ON THE FULL PERIODICITY KERNEL FOR σ MAPS

J. Llibre, J. Paraños and J. A. Rodriguez

A connected finite regular graph (or just a graph for short) is a pair consisting of a connected Hausdorff space G and a finite subspace V (points of V are called vertices) such that the following conditions hold:

- (1) $G \setminus V$ is the disjoint union of a finite number of open subsets e_1, \ldots, e_k called edges. Each e_i is homeomorphic to an open interval of the real line.
- (2) The boundary, $cl(e_i) \setminus e_i$, of the edge e_i consists of two distinct vertices, and the pair $(cl(e_i), e_i)$ is homeomorphic to the pair ([0, 1], (0, 1)).

A vertex v which belongs to the boundary of at least three different edges is called a $branching\ point$ of G.

A G map f is a continuous self-map of G having all branching points of G as fixed points.

A point x of G will be called *periodic* with respect to f of *period* n if n is the smallest positive integer such that $f^n(x) = x$. The set $\{x, f(x), \ldots, f^{n-1}(x)\}$ is called the *periodic orbit* of x. We denote by Per(f) the set of periods of all periodic points of f, and by N the set of positive integers.

A G map f has full periodicity if $Per(f) = \mathbb{N}$. The set $K \subseteq \mathbb{N}$ is a full periodicity kernel of G if it satisfies the following two conditions:

- (1) If f is a G map and $K \subseteq Per(f)$, then Per(f) = N.
- (2) If $S \subseteq \mathbb{N}$ is a set such that for every G map f, $S \subseteq \text{Per}(f)$ implies $\text{Per}(f) = \mathbb{N}$, then $K \subseteq S$.

Notice that for a given G if there is a full periodicity kernel, then it is unique.

The full periodicity kernel has been computed for the closed interval, the circle and the Y, more precesily:

- (I) Let I be the closed interval [0,1]. Then the set $\{3\}$ is the full periodicity kernel of I (see [10] and [8]).
- (S) Let S^1 be the circle. Then the set $\{1,2,3\}$ is the full periodicity kernel of S^1 (see [4] and [7]).
- (Y) Set $Y = \{z \in \mathbb{C} : z^3 \in [0,1]\}$. The set $\{2,3,4,5,7\}$ is the full periodicity kernel of Y (see [9] and [1]).

In this paper we characterize the full periodicity kernel of σ , where σ is the topological space formed by the points (x,y) of \mathbb{R}^2 such that either $x^2+y^2=1$, or $0\leq x\leq 2$ and y=1. Then our main result is the following.