg0 can be an exponential factor, coming from the multiplicity of the infinite
invariant hyperplane.

The proof of the third and fourth results is given in [5].

Theorem 2.1. If system (1.1) has a rational first integral then either it has a polynomial first integral
or two Darboux polynomials with the same nonzero cofactor.



Theorem 2.2. Suppose that system (1.1) admits p Darboux polynomials with cofactors ki and q
exponential factors Fj with cofactors � j. Then there exists λ j,μ j ∈C not all zero such that

q

∑
i=1

λkki +
q

∑
i=1

μi�i = 0

if and only if the function G given in (1.3) (called of Darboux type) is a first integral of system (1.1).

Since system (1.1) is real, we claim that if it has a Darboux first integral, this can be chosen to be
real. Indeed, it is well-known that if a complex Darboux polynomial or exponential factor appears
then its conjugate must appear simultaneously. If among the Darboux polynomials of system (1.1) a
complex conjugate pair f , f̄ occurs the first integral (1.3) has a real factor of the form fλ f̄ λ , which
is the multi-valued real function

[(Re f )2 +(Im f )2]Reλ exp
(
−2Imλ arctan

( Im f
Re f

))
,

if Im f Imλ �= 0. If among the exponential factors of system (1.1) a complex conjugate pair F =

exp(h/g) and F̄ = exp(h̄/ḡ) occurs the first integral (1.3) has a real factor of the form

(
exp
(h

g

))μ(
exp
( h̄

ḡ

))μ̄
= exp

(
2Re

(
μ

h
g

))
.

So the claim is proved.
We introduce the change of variables

X =
√

bx, Y = y, Z = z (2.1)

and the rescaling of time t = τ/
√

b. In these new variables system (1.1) is written as

Ẋ =−a1X +Y +YZ,

Ẏ =
1
b

X −a1Y +XZ,

Ż = c1Z−XY,

(2.2)

where a1 = a/
√

b and c1 = c/
√

b.
Now consider the linear operator

L = YZ
∂

∂X
+XZ

∂
∂Y

−XY
∂

∂Z
(2.3)

The characteristic equation associated to L is

dX
dZ

=−Y Z
XY

,
dY
dZ

=−XZ
XY

.

It general solution is

X2 +Z2 = d1, Y 2 +Z2 = d2

where d1,d2 are arbitrary constants. We make the change of variables

u = X2 +Z2, v = Y 2 +Z2, w = Z. (2.4)



Its inverse change is

X =±
√

u−w2, Y =±
√

v−w2, Z = w. (2.5)

In the paper we only use the positive case. The negative one gives the same results.
We also introduce the linear operator

Da1,b,c,s1 =
(
a1X −Y

) ∂
∂X

− (1
b

X −a1Y
) ∂

∂Y
− c1Z

∂
∂Z

+ s1. (2.6)

3. Proofs of Theorems 1.1 to 1.4

The proofs of the theorems will be divided into several propositions.
Let τ : C[x,y,z] → C[x,y,z] be the automorphism τ(x,y,z) = (−x,−y,z). We recall that an irre-

ducible Darboux polynomial is a polynomial irreducible in C[x,y,z].

Proposition 3.1. If g(x,y,z) is an irreducible Darboux polynomial for system (1.1) with cofactor
K = px+ qy+ rz+ s then f = g · τg is a Darboux polynomial invariant by τ with cofactor k =

2rz+2s.

Proof. Since system (1.1) is invariant under τ , then τg is also a Darboux polynomial of system (1.1)
with cofactor τ(K). Moreover, by Lemma 2.1, g · τg is also a Darboux polynomial with cofactor
k = K+ τ(K) = 2rz+2s, as we wanted to prove.

From Proposition 3.1 we shall consider the Darboux polynomials invariant by τ and also two
cases in the cofactor, the case where the cofactor k is written as k = rz+ s, where r �= 0 and the
case k = s. Let f (x,y,z) be a Darboux polynomial invariant by τ . In these new variables (X ,Y,Z)
introduced in (2.1) if f̄ (X ,Y,Z) = f (x,y,z) then we have that f is an invariant algebraic surface
of system (1.1) invariant by τ with cofactor k = rz+ s if and only if f̄ is an invariant algebraic
surface of system (2.2) invariant by τ with cofactor k = r1z+ s1 where r1 = r/

√
b and s1 = s/

√
b.

So from now on we will study the invariant algebraic surfaces of system (2.2) and in the proofs we
are concerned with characterizing polynomials f ∈ [X ,Y,Z] such that

(−a1X +Y +YZ)
∂ f
∂X

+(
1
b

X −a1Y +XZ)
∂ f
∂X

+(c1Z−XY)
∂ f
∂Z

= (r1Z+ s1) f . (3.1)

Note that for simplicity now we shall write f instead of f̄ .
We first consider the case r = 0 (i.e., r1 = 0).

Proposition 3.2. Assume c2
1 + a2

1 �= 0 and b > 0. Let f = f (x,y,z) = 0 be an invariant algebraic
surface of system (2.2) of degree n ≥ 1 with cofactor k = s1. Then n is even, s1 = −an/

√
b, and its

invariant algebraic surfaces are described in Table 2.

Table 2. Invariant algebraic surfaces of system (2.2) with its cor-
responding cofactors.

Parameters Invariant algebraic surface Cofactor

a1 +c1 = 0 X2 +Z2 −b(Y 2 +Z2) = 0 −a/
√

b
b = 1 X2 −Y 2 = 0 −a/

√
b



Proof. Assume that k = s1 is the cofactor of the invariant algebraic surface f = 0 of degree n. We
write f = ∑n

i=1 fi where fi are homogeneous polynomials of degree i, fn �= 0, and fn satisfies

YZ
∂ fn

∂X
+XZ

∂ fn

∂Y
−XY

∂ fn

∂Z
= 0.

The solutions of this linear partial differential equation are of the form F(X2 +Z2,Y 2 +Z2) where
F is an arbitrary C1 function. Since fn must be a homogeneous polynomial it follows that F is a
homogeneous polynomial in the variables X2 + Z2 and Y 2 + Z2. So n must be even, i.e. n = 2m,
where m is a positive integer.

From (3.1) the following partial differential equations

L[ f2m] = 0, L[ f2i−1] = Da1,b,c1,s1 [ f2i] (3.2)

for i = m, . . . ,1, and s1 f0 = 0.
It follows from section 2 that all solutions of L[ f2m] = 0 can be written as

f2m =
m

∑
i=0

am
i

(
X2 +Z2)m−i

(Y 2 +Z2)i,

where am
i is a constant for i = 0,1, . . . ,m. Introducing f2m into the second equation of (3.2) we have

L[ f2m−1] = Da1,b,c1 ,s1 [ f2m]

= 2X(a1X −Y )
m

∑
i=0

(m− i)am
i

(
X2 +Z2)m−i−1

(Y 2 +Z2)i

+2Y (a1Y − 1
b

X)
m

∑
i=0

iam
i

(
X2 +Z2)m−i

(Y 2 +Z2)i−1

−2c1Z2
m

∑
i=0

(m− i)am
i

(
X2 +Z2)m−i−1

(Y 2 +Z2)i

−2c1Z2
m

∑
i=0

iam
i

(
X2 +Z2)m−i−1

(Y 2 +Z2)i−1

+ s1

m

∑
i=0

am
i

(
X2 +Z2)m−i

(Y 2 +Z2)i.

(3.3)

Now writing X2 = X2 +Z2−Z2 and Y 2 = Y 2 +Z2 −Z2, we get

L[ f2m−1] =−2XY

[
m

∑
i=0

(m− i)am
i

(
X2 +Z2)m−i−1

(Y 2 +Z2)i +
m

∑
i=0

iam
i

b

(
X2 +Z2)m−i

(Y 2 +Z2)i−1

]

+2a1

m

∑
i=0

(m− i)am
i

(
X2 +Z2)m−i

(Y 2 +Z2)i −2a1Z2
m

∑
i=0

(m− i)am
i

(
X2 +Z2)m−i−1

(Y 2 +Z2)i

+2a1

m

∑
i=0

iam
i

(
X2 +Z2)m−i

(Y 2 +Z2)i −2a1Z2
m

∑
i=0

iam
i

(
X2 +Z2)m−i

(Y 2 +Z2)i−1

−2c1Z2

[
m

∑
i=0

(m− i)am
i

(
X2 +Z2)m−i−1

(Y 2 +Z2)i +
m

∑
i=0

iam
i

(
X2 +Z2)m−i

(Y 2 +Z2)i−1

]

+ s1

m

∑
i=0

am
i

(
X2 +Z2)m−i

(Y 2 +Z2)i.



Then, making the change i → j−1 in some sums and joint the sums conveniently we get

L[ f2m−1] =−2XY
m

∑
j=1

((m− j+1)am
j−1+

j
b

am
j )
(
X2 +Z2)m− j

(Y 2 +Z2) j−1

+
m

∑
j=0

(2a1m+ s1)a
m
j

(
X2 +Z2)m− j

(Y 2 +Z2) j

−2Z2
m

∑
j=1

(a1 + c1)
(
(m− j+1)am

j−1+ jam
j

)(
X2 +Z2)m− j

(Y 2 +Z2) j−1.

(3.4)

Using u,v,w, introduced in section 2, we obtain the ordinary differential equation

d f 2m−1

dw
= − 1√

u−w2
√

v−w2

m

∑
j=0

(2a1m+ s1)a
m
j um− jv j

+
w2

√
u−w2

√
v−w2

m

∑
j=1

2(a1 + c1)
(
(m− j+1)am

j−1+ jam
j

)
um− jv j−1

+2
m

∑
j=1

((m− j+1)am
j−1+

jam
j

b
)um− jv j−1.

By solving it, we get

f 2m−1 =

(
m

∑
j=0

(2a1m+ s1)a
m
j um− jv j

)∫
dw√

u−w2
√

v−w2

−2(a1 + c1)

(
m

∑
j=1

(
(m− j+1)am

j−1+ jam
j

)
um− jv j−1

)∫
w2dw√

u−w2
√

v−w2

+2w
m

∑
j=1

(
(m− j+1)am

j−1+
j
b

am
j

)
um− jv j−1 +B2m−1(u,v),

where B2m−1 is an arbitrary function in the variables u and v.
Since

∫
w2dw√

u−w2
√

v−w2
=−

∫ √
u−w2

√
v−w2

dw+u
∫

dw√
u−w2

√
v−w2

, (3.5)

the two integrals which appear in the expression of the polynomial f2m−1 are reduced to the integrals

∫
dw√

u−w2
√

v−w2
and

∫ √
u−w2

√
v−w2

dw. (3.6)

Since these are elliptic integrals of the second and first kinds, respectively (note that these integrals
cannot produce a polynomial, fact that can be verified considering their expansions in Taylor series),
and f2m−1 is a homogeneous polynomial of degree 2m−1, we must have

B2m−1
(
X2 +Z2,Y 2 +Z2)= 0,

(2a1m+ s1)a
m
j = 0, j = 0,1, ...,m,

(a1 + c1)
(
(m− j+1)am

j−1+ jam
j

)
= 0, j = 1, ...,m.

(3.7)



Therefore, writing bm
j = 2

(
(m− j+1)am

j−1+
jam

j

b

)
we have

f2m−1 =
m

∑
j=1

bm
j

(
X2 +Z2)m− j

(Y 2 +Z2) j−1Z.

If am
j = 0, for j = 0,1, ..,m, we should have that f2m = 0, consequently we obtain that s1 =

−2a1m = −a1n. By the third equation in (3.7) we get either a1 + c1 = 0, or a1 + c1 �= 0 and (m−
j+1)am

j−1+ jam
j = 0, for j = 1, ..,m.

Now, we split the proof in two cases.
Case 1: a1+c1 = 0. As a2

1+c2
1 �= 0, k= s1 �= 0 and s1 =−2a1m it follows that s1 = 2mc1. Introducing

f2m, f2m−1 into the second equation of (3.2) with i = 2m−1 and doing similar computations as the
ones for passing from (3.3) to (3.4) we obtain

L[ f2m−2] = Da1,b,c1,2mc1 [ f2m−1]

=−2XYZ
m

∑
i=2

(
(m− i+1)bm

i−1+
(i−1)

b
bm

i

)(
X2 +Z2)m−i

(Y 2 +Z2)i−2

−2c1Z
m

∑
i=1

bm
i

(
X2 +Z2)m−i

(Y 2 +Z2)i−1.

(3.8)

Again, using u,v,w we get

d f 2m−2

dw
= 2w

m

∑
i=2

(
(m− i+1)bm

i−1+
(i−1)

b
bm

i

)
um−ivi−2

+2c1
w√

u−w2
√

v−w2

m

∑
i=1

bm
i um−ivi−1 +B2m−2(u,v).

Since ∫
wdw√

u−w2
√

v−w2
= log |

√
w2 −u+

√
w2 − v|, (3.9)

where f2m−2(x,y,z) = f 2m−2 is a homogeneous polynomial in the variables x,y and z, we must have

either c1 = 0 or bm
i = 0, for all i = 1,2, ...,m. But a2

1 + c2
1 �= 0 and a1 = −c1 so bm

i = 2
(
(m− i+

1)am
i−1 +

i
b

am
i

)
= 0, consequently f2m−1 = 0, and

am
i = (−1)ibi

(
m
i

)
am

0 .

Consequently,

f2m−2 = B2m−2
(
X2 +Z2,Y 2 +Z2) and f2m = am

0

(
X2 +Z2 −bY 2 −bZ2)m

.

Repeating the same steps done for f2m we conclude that

f2m−2 =
m−1

∑
i=0

am−1
i

(
X2 +Z2)m−i−1

(Y 2 +Z2)i



f2m−3 = 0

and

(2a1(m−1)+ s1)a
m−1
i = 0, i = 0,1, ...,m−1.

Since s1 =−2a1m we have am−1
i = 0 for i = 0,1, ...,m−1. Hence f2m−2 = 0.

Finally following this recursive method we conclude that

f = f2m = am
0

(
X2 +Z2−bY 2 −bZ2)m

.

In short f = 0 is an invariant algebraic surface with cofactor k = nc/
√

b in the case a1 + c1 = 0.
Case 2: a1 + c1 �= 0 and (m− j+ 1)am

j−1 + jam
j = 0, for j = 1, ..,m. In this case working in a

similar way to the previous case we get

am
j = (−1) j

(
m
j

)
am

0 and f2m−1 =
m

∑
j=1

bm
j (X

2 +Z2)m− j(Y 2 +Z2) j−1Z,

where

bm
j = 2

(
(m− j+1)am

j−1+
j
b

am
j

)
. (3.10)

So bm
j = 2

(
− jam

j +
j
b

am
j

)
=

2
b
(1−b) jam

j .

Proceeding as in Case 1 we have that the second equation of (3.2) for i = 2m−2 can be written
as

L[ f2m−2] = Da1,b,c1 ,−2a1m[ f2m−1]

=−2XYZ
m

∑
i=2

(
(m− i+1)bm

i−1+
(i−1)

b
bm

i

)(
X2 +Z2)m−i−1

(Y 2 +Z2)i−1

−2(c1 +2a1)Z
m

∑
i=1

bm
i

(
X2 +Z2)m−i

(Y 2 +Z2)i−1

−2(a1 + c1)Z
3

m

∑
i=2

(
(m− i+1)bm

i−1+bm
i (i−1)

)(
X2 +Z2)m−i

(Y 2 +Z2)i−2.

(3.11)

Therefore, using u,v,w we get

d f 2m−2

dw
=−2w

m

∑
i=2

(
(m− i+1)bm

i−1+
(i−1)bm

i

b

)
um−i+1vi−1

−2(c1 +2a1)
w√

u−w2
√

v−w2

m

∑
i=1

bm
i um−ivi−1

−2(a1 + c1)
w3

√
u−w2

√
v−w2

m

∑
i=2

(
(m− i+1)bm

i−1 +(i−1)bm
i

)
um−ivi−2.

(3.12)

By equation (3.9), since

∫
w3dw√

u−w2
√

v−w2
=

1
2

√
u−w2

√
w2 − v+(u+ v) log |

√
w2 −u+

√
w2 − v|, (3.13)



and f2m−2 is a homogeneous polynomial in the variables x,y and z of degree 2m−2 we must have

(c1 +2a1)b
m
i = 0, for i = 1, . . . ,m,

(m− i+1)bm
i−1+(i−1)bm

i = 0, for i = 2, . . . ,m.
(3.14)

From

(m− i+1)am
i−1+ iam

i = 0,

we have am
j =−1

j
(m− j+1)am

j−1. Then bm
j =

2
b
(b−1)(m− j+1)am

j−1. Hence

(m− i+1)bm
i−1+(i−1)bm

i =
2
b
(b−1)(m− j+1)

(
(m− j+2)am

j−2+
( j−1)

b
am

j−1

)
= 0.

Then we only need to consider two subcases, c1 +2a1 = 0 and bm
j = 0, for j = 1,2, ..,n.

Subcase 2.1: bm
j = (m− j+1)am

j−1 +
j
b

am
j = 0 for j = 1, . . . ,m. From the hypothesis of Case 2

we get
1
b

jam
j (1− b) = 0 for j = 1, . . . ,m. So am

j = 0 or b = 1. But if am
j = 0, for j = 1, . . . ,m we

have f2m = 0, a contradiction. If b = 1 then am
j = (−1) j

(m
j

)
am

0 and f2m = am
0 (x

2 − y2)m, f2m−1 = 0

and

f2m−2 = B2m−2
(
X2 +Z2,Y 2 +Z2)= m−1

∑
i=0

am−1
i

(
X2 +Z2)m−i−1

(Y 2 +Z2)i.

Repeating the same steps for passing from f2m to f2m−2, and so on as we have done in Case 1, we
get that fk = 0 for k = 0,1, . . . ,2m−1. Consequently f = f2m = am

0 (X
2−Y 2) and g = am

0 (x
2 − y2)m

with b = 1.
Subcase 2.2: c1 +2a1 = 0. In this case solving the differential equation (3.12) we have

f2m−2 =
m

∑
i=2

cm
j

(
X2 +Z2)m−i−1

(Y 2 +Z2)i−1Z2 +B2m−2
(
X2 +Z2,Y 2 +Z2)

=
m

∑
i=2

cm
j

(
X2 +Z2)m−i−1

(Y 2 +Z2)i−1Z2 +
m−1

∑
j=0

dm−1
j

(
X2 +Z2)m−i

(Y 2 +Z2)i,

where

cm
j = ((m− j+1)bm

j−1+
( j−1)

b
bm

j ) =
2
b2 (1−b)2 j( j−1)am

j . (3.15)



Taking in equation (3.2) i = m−2 we obtain

L[ f2m−3] = Da1,b,−2a1 ,−2a1m[ f2m−2]

=−2XYZ2
m

∑
i=3

(
(m− i)cm

i−1 +
(i−1)cm

i

b

)
(X2 +Z2)m−i−1(Y 2 +Z2)i−2

−2Z4(c1 +a1)
m

∑
i=2

(
(m− i)cm

i−1 +(i−1)cm
j

)(
X2 +Z2)m−i−1

(Y 2 +Z2)i−2

−2XY
m−1

∑
i=1

((m− i+1)dm
i−1 +

i
b

dm
i )
(
X2 +Z2)m−i

(Y 2 +Z2)i−1

−2Z2
m−1

∑
i=1

(a1 + c1)
(
(m− i+1)dm

i−1+ idm
i

)(
X2 +Z2)m−i

(Y 2 +Z2)i−1.

(3.16)

Passing to the variables u, v and w, we have the ordinary differential equation

d f 2m−3

dw
=−2w2

m

∑
i=3

(
(m− i)cm

i−1 +
(i−1)cm

i

b

)
um−i−1vi−2

−2
w4

√
u−w2

√
v−w2

(c1 +a1)
m

∑
i=2

(
(m− i)cm

i−1 +(i−1)cm
j

)
um−i−1vi−2

−2
m−1

∑
i=1

((m− i+1)dm
i−1+

i
b

dm
i )u

m−ivi−1

−2
w2

√
u−w2

√
v−w2

(c1 +a1)
m−1

∑
i=1

(
(m− i+1)dm

i−1 + idm
i

)
um−ivi−1.

(3.17)

Again the expression of f2m−3 depends on elliptic integrals and logarithmic functions and they

force that (m− i)cm
i−1 +

i−1
b

cm
j = 0 for i = 2,3, ..,m, and (m− i+ 1)dm

i−1 +
i
b

dm
j = 0 for for i =

1,2,3, ..,m−1, because a+ c �= 0. Since (m− i)cm
i−1+

i−1
b

cm
j = 0 and we are in Case 2, we obtain

4
b2 (1−b)2i(i−1)am

i = 0.

If some of the am
i is zero then all the am

i ’s are zero, because am
j = (−1) jb j

(
m
j

)
am

0 . But this is a

contradiction because then f2m = 0. Therefore b = 1, and consequently from (3.15) all the cm
i ’s are

zero. Hence f2m−2 = ∑m−1
j=0 dm−1

j

(
X2 +Z2

)m−i
(Y 2+Z2)i. And as in the Case 1 with b= 1 we obtain

f = f2m = am
0 (X

2 −Y 2)m. This complete the proof of the proposition.

Proposition 3.3. Assume c2
1 +a2

1 �= 0. Let g = g(X ,Y,Z) = 0 be an irreducible invariant algebraic
surface of system (2.2) of degree n. Then b = 1 and the algebraic invariant surfaces are g(X ,Y ) =

X +Y with cofactor k = Z+1−a and g(X ,Y ) = X −Y with cofactor k =−Z+1−a

Proof. If g is invariant by τ , then its cofactor is also invariant by τ and thus k = r1Z + s1. On the
other hand, if g is not invariant by τ then by Proposition 3.1 we can assume that f = g · τg is a
Darboux polynomial invariant by τ with degree 2n and cofactor k = 2r1Z+2s1.

In short we can write f (X ,Y,Z) a Darboux polynomial of system (2.2) invariant by τ with degree
n1 and cofactor k = r2Z+ s2 where n1 = n, r2 = r1,s2 = s1 if f = g (in the case in which g is itself),



or n1 = 2n, r2 = 2r1, s2 = 2s1 if f �= g (which corresponds to the case in which g is not invariant by
τ).

Assume r2 > 0, the case r2 negative can be proved in the same way interchanging X +Y by
X −Y . Note that if f is an algebraic invariant surface of degree n1 with cofactor k = r2Z+ s2 then f
can be written as f =∑n1

i=1 fi, where fi are homogeneous polynomials of degree i and fn1 satisfies

Y Z
∂ fn1

∂X
+XZ

∂ fn1

∂y
−XY

∂ fn1

∂ z
= fn1 r2Z.

The solutions of this linear partial differential equations are of the form

(Y +X)±r2G(X2 +Z2,Y 2 +Z2),

where G is an arbitrary C1 function. Since fn1 must be a homogeneous polynomial of degree n1 it
follows that r2 must be a non-negative integer and G must be a homogeneous polynomial in the
variables X2 +Z2 and Y 2 +Z2. Since r2 > 0 we can write

fn1 = (X +Y )r2
m

∑
i=0

am
i (X

2 +Z2)m−i(Y 2 +Z2)i,

where n1 = 2m+ r2, or equivalently, r2 = n1 − 2m. (Note that if r2 < 0 then we would have fn1 =

(X −Y)r2 ∑m
i=0 am

i (X
2 +Z2)m−i(Y 2 +Z2)i,).

Then, from (3.1) we get the following partial differential equations

L[ fn1 ] = (n1 −2m)Z fn1 L[ fi] = Da1,b,c1,s1 [ fi+1]+ (n1 −2m)Z fi, (3.18)

for i = n1 −1, . . . ,1 and

Da1,b1,c1,s1 [ f1]+ (n−2m)Z f0 = 0.

Introducing fn1 in the second equation of (3.18) with i = n1 −1 and writing X2 = X2+Z2−Z2,
Y 2 =Y 2+Z2−Z2 and Y =X+Y −X or doing i= j−1 if necessary, we get the following differential
equation

L[ fn1−1] = (n−2m)Z fn1−1 −2XY (X +Y)n1−2m
m

∑
i=1

(
(m− i+1)am

i−1+
iam

i

b

)(
X2 +Z2)m−i

(Y 2 +Z2)i−1

+[(a1 −1+2a1m)(n−2m)+ s1](X +Y )n1−2m
m

∑
i=0

am
i

(
X2 +Z2)m−i

(Y 2 +Z2)i

−2(a1 + c1)Z
2(X +Y)n1−2m

m

∑
i=1

((m− i+1)ai−1+ iam
i )
(
X2 +Z2)m−i

(Y 2 +Z2)i−1

+

(
1− 1

b

)
(n−2m)X(X +Y )n1−2m−1

m

∑
i=0

am
i

(
X2 +Z2)m−i

(Y 2 +Z2)i.



Passing to the variables u,v,w from the above equation we obtain

√
u−w2

√
v−w2

d f n1−1

dw
=−(n1 −2m)w f n1−1

−2
√

u−w2
√

v−w2(
√

u−w2 +
√

v−w2)n1−2m
m

∑
i=1

(
(m− i+1)am

i−1 +
iam

i

b

)
um−ivi−1

+[(a1 −1+2a1m)(n1 −2m)+ s2](
√

u−w2 +
√

v−w2)n1−2m
m

∑
i=0

am
i um−ivi

−2(a1 + c1)w
2(
√

u−w2 +
√

v−w2)n1−2m
m

∑
i=1

((m− i+1)ai−1+ iam
i )um−ivi−1

+

(
1− 1

b

)
(n1 −2m)

√
u−w2(

√
u−w2+

√
v−w2)n1−2m−1

m

∑
i=0

am
i um−ivi.

This is a linear ordinary differential equation in fn1−1, its corresponding homogeneous differential
equation is

√
u−w2

√
v−w2

d f n1−1

dw
=−(n1 −2m)w f n1−1,

Its general solution is

f n1−1 = En1−1(u,v)
(√

u−w2 +
√

v−w2
)n1−2m

,

where En1−1 is any C1 function in the variables u and v. Hence, the general solution of the non–
homogeneous linear differential equation for fn1−1 is

f n1−1 = En1−1(u,v)
(√

u−w2 +
√

v−w2
)n1−2m

+
(√

u−w2 +
√

v−w2
)n1−2m

(
−2

m

∑
i=1

(
(m− i+1)am

i−1 +
iam

i

b

)
um−ivi−1

∫
dw

+[(a1 −1+2a1m)(n1 −2m)+ s2]
m

∑
i=0

am
i um−ivi

∫
1√

u−w2
√

v−w2
dw

−2(a1 + c1)
m

∑
i=1

(
(m− i+1)am

i−1+ iam
i

)
um−ivi−1

∫
w2

√
u−w2

√
v−w2

dw

+

(
1− 1

b

)
(n1 −2m)

m

∑
i=0

am
i um−ivi

∫
(
√

u−w2 +
√

v−w2)−1
√

v−w2
dw

)
.

Solving this integral, proceeding as above taking into account that r2 > 0 we must have

[(a1 −1+2a1m)(n1 −2m)+ s1]a
m
i = 0,

(a1 + c1)((m− i+1)ai−1 + iam
i ) = 0,(

1− 1
b

)
(n1 −2m)am

i = 0.

Since n1 > 2m, it follows from the last identity above that either b = 1 or am
i = 0, for i = 1,2, . . . ,m.

But if am
i = 0 then f2m+r2 is zero (a contraction), so b = 1. Moreover, (a1 −1+2a1m)(n1 −2m)+

s2 = 0 and either a1 + c1 = 0 or ai−1(m− i+1)+ iam
i = 0.



Assuming b = 1 we have

f2m+r2−1 = (X +Y )n1−2m
m

∑
i=1

bm
i (X

2 +Z2)m−i(Y 2 +Z2)i−1Z,

where bm
i = 2((m− i+1)am

i−1 + iam
i ).

We consider two cases.
Case 1: a1 +c1 �= 0. It follows from the explanation above that (m− i+1)ai−1 + iam

i = 0. Then,

f2m+r2−1 = 0 and, by recurrence, am
i = (−1)m

(
m
i

)
am

0 which yields f2m+r2 = am
0 (X+Y )n1−2m(X2−

Y 2)m. Substituting the expression of f2m+r2−1 into (3.18) we get

√
u−w2

√
v−w2

d f 2m+r2−2

dw
= (n1 −2m)w f 2m+r2−2.

Solving it, and taking into account that f2m+r2−2 is a homogeneous polynomial of degree 2m+

r2 −2 we get f2m+r2−2 = fn1−2 = (X +Y )n1−2m ∑m−1
i=0 bm

i (X
2 +Z2)m−i(Y 2 +Z2)i−1. Substituting the

expression of f2m+r2−2 into (3.18) and solving for f2m+r2−3 we get that f2m+r2−3 = 0 and f2m+r2−2 =

bm
0 (X +Y )n1−2m(X2 −Y 2)m−1 for some constant bm

0 . Proceeding inductively we conclude that f =
(X +Y )n1−2mP(X 2 −Y 2), being P a polynomial in the variables X2 −Y 2. If f = g, that is, g is
irreducible, then n1 = n = 1, m = 0 and g = X +Y , which is not possible because in this case g is
invariant by τ . Else, f = g ·τg with g being irreducible. So n2 = 2n = 2, m = 0, f = (X +Y )2 which
yields g = X +Y . The cofactor is 1−a+Z.

Case 2: a1 + c1 = 0. In this case if ai−1(m− i+ 1)+ iam
i = 0 then proceeding as in Case 1 we

conclude that the irreducible polynomial is g = X +Y with cofactor 1−a+Z. If ai−1(m− i+1)+
iam

i �= 0 then substituting the expression of f2m+r2−1 into (3.18) we get

√
u−w2

√
v−w2

d f 2m+r2−2

dw
= (n1 −2m)w f 2m+r2−2

−2
√

u−w2
√

v−w2(
√

u−w2 +
√

v−w2)r
m

∑
i=2

((m− i+1)bm
i−1+(i−1)bm

i )u
m−ivi−1w

− c1(
√

u−w2 +
√

v−w2)n1−2m
m

∑
i=1

bm
i um−ivi.

Solving this linear equation, using that f2m+r2−2 is a homogeneous polynomial in the variables X ,Y
and Z we must have c1 = 0. But then a1 = 0 in contradiction with the fact that a2

1+c2
1 �= 0. Hence, this

case is not possible and the proposition is proved for r2 > 0. Note that if r2 < 0 proceeding as above
and repeating the same arguments we conclude that g = X −Y and the cofactor is k = 1− a− Z.
This concludes the proof of the proposition.

Proof of Theorems 1.1 and 1.2. Theorem 1.1 can be verified by simple computation, and Theorem
1.2 follows from Proposition 3.2 going back through the change of variables given in (2.1).

Proof of Theorems 1.3 and 1.4. Theorems 1.3 and 1.4 follow directly from Propositions 3.1, 3.2
and 3.3 going back through the change of variables given in (2.1).

4. Proof of Theorems 1.5

We separate the proof of Theorem 1.5 into a lemma and two propositions.



Lemma 4.1. If a+ c �= 0 or b �= 1 then system (1.1) has no Darboux first integrals.

Proof. In view of Theorems 1.2, 1.3 and 1.4 system (1.1) has no Darboux polynomials. Then in
view of Proposition 2.1 if it has an exponential factor F then it must be of the form F = exp( f )
with f ∈ C[x,y,z] \C. Finally, from Theorem 2.2 we conclude that if G is a Darboux first integral
then it must be of the form G = Fμ1

1 · · ·Fμq
q with Fi = exp(hi), hi ∈C[x,y,z] and ∑q

i=1 μi�i = 0. Take
g = ∑q

i=1 hi and consider G = exp(g). Then g ∈ C[x,y,z] \C and G is an exponential factor with
cofactor L = ∑q

i=1 μi�i = 0. So, g satisfies, after simplifying by G,

(yz−ax+ y)
∂g
∂x

+(bxz+ x−ay)
∂g
∂y

+(−bxy+ cz)
∂g
∂ z

=
q

∑
i=1

μi�i = 0.

In particular g must be a polynomial first integral. However, in view of Theorems 1.2, 1.3 and 1.4,
system (1.1) with either b �= 1 or a2 + c2 �= 0 has no polynomial first integrals. This completes the
proof.

Guided by section 2 instead of working with system (1.1) we will work with system (2.2) and
all the results that we will obtain for system (2.2) follow clearly for system (1.1).

Proposition 4.1. If b = 1, system (2.2) has a Darboux first integral if and only if a = 0. In this case
the first integral is H = x2 − y2.

Proof. Let F = exp(h/g) be an exponential factor of system (1.1) with b= 1. In view of Proposition
2.1, F can be of the form F = exp(h/( fn1

1 f n2
2 )) with h∈C[x,y,z] and n1,n2 ∈N, f1 = x+y, f2 = x−y

with and (h, f1) = 1 (coprime) if n1 > 0 and (h, f2) = 1 (coprime) if n2 > 0.
Case 1: n1 = n2 = 0. In this case F = exp(h) and h satisfies

(−ax+ y+ yz)
∂h
∂x

+(x−ay+ xz)
∂h
∂y

+(cz− xy)
∂h
∂ z

= k0 + k1x+ k2y+ k3z, (4.1)

with ki ∈ C. Evaluating the above equation on x = y = z = 0 we obtain that k0 = 0. Now we write
h = ∑n

i=0 hi where each hi is a homogeneous polynomial in its variables. Without loss of generality
we can assume that hn �= 0 and n ≥ 1. If n ≤ 2, i.e., h has degree less than or equal to two, there is a
solution if and only if a = 0 and in this case h = α(x2 − y2) with α ∈ C and k0 = k1 = k2 = k3 = 0.
So, n ≥ 3.

We use the notation in the proof of Proposition 3.2 (since b = 1, X = x,Y = y and Z = z, a1 = a
and c1 = c). The terms of degree n+1 satisty L[hn] = 0 and so n = 2m and

hn =
m

∑
i=0

am
i (x

2 + z2)m−i(y2 + z2)i.

Computing the terms of degree n in (4.1), we get (see (2.6))

L[h2m−1] = Da,1,c,0[h2m].

Proceeding as in Proposition 3.2 we get that either am
i = 0, for i = 0,1, . . . ,m or a = 0. In the

first case h2m = 0 which is not possible. So a = 0, c �= −a (otherwise c = 0 which is a case not
considered here) and hn = am

0 (x
2 −y2)m, am

0 ∈C. Moreover hn−1 = h2m−1 = 0 because hn−1 must be



a homogeneous polynomial of degree n−1. Note that the terms of degree 2m− i for i= 2, . . . ,2m−1
satisfy

L[h2m−i] = D0,1,c,0[h2m−i+1], i = 1, . . . ,2m−1,

and

0 = L[h0] = D0,1,c,0[h1] = (k1x+ k2y+ k3z). (4.2)

Computing the term of degree n− 1 that is, solving L[h2m−2] = D0,1,c,0[h2m−1] we get h2m−1 = 0
and h2m−2 = am−1

0 (x2 − y2)m−1. Proceeding inductively, we get h2k+1 = 0 for k = 0,1, . . . ,m− 1
and h2k = a2k

0 (x2 − y2)k for k = 1, . . . ,m. So, from (4.2) we get 0 = k1x+ k2y+ k3z, i.e., k1 = k2 =

k3 = 0 and so ki = 0, for i = 0,1,2,3. This implies that there are no exponential factors of the form
F = exp(h) for a �= 0 and for a = 0 the unique exponential factors of the form F = exp(h) satisfy
h = h(x2 − y2) being h a polynomial of degree n and ki = 0, for i = 0,1,2,3.
Case 2: n1 > n2 or n2 > n1. In this case h is coprime with f1 = x+ y (when n1 ≥ 0) and with
f2 = x− y (when n2 ≥ 0) and satisfies

(−ax+ y+ yz)
∂h
∂x

+(x−ay+ xz)
∂h
∂y

+(cz− xy)
∂h
∂ z

− (n1(1−a+ z)+n2(−1−a− z))h = k f n1
1 f n2

2 ,

(4.3)

where k = k0 + k1x+ k2y+ k3z with ki ∈ C. We consider the case n1 > n2 (i.e, n1 ≥ 1). The case
n1 < n2 can be done in a similar manner and so we do not do it here. Assume that h = c ∈ C. Then
from equation (4.3) we have

−c(n1(1−a+ z)+n2(−1−a− z)) = k(x+ y)n1(x− y)n2

Since n1 ≥ 1 and the left-hand side of the above equation is not divisible by x+ y we get a contra-
diction. So, h is not constant.

Now we introduce the new variables (X̂ ,Ŷ ,z) where X̂ = f1 = x+y and Ŷ = f2 = x−y. In these
new variables we set h(x,y,z) = g(X̂ ,Ŷ ,z) and so g ∈C[X̂ ,Ŷ ,z]. From (4.3) we obtain that g satisfies

(1−a+ z)X̂
∂g

∂ X̂
+(−1−a− z)Ŷ

∂g

∂Ŷ
+
(

cz− X̂2 − Ŷ 2

4

)∂g
∂ z

− (n1(1−a+ z)+n2(−1−a− z))g = kX̂n1Ŷ n2 .

(4.4)

We assume n1 < n2, the case n1 > n2 is done in a similar way. In this case, if we denote by ḡ the
restriction of g to X̂ = 0, i.e. ḡ = ḡ(y,z) = g(−y,y,z), and we restrict (4.4) to X̂ = 0 (i.e., x = −y)
we get that ḡ is a Darboux polynomial of system

ẏ =−y(1+a+ z), ż = cz+ y2 (4.5)

with cofactor n1(1−a+ z)+n2(−1−a− z), so it satisfies

−y(1+a+ z)
∂ ḡ
∂y

+(cz+ y2)
∂ ḡ
∂ z

= (n1(1−a+ z)+n2(−1−a− z))ḡ. (4.6)

We consider two cases.



Case 2.1: c = 0. In this case solving (4.6) we get

ḡ = K0(y
2 + z(2+2a+ z))y−n1+n2+2an1/

√
y2+(1+a+z)2(

y2 +(1+a+ z)2

+ |1+a+ z|
√

y2 +(1+a+ z)2
)2an1/

√
y2+(1+a+z)2

.

Since n1 �= 0 and ḡ must be a polynomial we get ḡ = 0, in contradiction with the fact that g is not
divisible by X̂ . So, there are no exponential factors of this form in this case.
Case 2.2: c �= 0. We consider two different subcases.
Subcase 2.2.1: ḡ is not divisible by y. Setting y = 0 and denoting g̃ = g̃(z) = ḡ(0,z) we get that g̃ �= 0
and satisfies

cz
dg̃
dz

= (n1(1−a+ z)+n2(−1−a− z))g̃.

Solving it we obtain

g̃ = c0e(n1−n2)z/cz((a−1)n1+(1+a)n2)/c, c0 ∈ .

Since n1 > n2 and g̃ is a polynomial we must have c0 = 0 and so g̃ = 0, which is not possible.
Subcase 2.2.2: ḡ is divisible by y. We write ḡ = yjḡ1 where j ≥ 1 and ḡ1 �= 0. Moreover, it follows
from (4.6) that ḡ1 satisfies

−y(1+a+ z)
∂ ḡ1

∂y
+(cz+ y2)

∂ ḡ1

∂ z
= (n1(1−a+ z)+ (n2 − j)(−1−a− z))ḡ1.

Setting y = 0 and denoting g̃1 = g̃1(z) = ḡ1(0,z) we get that g̃1 �= 0 and satisfies

cz
dg̃1

dz
= (n1(1−a+ z)+ (n2 − j)(−1−a− z))g̃1.

Solving it we get

g̃1 = c1e(n1−n2+ j)z/cz((a−1)n1+(1+a)(n2− j))/c, c0 ∈ .

Since n1 > n2 and g̃1 is a polynomial we must have c1 = 0 and so g̃1 = 0, which is not possible.
This means that ḡ = 0 in contradiction with the fact that g is not divisible byX̂ . Hence, there are

no exponential factors of this form in this case.
Case 3: n1 = n2 ≥ 1. Working in a similar way to the proof of Case 1 in Proposition 4.1 we get
that the unique possibility is a = 0 and that h = h(x2 − y2) with ki = 0, for i = 0,1,2,3. So, in
this case there are exponential factors only when a = 0 and the exponential factors are of the form
F = exp(h/(x2 − y2)n1) with h = h(x2 − y2) and ki = 0, for i = 0,1,2,3.

If a �= 0, since there are no exponential factors for system (2.2) when b = 1 and a �= 0, by
Theorem 2.2 we conclude that if G is a Darboux first integral then it must be of the form G= fμ1

1 f μ2
2

with μ1,μ2 ∈ C being the cofactor K = (1− a+ z)μ1 − (1+ a+ z)μ2. Since the cofactor must be
zero and a �= 0 we must have μ1 = μ2 = 0 but then G is constant, which is not possible. Hence, there
are no Darboux first integrals in this case.

If a = 0, since the unique exponential factors are of the form F = exp(h/(x2 − y2)n) with h =

h(x2 − y2) and the cofactor k = 0, in view of (1.3) we get that the unique Darboux first integrals
are Darboux functions of the polynomial first integral x2 − y2. This concludes the proof of the
proposition.



Proposition 4.2. If a+ c = 0 with a �= 0, system (2.2) has no Darboux first integrals.

Proof. Let F = exp(h/g) be an exponential factor of system (2.2) with a1 + c1 = 0 and a1 �= 0.
In view of Proposition 2.1, F can be of the form F = exp(h/ fn3

3 ) with h ∈ C[X ,Y,Z] and n3 ∈ N,
f3 = X2+Z2−b(Y 2+Z2) and (h, f3) = 1 (coprime) if n3 > 0. We will first compute the exponential
factors, showing that there are none.
Case 1: n3 = 0. In this case h satisfies

(−a1X +Y +YZ)
∂h
∂X

+(
1
b

X −a1Y +XZ)
∂h
∂Y

+(c1Z−XY)
∂h
∂Z

= k0 + k1X + k2Y + k3Z, (4.7)

with ki ∈ C. Evaluating the above equation on X =Y = Z = 0 we obtain that k0 = 0. Now we write
h = ∑n

i=0 hi where each hi is a homogeneous polynomial in its variables. Without loss of generality
we can assume that hn �= 0 and n ≥ 1. The terms of degree n+1 satisfy

[hn] = 0

Proceeding as in the proof of Proposition 3.2 we get that n = 2m and

hn =
m

∑
i=0

am
i (X

2 +Z2)m−i(Y 2 +Z2)i.

where am
i is a constant for i = 0,1, ...,m. Computing the terms of degree n we obtain

L[h2m−1] = Da1,b,−a1,0[h2m].

Proceeding as in the proof of Case 1 of Proposition 3.2 with s1 = 0 we conclude that h2m =

h2m−1 = 0 which is not possible. Hence there are no exponential factors of the form exp(h), with
h ∈ C[X ,Y,Z]\C.
Case 2: n3 ≥ 1. In this case h satisfies

(−a1X +Y +YZ
) ∂h

∂X
+
(1

b
X −a1Y +XZ

) ∂h
∂Y

+
(− c1Z−XY

) ∂h
∂Z

= 2n3a1h+
(
X2 +Z2 −b(Y 2 +Z2)

)n3(k0 + k1X + k2Y + k3Z),
(4.8)

with ki ∈ C. We claim that n ≥ 2n3 + 1. Otherwise, in what follows we can prove that ki = 0,
for i = 0,1,2,3. So h is a Darboux polynomial with cofactor −2an3 and hence from Theorem 1.2,
h= α(X2+Z2−b(Y 2+Z2))n3 =α f n3

3 with α an arbitrary constant. But this is not possible because
h and f3 are coprime.

We first prove the claim. If n− 2n3 − 1 < −2, from (4.8) and taking in account the degree of
equation (4.8), it is easy to see that k0 = k1 = k2 = k3 = 0, which is not possible.

If n− 2n3 − 1 = −2 then proceeding as before we get that k1 = k2 = k3 = 0 and L[hn] = k0 f n3
3

(see (2.3)). Applying the method of characteristic curves to this equation, we obtain that

hn = h̃n(u,v,w) = k0

n3

∑
i=0

(
n3

i

)
bi(−1)iun3−ivi

∫
dw√

u−w2
√

v−w2
.

Since fn must be a homogeneous polynomial of degree n and using the expression of the integral,
given in (3.6), we conclude that k0 = 0 which it is not possible.



If n−2n3 −1 =−1, we get L[hn] = (k1X + k2Y + k3Z) f n3
3 or in other words

hn =
n3

∑
i=0

(
n3

b

)i

(−1)iun3−ivi
(

k1

∫
dw√

v−w2
+ k2

∫
dw√

u−w2
+ k3

∫
wdw√

u−w2
√

v−w2

)
+ f̂n(u,v).

(4.9)

Using (3.9) and that∫
dw√

v−w2
= arctan

( w√
v−w2

)
,

∫
dw√

u−w2
= arctan

( w√
u−w2

)
,

together with the fact that hn must be a homogeneous polynomial of degree n we conclude that k1 =
k2 = k3 = 0 and n = 2m. So hn = h2m = ∑m

i=0 am
i

(
X2 +Z2

)m−i
(Y 2 +Z2)i, with am

i ∈ C. Computing
the terms of degree n = 2m in (4.8), we must solve

L[hn−1] = Da1,b,−a1,0[hn]+ k0 f n3
3 +2n3a1hn.

Using hn, f3, the changes in (2.4) and (2.5) and proceeding as in the proof of Proposition 3.2 we get

dh̃n−1

dw
= 2a1

n3 −m√
u−w2

√
v−w2

m

∑
i=0

am
i um−ivi,

+2w
m

∑
i=1

(am
i−1(n− i+1)+

iam
i

b
)um−ivi

+
k0√

u−w2
√

v−w2

n3

∑
i=0

(
n3

i

)
bi(−1)iun3−ivi.

(4.10)

Note that now n = n3. So using the integrating formula (3.6) together with the fact that hn−1 is a
homogeneous polynomial of degree n− 1 we get k0 = 0. So, ki = 0, for i = 0,1,2,3 which is not
possible. This proves the claim.

We thus have n = 2n3 +1+ζ for some ζ ∈ N∪{0}. Then from (4.8) we obtain

L[hn−i] = Da1,−a1,0[hn−i+1], i = 1, ...,ζ ,
L[hn−ζ−1] = Da1,−a1,0[hn−ζ ]+ (k1x+ k2y+ k3z) f n3

3 ,

L[hn−ζ−2] = Da1,−a1,0[hn−ζ−1]+ k0 f n3
3 ,

L[hn−ζ− j] = Da1,−a1,0[hn−ζ− j+1], j = 1, ...,n−ζ −1,

(4.11)

where hi = 0 for i < 0 or i > 2n3 +1+ζ . Since the operators Da1,−a1,0 and L are linear we separate
hi in the following way hi = hi,0 +hi,1 where

L[hi,0] = Da1,−a1,0[hi−1,0], i = 0,1, ...,2n3 +ζ +2, (4.12)

L[hn−i,1] = 0 i = 1, ...,ζ , (4.13)

L[hn−ζ−1,1] = (k1x+ k2y+ k3z) f n3
3 , (4.14)

L[hn−ζ−2,1] = Da1,−a1,0[hn−ζ−1,1]+ k0 f n3
3 +2a1n3hn−ζ−2,1, (4.15)



L[hn−ζ− j,1] = Da1,−a1,0[hn−ζ− j+1,1], j = 1, ...,n−ζ −1.

Moreover, we require that in the process to solve hi,l for i = 0, ...,n and l = 0,1 the polynomials
hi,1 do not contain integrating constants.

From (4.12) working as in Proposition 3.2 we obtain that h0 =∑n
i=0 hi,0 is a Darboux polynomial

of system (2.2) with cofactor −2a1n3. So, by Theorem 1.2 we must have h0 = α(X2 +Z2 −b(Y 2 +

Z2)n3 with α ∈ C.
Under the assumptions on hi,1 we obtain that equation (4.13) have the unique solutions hn−i,1 = 0

for i = 1, ...,ζ . From equation (4.14) we get

hn−ζ−1(x,y,z) =
n3

∑
i=1

(
n3

i

)
bi(−1)iuivn3−i

(
k1

∫
dw√

v−w2
+ k2

∫
dw√

u−w2

+ k3

∫
wdw√

u−w2
√

v−w2

)
+ ĥn−ζ−1(u,v),

which is equation (4.9). Hence, k1 = k2 = k3 = 0 and hn−ζ−1 = 0. Moreover, equation (4.15) yields

dh̃n−ζ−2

dw
=

k0√
u−w2

√
v−w2

n3

∑
i=0

(−1)ibiun3−ivi.

From (3.6) and using that hn−ζ−2 is a homogeneous polynomial we must have k0 = 0. Then ki = 0
for i = 0,1,2,3, which is not possible. This shows that there are no exponential factors for system
(2.2) and so, there are no exponential factors for system (1.1) in this case.

Since there are no exponential factors for system (2.2) when a+ c = 0 with a,c �= 0, by Theo-
rem 2.2 we conclude that if G is a Darboux first integral then it must be of the form G = fμ3

3 with
μ3 ∈ C being the cofactor k = −2aμ3. Since a �= 0 and the cofactor must be zero we must have
μ3 = 0 but then G is constant, which is not possible. Hence, there are no Darboux first integrals in
this case. This concludes the proof of the proposition.

Proof of Theorems 1.5. Theorem 1.5 follows directly from Theorem 1.1 and Lemma 4.1 and
Propositions 4.1 and 4.2.
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