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Let H,, be the space of planar homogeneous polynomial vector fields of degree
m endowed with the coefficient topology. We characterize the set Q,, of the vector
fields of H,, that are structurally stable with respect to perturbations in H,, and we
determine the exact number of the topological equivalence classes in Q,,. The study
of structurally stable homogeneous polynomial vector fields is very useful for under-
standing some interesting features of inhomogeneous vector fields. Thus, by using
this characterization we can do first an extension of the Hartman-Grobman
Theorem which allows us to study the critical points of planar analytical vector
fields whose k-jets are zero for all kK <m under generic assumptions and second the
study of the flows of the planar polynomial vector fields in a neighborhood of the
infinity also under generic assumptions.  © 1996 Academic Press, Inc.

1. INTRODUCTION AND MAIN RESULTS

We denote by H,, the set of planar homogeneous polynomial vector
fields of degree mi; this is, Xe H,, if

X=(P, Q): R* > R?,

* Partially supported by a DGICYT Grant PB90-0695.
 Partially supported by the University of Oviedo Project DF-92/35.

490
0022-0396/96 $18.00

Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



PLANAR HOMOGENEOUS POLYNOMIAL VECTOR FIELDS 491

where P and Q are homogeneous polynomial in the variables x and y of
degree m. The system of differential equations associated to X is:

dx
dy
E_Q(x’ y)

As far as we know the study of homogeneous polynomial vector fields
started in 1960 with a paper of Markus [ M], where he classified the
quadratic homogeneous polynomial vector fields X such that P and Q have
no common factor.

Later in 1968 Argemi [A] completed the classification of Markus.
Moreover, he furnished the classification of the cubic vector fields that have
no common factor. At the same time, he obtained upper and lower bounds
for the number of phase portraits of the planar homogeneous polynomial
vector fields of degree m which have no common factor.

Subsequent results, relative to an algebraic classification of H,, can be
found in the paper of Date [ D] in 1979. There, the author also gives the
classification of quadratic vector fields with common factors. This algebraic
classification has also been made in a different way by Sibirsky [ Si] using
algebraic invariants.

In 1990 Cima and Llibre [ CL] obtained a topological classification of
the cubic homogeneous polynomial vector fields with or without common
factors and they present an algorithm for studying the phase portraits of
homogeneous polynomial vector fields of degree m > 3. In that paper, one
can also find an algebraic classification of H; which was extended recently
by Collins [Co] to H,, for all m>1.

One of the aims of this paper is the study of the structurally stable vector
fields X e H,, with respect to perturbations in the space H,,, and to apply
it to the study the local phase portrait of the degenerate critical points of
planar analytic vector fields, and to study the infinity of the planar polyno-
mial vector fields. Many authors have studied the structural stability for
different classes of vector fields on 2-dimensional manifolds.

The first definition of stuctural stability for planar vector fields goes back
to Andronov and Pontrjagin [ AP], who in 1937 studied the structural
stability for analytic vector fields on the closed 2-dimensional disc. Roughly
speaking, we say that a vector field X is structurally stable if its phase por-
trait is topologically equivalent (via a homeomorphism near the identity
map called the equivalence homeomorphism) to the phase portrait of all of
its neighbors in a suitable topology.

In 1962 Peixoto [P] extended these results by characterizing the
C'-vector fields defined on a compact differentiable 2-manifold without a
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boundary. Also he showed under his assumptions that the requeriment for
the equivalence homeomorphism to lie in a pre-assigned neighborhood of
identity is redundant.

In 1982 Kotus et al. [KKN] gave sufficient conditions for a C'-vector
field in an open differentiable 2-manifold, N?, to be structurally stable.
Furthermore, they proved that these conditions are necessary if N>=R>,
They provided an example which shows that when the 2-manifold is open
the requirement for the equivalence homeomorphism to lie near the iden-
tity is not redundant.

In 1987 Shafer [S1] considered the set of polynomial vector fields of
degree <n on R? and gave sufficient conditions for structural stability
when only polynomial perturbations are allowed. He proved that these
conditions are necessary with one exception related with the hiperbolicity
of limit cycles.

Also Shafer in 1990 [S2] characterized the planar gradient polynomial
vector fields which are structurally stable with respect to perturbations in
the set of all C” planar vector fields and in the set of all planar polynomial
vector fields. Also, he presented sufficient conditions for structural stability
in the set of all planar gradient polynomial vector fields.

In 1993, Jarque and Llibre [JL1] characterized the structurally stable
planar Hamiltonian polynomial vector fields with respect to perturbations,
first in the set of all C” planar vector fields, second in the set of all planar
polynomial vector fields, and third in the set of all planar Hamiltonian
polynomial vector fields. The same authors in [ JL2] studied the structural
stability of C” planar Hamiltonian polynomial vector fields in the set of all
C" planar vector fields extending these results to the integrable vector
fields.

Recently Artés et al. [ AKL] complete the classification of the struc-
turally stable planar quadratic polynomial vector fields without limit cycles
with respect to perturbations, first in the set of all C” planar vector fields,
second in the set of all planar quadratic vector fields, and third in the set
of all compactified planar quadratic vector fields.

We begin by changing system (1) to polar coordinates x =r cos 6,
y=rsin . So, the expression of system (1) goes over to

dr do

o m L am—1
=N, =" g(0),

where

f(0)=cos OP(cos 0, sin 0) + sin Q(cos 0, sin 0),

(2)
g(0)=cos 8Q(cos 6, sin ) — sin 6P(cos b, sin 6).
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If we introduce a new time s via ds/dt =r" ', then the above system
becomes

r'=rf(0),  0"=g(0),

where prime denotes derivative with respect to s.
Finally, the change of variable p=r/(1 +r) transforms (1) into the
topological equivalent system given by

p'=p(1—=p) f(0),  0"=g(0), (3)

when (p, 6) are taken in the open disc D= {(p, 6) : 0<p <1}. Notice that
system (3) is also defined for p> 1.

Since p' =0 when p =1, then the boundary of D, 0D ={(p, 0): p=1} is
an invariant circle under the flow of (3). This circle corresponds to the
infinity of system (1), and therefore the vector field E(X), associated to the
system (3) and defined in an open neighborhood U of D, is an analytical
extension of the vector field X to the infinity. As usual here D denotes the
closure of D in R Although we are only concerned with the phase por-
traits of E(X) on the closed disc D, it will be useful to consider E(X)
defined on the neighborhood U. In this way we will be able to apply the
standard results about critical points in order to study the local phase por-
traits of the critical points of E(X) on 0D.

We shall say that X, Ye H,, are topologically equivalent if there exists a
homeomorphism h: D — D such that orbits of the flow induced by E(X)
are carried onto orbits of the flow induced by E(Y), preserving sense but
not necessarily parametrization.

We note that every X e H,, is specified in some unique way by the 2m + 2
coefficients of P and Q, and hence it may be identified with a unique point
in R?"*2, Let us take in H,, the topology induced by the Euclidean norm
of R*"*2 Then we say that Xe H,, is structurally stable with respect to
perturbations in H,, if there exists a neighborhood U of X in H,, such that
for all Ye U we have that X and Y are topologically equivalent.

It is interesting to remark that in the above definition of structural
stability we do not say that the equivalence homeomorphism is near the
identity map on D, as is usual in the literature. In Section 3 we shall prove
that this condition is redundant in our context.

The following result characterizes the vector fields in H,, that are struc-
turally stable.

THEOREM A. The vector field X = (P, Q)€ H,, is structurally stable with
respect to perturbations in H,, if and only if it satisfies one of the following
conditions:
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(a) If E(X) has no critical points on 0D, then

_ (7 f)
IX_L ) 07O

where f and g are the functions defined in (2).

(b) If E(X) has critical points on 0D, then all these points are hyper-
bolic.

We shall prove Theorem A in Section 3.

Let Q,, be the set of vector fields X e H,, which are structurally stable
with respect to perturbations in H,, and let us denote by C,, the number
of topological equivalence classes in ,,. To compute the value of C,, it
will be necessary to introduce the numbers P,, and I,, defined, according
to the parity of m, in the following way. If m is odd, then

1
P2,=t<22’—z rP2r>a 12r:2’+l_2 L,.

r|t rl|t
r#£t r#£t

If m is even, then P,, and I,, are only defined when ¢ is odd by:

1
Pzr:t<212 ”Pzr>, sz:2(1+1)/272 L.

rlt r|t
r#t r#t

The following result determines exactly the value of C

m:*

THEOREM B. The value of C,, is given by

(m+1)/2
I+5 Y Y (Py+1y) if m is odd,
C = =1 a1l
" m/2 f .
—1 _{_% Z Z (P2r+12r) I m 1§ even.
1=0 t|27+1

We shall prove Theorem B in Section 4. See the growth of C,, with
respect to m in Table 1.

We say that two analytical vector fields X, Y are locally topologically
equivalent at the origin if there exist two neighborhoods U and V of the
origin and a homeomorphism h: U— V that carries orbits of the flow
induced by X onto orbits of the flow induced by Y, preserving sense but
not necessarily parametrization.
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TABLE 1

Some Values of C,, for m <100

m C, m C,,
1 5 2 5
3 14 4 13
5 34 6 31
7 85 8 71
9 221 10 203
11 635 12 583
13 1935 14 1807
15 6306 16 5919
17 21390 18 20229
19 74898 20 71193
29 48988442 30 47366899

39 3732086 E+10 40 3.639319 E+ 10
49  3.045374 E4+13 50 2984774 E+13
59 2592225 E+16 60 2549214 E+4 16
69 2271252 E+19 70 2238934 E+19
79 2032408 E+22 80  2.007093 E422
89 1.848100 E+25 90 1.827632 E+25
99 1701862 E+28 100  1.684894 E+ 28

Let X=3,.,, X; where each X, is an homogeneous polynomial vector
field of degree i and m > 1. The next theorem allows us to know the phase
portrait of the analytical vector field X in a neighborhood of the origin,
when X, is structurally stable with respect to perturbations in H,,.

THEOREM C. Let X=(X;~,, P;, Xi=.m Q;) be an analytical vector field
where P; and Q,; are homogeneous polynomials of degree i and let X,, =
(P,,, O,)- If X,, is structurally stable with respect to perturbations in H,,,

then the phase portraits of X and X,, are locally topologically equivalent at
the origin.

In fact from the proof of Theorem C in Section 5 it is easy to see that
Theorem C can be extended to C™*! vector fields in a neighborhood of the
origin. A different result but in the same direction of Theorem C was given
by Coleman [C].

In Section 5, we also prove that the converse of Theorem C is not true
for any m > 1. Consequently there is a number greater than C,, of topologi-
cal equivalence classes in H,, whose phase portraits remain locally
topologically equivalent at the origin by perturbations X=(3},.,, P,
> iom O:), where P; and Q; are homogeneous polynomial of degree i.

From Theorem C we also obtain that C,, is the exact number of the
topological equivalence classes in H,, whose phase portraits remain locally
topologically equivalent at the origin if we consider perturbations
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X=2i=mPis Xism Q;), where P; and Q; are homogeneous polynomials of
degree i and X,,=(P,,, Q,,) is sufficiently close to 0 in H,,,.

Let meN and let A4, be the set of all analytical vector fields
X=3%,-0X, such that their k-jets X, are zero for k <m. We endow 4,,
with the finest topology such that the inclusion i: H,,— A4,, is a continous
function. Then we say that Xe A4,, is locally structurally stable at the origin
if there exists a neighborhood W of X in A,, such that for each Ye W, X,

and Y are locally topologically equivalent at the origin.

COROLLARY D. The number of classes of local topological equivalence at
the origin in the set A,, that are locally structurally stable at the origin is C,,.

For m =1 we note that the local phase portraits of Corollary D are just
the phase portraits of Hartman—Grobman Theorem in the plane. In fact,
Theorem C and Corollary D extend the Hartman—-Grobman Theorem to
arbitrary m > 1.

Next we shall present a study of the flow near the infinity for the planar
polynomial vector fields of degree m, in a similar way as we studied the
flow near a critical point in Theorem C and Corollary D.

We say that two polynomial vector fields X and Y are locally topologi-
cally equivalent at infinity if there exist two neighborhoods U and V of the
infinity 0D and a homeomorphism /4: U — V' that carries orbits of the flow
induced by X onto orbits of the flow induced by Y, preserving sense but
not necessarily parametrization.

THEOREM E. Let X=(3}" ,P;, X7 ,Q;) a polynomial vector field
where P; and Q; are homogeneous polynomials of degree i and let X,, =
(P,,, Q,)- If X,, is structurally stable with respect to perturbations in H,

nos

then the phase portraits of X and X,, are locally topologically equivalent at
infinity.

The proof of Theorem E is in Section 6 and its converse is not true. A
result close to Theorem E was given by Cima and Llibre in [ CL].

Let B,, be the set of all polynomial vector fields X=X, + X, + --- + X,
such that their m-jet X, is not zero. We endow B,, with the coefficient
topology. Then, we say that X e B,, is locally structurally stable at infinity
if there exists a neighborhood W of X in B,, such that for each Ye W, X
and Y are locally topologically equivalent at infinity.

CoROLLARY F. The number of classes of local topological equivalence at
infinity in the set B,, that are locally structurally stable at infinity is C,,.

This work is organized as follows. In Section 2 we present the main
results of Argemi [A] (see also [CL]) about an alghoritm that allows to
determine the phase portraits of the vector fields in H,,. In Section 3 we
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prove Theorem A that characterizes the vector fields X € H,, that are struc-
turally stable with respect to perturbations in H,,. In Section 4 the largest
of this paper, we compute the number C,, of topological equivalence classes
of the structurally stable vector fields in H,, with respect to perturbations
in H,,. In Section 5 we study the phase portraits of analytical vector fields
in a neighborhood of the origin. Finally, in Section 6 we study the phase

portraits of polynomial vector fields in a neighborhood of the infinity.

2. PHASE-PORTRAITS

Let (x4, o) be a critical point of a vector field in the plane. We say that
(xg, Vo) 1s elemental if there exists at least one nonzero eigenvalue of its
linear part. The critical point (x,, y,) is called hyperbolic if the eigenvalues
of its linear part have nonzero real parts.

The phase portraits of the homogeneous polynomial vector fields had
been studied in [A] and [CL]. We present here their main results.

ProrosiTiON 1. Let Xe H,,. Assume that E(X) has no critical points in
0D and let I be defined as in Theorem A. Then the phase portrait of E(X)

in D is:

(a) a global center if and only if 1,=0.

(b) a global stable (respectively unstable) focus if and only if I -0 <0
(respectively 160" >0).

Proof. See Proposition 4.2 of [CL]. |

ProPOSITION 2. Let X € H,, and suppose that (0, 0) is an isolated critical
point of X. Assume that E(X) has critical points in 0D. Then the following
holds:

(a) If 0% is a zero of g(0) (where g is defined in (2)), then the straight
line of slope tan 0* which passes through the origin is invariant under the
flow induced by E(X).

(b) E(X) has no limit cycles in D.

(c) The critical points of E(X) on 0D are all elemental and they are
nodes, saddles, or saddle—nodes. A critical point (1, ) on 0D is a saddle-node
if and only if 0 is a zero of g(0) of even multiplicity. Furthermore, the
separatrix associated to eigenvalue 0 is contained in 0D (see Fig. 4.2 of [ CL]).

Proof. See Proposition 4.1 of [CL]. |J
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Let Xe H,, be a vector field under the assumptions of Proposition 2.
Then, the phase portrait of E(X) in D can be obtained through the union
of an even number ( <2m + 2) of elliptic, hyperbolic and parabolic sectors
(see Fig. 4.3 of [CL]). The boundaries of these sectors which are not con-
tained in 0D, correspond to straight lines of slope tan 6*, where 6* is a
zero of g(6).

We note that so far we have identified the origin of (1) with only one
point in D, as it is usual in polar coordinates. Nevertheless p =0 is an
invariant circle under the flow induced by (3), and the number of critical
points of E(X) on p=0 is also determined by the zeros of g(6).

The following proposition shows the similarity between the flow induced
by (3) in a neighborhood of p =0 (origin of (1)) and in a neighborhood
of p=1 (infinity of (1)).

PropoSITION 3. Let X e H,, and suppose that (0, 0) is an isolated critical
point of X.

(a) If E(X) has no critical points in p=1, then p=0 is an isolated
periodic orbit for the flow induced by (3) if and only if I,#0.

(b) If E(X) has critical points on p=1, then (1,0) is a hyperbolic
critical point if and only if the critical point (0, ) is also hyperbolic.

Proof. By the change of variable ¢ =1 — p, system (3) becomes
o'=—a(l—o) f(0), 0" =g(0), (4)

and p =0 goes over g =1.

If E(X) has no critical points in p =1, then system (4) has no critical
points in ¢ =1, since in both cases these critical points are determined by
the zeros of g(#) =0. Now if we apply the same arguments of Proposition 1
to system (4), then o =1 is a isolated periodic orbit if and only if

——db #0.
o g(0)

_ jzﬂ 110)
As J= —1I, statement (a) of the proposition follows.
In order to prove (b) we observe that the Jacobian matrix of E(X) in a
critical point (1, 6*) is

—1(6%) o>
< 0 g0m) )
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On the other hand, the critical point (0, 8*) of E(X) corresponds to the
critical point (1, 6*) of (4), whose Jacobian matrix is

0% 0
< 0 g'(e*)>' ©®)

From (5) and (6) we have that (1, *) is hyperbolic for (3) if and only if
it is hyperbolic for (4) and, therefore, the proposition follows. ||

We note that although the critical points (0, %) and (1, 6*) of E(X) are
simultaneously both hyperbolic and nonhyperbolic, these points are
topologically different. For instance, from (5) and (6) we obtain that if
(1, 8*) is a saddle, then (0, 6*) is a node.

3. STRUCTURAL STABILITY

In this section we characterize the vector fields X € H,, which are struc-
turally stable with respect to perturbations in H,,. First we consider the
sphere S obtained by the union of two copies of the disc D, when we iden-
tify the points of dD. Then we can define on S” an analytical extension of
XeH,,, and we denote the analytic vector field on S? by &(X). The flow
induced by &(X) has two copies of the flow induced by X, one on the
northern hemisphere and the other on the southern hemisphere of S% This
extension is in fact the Poincaré compactification of X (see [G] or [So]).

Through the study of the phase portraits of the vector fields in H,, (see
Section 2), we obtain that the extension &(X) in a neighborhood of the
equator S!=S? is topologically equivalent to the extension E(X) in a
neighborhood of dD. We note that, from Proposition 2, the local phase
portrait in a critical point of E(X') in 0D is the same as the local phase por-
trait in the corresponding critical point of ¢(X) in S'. Therefore the defini-
tion of structural stability of Section 1 is equivalent to the next definition.
Let XeH,. We say that X is structurally stable if there exists a
neighborhood V of X in H,, such that for all Ye V' we have that &(X) and
E(Y) are topologically equivalent; that is, there exists a homeomorphism of
S? having invariant the equator S! that carries orbits of the flow induced
by &(X) onto orbits of the flow induced by &(Y), preserving sense but not
necessarily parametrization.

Peixoto in [ P] showed that on an orientable differentiable compact con-
nected 2-manifold without boundary, if a C' vector field X is equivalent to
all vector fields in a neighborhood U of X in the C' topology, then the
equivalence homeomorphism between X and any vector field in U can be
chosen sufficiently close to the identity map.
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Since the coefficient topology in H,, is equivalent to the C' topology (for
more details, see [ DS]) and S? is a manifold under the assumptions of the
result of Peixoto, we have that the requirement that the equivalence
homeomorphism be near to the identity map is redundant in our second
definition of the structural stability. From the equivalence between the two
definitions, we deduce that the above condition is also redundant in the
first definition of structural stability.

Now, we prove the result that characterizes the vector fields which are
structurally stable with respect to perturbations in H,,.

Proof of Theorem A. First, we assume that X is structurally stable with
respect to perturbations in H,, and we prove that one of the statements (a)
or (b) holds.

From Proposition 1, if E(X) has no critical points in D, then the flow
induced by E(X) in D is determined by the sign of I,-0'. When I, =0, the
phase portrait of X in D is a global center and there exists a vector field
Y in any neighborhood of X in H,, such that the phase portrait of Y in D
is a global focus. Therefore X is not structurally stable with respect to per-
turbations in H,, and the statement (a) holds.

Now we suppose that E(X) has critical points in 0D. Since X is struc-
turally stable with respect to perturbations in H,,, it has no straight lines
of critical points and from (3) it follows that the origin is an isolated criti-
cal point of X. Then we can apply Proposition 2 and obtain that the phase
portrait of X is completely determined by the behavior of the flow induced
by X in a neighborhood of dD. Furthermore the critical points of E(X) in
0D are determined by the zeros of g(6).

If g(#) has multiple zeros, then we can choose in any neighborhood of
X in H,, a vector field Y such that E(Y) does not have the same number
of critical points in 0D than E(Y). So E(X) and E(Y) are not topologically
equivalent and X is not structurally stable with respect to perturbations in
H,,. Then, from the expression of Jacobian matrix of E(X) in a critical
point (p, 8)= (1, 6%) (see (5)), in order to prove statement (b) it is suf-
ficient to prove that f(6*)#0, for each zero 6* of g(6#). But if f(6*)=
g(0%) =0, then the straight line of slope tan * is formed by critical points
of X. Therefore X is not structurally stable with respect to perturbations in
H,, and (b) follows.

Next we prove that if E(X) satisfies (a) or (b) then X is structurally
stable with respect to perturbations in H,,. First we assume that E(X) has
no critical points in 0D (that is, g(6) has a constant sign) and that 7, #0.
Then there exists a neighborhood U of X in H,,, such that if Ye U we have
that E(Y) has no critical points in D and furthermore sign(/,) = sign(7)
and sign(g ) =sign(gy), where g, and g, are the functions defined in (2)
through the vector fields X and Y respectively. Since these signs determine
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the global phase portrait of E(X) and E(Y) (see Proposition 1), we con-
clude that these vector fields are topologically equivalent. Hence X is struc-
turally stable with respect to perturbations in H,,.

Now we assume that FE(X) has critical points on dD, (1,0,), for
i=1,..s, and all these points are hyperbolic. If we consider the Jacobian
matrix of E(X) in these points (see (5)), then we obtain that g'(0,) #0 and
f(8,)#0, for i =1, ..., s. Therefore the zeros of g are simple and there exists
a neighborhood U of X in H,, such that if Ye U we get that E(Y) has
exactly s critical points on oD, (1, 6,), for i=1, ..., s. Furthermore we can
choose the above neighborhood in such a way that sign(g’,(0;))=
sign(g’y(0;)) and sign( fy(0,)) = sign(fx(0,)), for each i=1, ..., s, where g,
and f (respectively, g, and f) are the functions defined in (2) by using
the components of X (respectively Y). Thus the local phase portraits of
E(X) and E(Y) at (1, 0,) and (1, 0,), respectively, are topologically equiv-
alent. From Proposition 2, the behavior of the critical points on 0D deter-
mines the global phase portrait of E(X) and E(Y) on D. Hence E(X) and
E(Y) are topologically equivalent, that is, X is structurally stable with
respect to perturbations in H,, and the proposition follows. ||

4. THE CALCULATION OF C

m

Let Q,, be the set of all structurally stable vector fields with respect to
perturbations in H,,. In this section we prove Theorem B which determines
the exact number of topological equivalence classes in Q,,.

From Theorem A, if X € Q,,, we know that the function g(6) has at most
a finite number of zeros in [ —x/2, 37/2) and that these zeros are simple.
Then, doing a suitable rotation if it is necessary, we can assume that
cos 0* #0 for each zero 6* of g(#). This assumption is equivalent to sup-
pose that the coefficient of the monomial y™ in the polynomial P(x, y) is
not zero. Under this assumption, the functions f and g of (2) can be
expressed by

f(0) = [P(l, /“L) + ;LQ(I, /l)] COS"H’] 02]{/1) cos” +1 0,

(7)
g(0)=[0(1, )= iP(1, )] cos™ ' O =g(.)cos” 10,
where 4 =tan 6.
The function g(4) is a polynomial of degree m + 1 and its zeros deter-
mine those of g(0). Each zero A* of g(1) defines an invariant straight line

through the origin of (3) with slope 4*, and two zeros 6* and 0* +n of
g(0) in (—mn/2, 37/2) such that tan 6* = A*,
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ProrosiTION 4. Let X= (P, Q)€ Q,, and assume that the coefficient of
the monomial y™ in the polynomial P(x, y) is not zero. Then there exists an
even number n=2k of zeros of g(0) in (—n/2,3n/2) with k<m+1 and
k=m+1 (mod 2).

Proof. From (7) and the above comment, it follows that if k is the
number of zeros of g(4) then 2k is the number of zeros of g(f) in
(—m/2,37/2). Because of XeQ,, these zeros are simple and since g is of
degree m + 1 the proposition follows. |

Henceforth, let

Q! ={XeQ,,: E(X) has n critical points in 6D}.

m=

COROLLARY 5. Let meN.

(a) If mis odd then Q,,=\);., Q. where

|
J,,,={k=2l: 0<1<m;}.

(b) If m is even then Q,,=J;,, Q.F, where

J,,,z{k=21+1 :o<1<’;’}.

Proof. 1t is an easy consequence of Proposition 4. |]

From the study of the phase portraits of the vector fields in H,, (see Sec-
tion 2), we know that two topologically equivalent vector fields X, YeQ,,
have the same number of critical points in 0D. Then if we denote by C*
the number of topological equivalence classes in 22, from Corollary 5 it
follows that C,, =3, ., C%. Therefore our next goal is to compute the
value of C* for every ke J,,.

If k=0 it is immediate from Proposition 1 and Theorem A that C% =2

(a global stable focus and a global unstable focus). So in the rest of this
section we shall discuss the case k # 0.

PROPOSITION 6. Let X=(P; Q)eQ* with meN and 0#kelJ,, Let

m

g(0) be the function associated to X in (2). Denote by 0,, i=1, ..., 2k, the
ordered counterclockwise zeros of g(0) in (—n/2, 3n/2). Then it follows that

(a) f(0,)#0 and g'(0,)#0, for i=1, ..., 2k.
(b) g'(0,)¢'(0,,,)<0, fori=1,..,2k—1.
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Proof. According to (3) the critical points of E(X) in dD are (1, 6,),
i=1, .., 2k. Now, since X is structurally stable with respect to perturba-
tions in H,,, it follows from Theorem A that these critical points are hyper-
bolic. Lastly from the expression of the Jacobian matrix of E(X) at the
critical point (1, 6;) given in (5) we get (a).

On the other hand, if < 6* are zeros of g(6) such that g'(9) g'(6*) >0
then there exists a zero of g(#) in (6, 6*). Hence, since 6, and 0, , ; are con-

secutive zeros of g(#), the statement (b) follows using (a). ||

Now let S be the set of all sequences (o, v)={(c;,v,)},;c, such that
o, v;e{—1,1} and 6,0,,,<0 for all ieZ. For each k€N, we denote

8% = {(0,v)€S:(0,,v) =(01 1 21 Vi o), for all i€ Zj.

A sequence (g, v) is periodic of period p (or p-periodic) if p is the smallest
natural number such that (o;,v;,)=(0,,,,v;,,) for all ieZ. So all the
sequences in S** are periodic and their period p is an even divisor of 2k.
Obviously each sequence (a,v)eS? is completely determined if the
elements (o;, v;) are given for i=1, .., p.

From Proposition 6 we can associate a sequence of S to each vector
field X e Q2% by taking

(0, v;) = (sign(g'(0,)), sign( f(0,))), i=1,.,2k, (8)

where 0,, for i=1, ..., 2k are the ordered counterclockwise zeros of g(6) in
(—m/2,3n/2) and sign(x)=x/|x| if x#0, sign(0)=0. We say that
(g, v) e S?* is m-admissible if there exists X e Q2% satisfying (8). Denote by

S2* the set of all sequences in S that are m-admissible. From Corollary 5

m

it follows that S # ¢f if and only if ke J,

m m:*

PROPOSITION 7. Let X=(P, Q)e Q> with meN and 0#keJ,,. Let

m

(o, v)e S the sequence associated to X according to (8).

m

(a) If fand g are the functions defined in (7) and /., < --- <y are the
ordered real zeros of g, then (o;,v;)=(sign(g'(4;)), sign(f(4;))) for
i=1,..,k

(b) (Giiks>Visr) :(_1)m+1 (g,,v;) fori=1, .., k.

Proof. 1If 0, for i=1, .., 2k are the ordered counterclockwise zeros of
g(0) in (—=n/2,3n/2) and 4, for i=1, ..., k are the ordered increasing real
zeros of g(4), then according to (7):

sign( £(0,)) = sign( f(4,)) sign(cos” * ' 0,),
sign( £(0,, ;) =sign(f(4,)) sign(cos” "' 0,

1+k)s

(9)

since 0, and 0, , =0,+ n correspond to the same zero 4, of g.
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On the other hand, again from (7) it follows that
g'(0)=g'(A)(1 +22) cos” ' 0,
g0, )= (A1 +27)cos™ 10,
for i=1, ..., k. So we obtain for g’ a relation similar to (9)

sign(g'(0;)) =sign(g'(4,)) sign(cos™ "' 0,),

: , e (10)
sign(g'(0; , «)) =sign(g'(4;)) sign(cos™ "' 0, , ,),

fori=1, .., k From (8), (9), and (10) the proposition follows easily. ||

Since each m-admissible sequence satisfies Proposition 7(b), it follows
that if m is odd then all the sequences in S2* have a period less or equal
than k. In any case, a sequence (g, v) €S> is completely determined if the
elements (o;, v;) are given for i=1, ..., k.

The next lemmas allow us to set Proposition 10 which characterizes the
m-admissible sequences in S*. In what follows, we shall call the coefficient
of the monomial of highest degree of a polynomial the principal coefficient

of the polynomial.

LemMA 8. Let meN and 0 #keJ,,. Assume that (o, v)e S* and verifies
(G s Vinr)=(=1)"" (G, v,) fori=1, .., k. Then (c,v) is m-admissible if
and only if there exist a polynomial R(1) of degree m+ 1 which has just k
real zeros Ay <A, < -+ <A, and a polynomial S(1) of degree m such that
their principal coefficients have opposite sign and they satisfy

o;=sign(R'(4;)), v, =sign(S(4,)), (1)
fori=1,. .,k

Proof. 1If (o, v) is m-admissible then, there exists X e Q2 satisfying (8).
From Proposition 7(a) it follows that

o;=sign(g'(4;)), Vi= sign(f(/"t,-)), (12)

where fand g are the functions defined in (7) and 4, < --- < A, are the real
zeros of g(A). Define R(A)=g(4) which is a polynomial of degree m + 1
with k real zeros. To obtain S we note that if 4, is a zero of g then it is evi-
dent from (7) that f(1,) = (1+42) P(1, 4,;), and so

sign( f(4,)) =sign(P(1, 4;)) for i=1,.. k. (13)

Then S(4)=P(1, A) is a polynomial of degree m and we deduce from (7)
that the principal coefficients of S and R have opposite signs. The condi-
tion (11) follows from (12) and (13) and the necessary condition in the
lemma is proved.
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Now, we suppose that for a sequence (g, v) € S* there exist polynomials
R and S of degree m + 1 and m respectively, satisfying (11) and such that
their principal coefficients have opposite signs. Then, in order to prove the
sufficient condition of the lemma, we have to find a vector field X e Q2 in
such a way that (o, v) is the sequence associated to X according to (8).

Let P(x, y) and Q(x, y) be the homogeneous polynomials of degree m.
Define X =(P, Q). Then the function g(4) associated to X is R(4) and the

signs of f(1) and S(X) coincide in the zeros of g. Thus from (11) we obtain

(g, v;,)=(sign(g'(4,)), sign( f(4,))) for i=1,..,k

Finally, by taking into account that (g, , v, ;) =(—1)""'(a,,v,) for
i=1, ..,k and according to Proposition 7, it follows that (g, v) is the
sequence of S?* associated to X and, hence (o, v) is m-admissible. |

LEMMA 9. Let reN, 6e{—1, 1} and a real interval [ ¢, d]. Then there
rr—1

exists a polynomial P(Z)=1"+a, A"~ + --- +a, such that sign(P(1)) =0
for every Ae[c, d].

Proof. Let r be an even number. If § =1, take P(A) = (A>+ 1) and if
5= —1 define P(2)=(22+1)" 22 i+ 1—c)i-d—1).

Let now r be an odd number. If =1, define P(A)=(A2+1)""D2x
(A4 1—c¢). In the other case, take P(1)=(A2+ 1) D2(i—1—d). |

The next proposition characterizes the sequences in S that are
m-admissible. From Proposition 7(b) it is only neccesary to consider those
sequences that satisfy the assumptions of Lemma 8.

PROPOSITION 10. Let meN, and 0 #k e J,,. Assume that (a,v)e S** and
verifies (G; > Viy i) =(—1)" " (a,,v;), fori=1, .., k.

(a) Ifk<m+1, then (o, v) is m-admissible.

(b) Ifk=m+1, then (o, v) is m-admissible if and only if there exists
JE€Z such that 6, #v;.

Proof. First we shall prove (a). From Lemma 8 it is sufficient to find
a polynomial R of degree m + 1 with k real zeros A, <A,< --- <A, and a
polynomial S of degree m, satisfying

sign(R'(A))=0,,  i=1,..k (14)

sign(S(4,)) =v;,, i=1,..,k, (15)
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and such that their principal coefficients have opposite signs. To determine
these polynomials we take k arbitrary real numbers 4, <4, < --- <4, and
define
k
Wa)y=1] (A=4)).

Jj=1

Since keJ,, from Proposition 4 and Corollary 5, it follows that
(m+1—k)/2eN, and hence R(A) =a(i>+ 1)+ ©2p5) with aeR, is a
polynomial of degree m+ 1 and its real zeros are 4, ..., 4,. Furthermore

since

k
R(Z)=a(i;+ )" VORI (4= 4)), i=1,..,k,
j=1
‘_l/;éi
if we choose a = +1 in such a way that sign(ah'(4,)) =0, then R satisfies
(14).
Now to determine S we choose u€(4;, 4;,,) for each je {1, .., k} such
that v;#v; ;. So we obtain p real numbers p; <y, < --- <u, where p is
the number of changes of sign in the sequence {v,, ..., v, }. Next we define

V4
1) =11 G—p).

i=1

Let P(1) be a polynomial satisfying Lemma 9 with r=m —p, c¢=4,,
d=/, and 0 = +1 such that sign(at(4,)0)= —v,. Then we define S(1)=
—at(A) P(A). This is a polynomial of degree m that satisfies (15) and such
that its principal coefficient is —a. Since the principal coefficient of R(4) is
a, the statement (a) of the proposition is proved.

To prove (b) we note that if p <m we can proceed as in (a). Therefore
we assume that p=m. Since k=m+ 1 each polynomial R verifying (14)
has exactly m + | real zeros and hence it has the form

m+1
R()=a [] (A—4), aeR

Jj=1

In addition, since the number p of changes of sign in the sequence
{V1y .o Vs 1} 18 exactly m, if S is a polynomial of degree m satisfying (15)
then all its zeros are real and they belong to the interval [4,, 4,,,,]. Con-
sequently, S is neccesarily of the form

m
S(;“):b l_[ (/’Li:u]): }“1 <l <}“2"' </lm<:um<;“
J=1

m+1-
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Finally it follows easily that sign(R'(4,)) =sign((—1)"a) and
sign(S(4,)) =sign((—1)"b). So, if (14) and (15) are assumed, then
sign(a) # sign(b) if and only if ¢, # v,. Hence the proposition holds. |

After associating a sequence of S to each vector field X € Q2% we estab-
lish the equivalence relation in S$2* induced by the topological equivalence
relation in Q2

PROPOSITION 11. Let meN, 0#kelJ, and X,, X,eQ*. Denote by
(a,v), (¢', V') € S the sequences associated to X, and X, respectively. Then

X, and X, are topologically equivalent if and only if there exists 1€ N
(0<t<2k—1) such that one of the next conditions holds:

(O',-, vi)=(o-:'+r’v:'+‘r) for a” iGZ, (16)

(O-i: 1’i)=(0-,2k7i+1+ra1”2k7i+1+1) fOl" all iel. (17)

Proof. First we consider that X; and X, are topologically equivalent.
Hence there exists a homeomorphism /: D — D such that it carries orbits
of the flow induced by E(X,) onto orbits of the flow induced by E(X,),
preserving sense but not necessarily parametrization. Then #(0D) = 0D and
s0 h|5p 1s @ homeomorphism of this circle.

Denote by (1, 6,) and (1, 6;) for i =1, ..., 2k the ordered counterclockwise
critical points in dD of E(X,) and E(X,) respectively. The equivalence
homeomorphism carries critical points onto critical points preserving the
local phase portrait. Therefore, if A(1, 8;) =(1, 8.), the local phase portrait
of E(X,) in a neighborhood of (1, 6,) is equivalent to the local phase por-
trait of E(X,) in a neighborhood of (1, #)). From the expression of the
Jacobian matrices of E(X;) and E(X,) in these points (see (5)), we obtain
that

sign( f1(0,)) = sign( f5(0})),
sign(g'(0,)) = sign(g5(0})),

where f; and g, (respectively f, and g,) are the functions associated to X,
(respectively X,) according to (2). Therefore from (8) we deduce that
(g, vi)=(a,, v, it A(1,0,)=(1,0,). (18)
Now we consider two cases depending on whether /4 preserves or rever-
ses the orientation on 0D. In the first case if 4(1, 6,)=(1, ¢)) then
(130;+1771) if l+p_1<2ks
(1,0, ,_1_%%) if i+p—1>2k,

i+p

h(l1, 0,.)={ (19)
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fori=1, .., 2k. Since (g} o, V: »)=(0},v}), from (18) and (19) it follows
that

(O-ia V,-)I(O';-+[,,l, V;'ﬁfpfl) for i:l,"_’ 2k.

As (o, v) and (o', V") are periodic sequences of period a divisor of 2k, the
above equation is true for all ie Z. Since 1 < p <2k, if we take 1=p —1,
then (16) holds.

On the other hand if & reverses the orientation and h(1, 6,)=(1, 6},
then

(1,0,_,,1) if p—i+1>0,

20
(L0, 12 if p=i+1<0, (20)

(1, 9,):{

fori=1,.., 2k As (a;,v;)=(0", 2, Vi, ), according to (18) and (20) we
obtain that

(0, V)= is11p Vor—iv14p) for i=1,.., 2k

From the periodicity of (o, v) and (¢', V"), (17) follows with 7=p, when
1< p<2k—1.1f p=2k then (17) is also true with =0 and the necessary
condition of the proposition is proved.

In order to prove the sufficient condition, we note that according to
Proposition 2, the phase portraits of E(X,) and E(X,) in D are an union
of 2k elliptic, hyperbolic and parabolic sectors. We denote by (1, 0,) and
(1,0%),i=1, .., 2k the critical points in 0D of E(X;) and E(X,) respectively.
Then we denote by R;, i=1, ..., 2k — 1, the sectors of the flow induced by
E(X,) such that they are bounded by the straight lines 0 =0, and 0=10,, ,,
and denote by R,, the sector which is bounded by 6 =6,, and 8 =0,. The
sectors R, i=1,.., 2k of the flow induced by E(X,) are obtained in a
similar way if we replace 6; by 6. Again by Proposition 2 the phase por-
trait of E(X) (respectively E(X,)) in the sector R, (respectively R}) is com-
pletely determined by the values of (g;, v;) and (0,,,,v;4) (respectively
(a%,vi) and (a1, Vi, 1))

Assume that (16) holds and define

o it it i+T<2k,
MO=Vive—2k  if itr>2%k,

for i=1, .., 2k, where t verifies (16). If i<2k then the critical points
(1,0,.) and (1, 0, ,,,) are counterclockwise consecutive on ¢D and both
together determine the sector R, ,,. Furthermore, according to (16), R; and
R, ; are sectors of the same topological type. We note that the above
arguments are also valid when i =2k, if we replace u(i+ 1) by u(1).
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Now we can define a homeomorphism (that preserves the orientation on
0D) h;: R;— R),; such that it carries orbits of the flow induced by E(X)
onto orbits of the flow induced by E(X,), preserving their sense (for more
details see for instance [ Gb]). Next if we define #: D — D by

hp,0)=h(p,0) if (p,0)eR,

then s provides a topological equivalence between E(X,) and E(X,) in D
and so X, and X, are topologically equivalent.
On the other hand if there exists t verifying (17) define

(i) = 2k—i+1+7 if —i+74+1<0,
AL TS if —i+7+1>0,

for i=1, .., 2k. Now, if i <2k the critical points (1, 0;) and (1,0}, )
are clockwise consecutive on 0D. Therefore these points determine the sec-
tor Ry, 1, of E(X,) and, according to (17), the orbits in R; and R}, , |, are
of the same type if we consider the clockwise orientation in Rj ). So
there exists a homeomorphism /;: R; = R),; ,, (reversing the orientation)
such that it carries orbits of the flow induced by E(X,) onto orbits of the
flow induced by E(X,), preserving their sense. If i = 2k then we replace i + 1
by 1 to obtain an analogous homeomorphism /,;: R, — R)y,. Finally if
we define /1 from the A,’s as in the previous case, it follows again that X,
and X, are topologically equivalent and the proposition is proved. ||

We note that from Proposition 10, if s=(a, v)e S, the sequence ¢
defined by #;=s,,, also belongs to S2*. So we can define the application

R: Sk g2

m m

such that if s = (g, v) € S, then R(s) is the sequence of S verifying

(R(s)); =541 for all ieZ. (21)

Whenever f: A - A4 is an arbitrary application then it is said that ae 4
is a p-periodic point of f when f?(a)=a and f(a) #a fori=1,..,p—1 and
p is called the period of a. The set C< A4 is a cycle of order p (p-cycle) of
[ if there exists a p-periodic point ae A4 for f such that C={a, f(a), ..,
f?7Ya)}. Tt is clear from (21) that s S2¥ is a p-periodic point of R if and
only if s is a p-periodic sequence. Therefore C<=S2* is a p-cycle of R if
there exists a p-periodic sequence seS* such that C={s, R(s), ..,
M7 '(s)}. It is clear that each sequence se S2* belongs to some cycle of

order p of R where p is an even divisor of 2k.
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Next we define the application

P S2% s 5%

m m?

where if s € S2* then ¥(s) is given by

(P(8)); =50k _i41 for all ieZ. (22)

We note that ¥ is a well-defined application (see Proposition 10) that
reverses the order of the elements (o, v,), ..., (G4, Vox) Of 5.

The following proposition shows some properties of the applications R
and ?.

ProposiTiON 12.  Let me N, 0 # k eJ,, and assume that R and ¥ are the
applications on S>* defined by (21) and (22). Then the following statements
hold.

(a) Y-¥=1d,
(b) WYeR=R"oW.

Proof. From (22) we obtain that
[(Po¥)S)]i=Sm_oh—ivyr1=5; forall ieZ,
and (a) follows. On the other hand according to (21) and (22) we have that
[(PR)$)],=[(R'e¥)s)],=Sm_i,» forall ieZ.
Consequently we get (b). ||

Now we give another interpretation of Proposition 11 through the
applications R and ¥.

PrROPOSITION 13. Let meN, 0#kelJ,, and X, X,eQ>*. Denote by s
and s' the sequences of S?* associated to X, and X, respectively. Then X,
and X, are topologically equivalent if and only if the sequences s and s' or

s and ¥(s") belong to the same cycle of R.

Proof- From Proposition 11, if we rewrite (16) and (17) by using the
applications ‘R and ¥, then we obtain that X, and X, are topologically
equivalent if and only if there exists an integer 7 such that 0 <t<2k—1
and s =R(s") or s=R"7(¥(s')). Since the sequences s, s', and ¥(s") have
the same period p a divisor of 2k, the proposition follows. ||

Now we define in §2* the following equivalence relation: s ~ § if and only
if one of the sequences s or ¥(s) belongs to the same cycle of R that 5.
According to Proposition 13, we have that the number of equivalence
classes of ~ in S2* coincide with the number C¥, of topological equivalence
classes in Q3

m*
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In order to determine the equivalence class of a sequence se S
with respect to ~, we consider the cycle C of R such that se C. From
Proposition 12(b), P(R(s)) =R "(¥(s)), and hence the cycle of ¥(s) is
C'={¥(t):te C}. Therefore the equivalence class of s is Cu C'.
We say that a cycle C of R is symmetrical if C=C’, that is, if ¥(s)eC
for each se C. Then if we denote by D¥, the number of cycles of R in S
and denote by EX the number of symmetrical cycles, we deduce that

m

DY —EX EX+D
Cﬁ,=Eﬁ, + m 2 m__ m 2 m‘ (23)

k

m*

The following result determines the value of D

PropoOSITION 14. Let meN and 0 #ke J,,.
(a) If mis odd and k <m + 1, then

1
Dy, =Y Py,  where P2,=t<22’— Y er,,>.

2tk r|t
r£t

(b) If mis even and k <m+ 1, then

1
Df\;,: Z Pz;, where P2[:t<2r_ Z VPZ,,),

t|k rlt
r#£t
(¢c) If mis odd, then D" ' =(X,, ,, 1 P»)— 1, with P, defined as
in (a).
(d) If m is even, then D' = (X 1m1 Pa) = 1), with P, defined as
in (b).

Proof. To find D¥, notice that each g-periodic sequence se S2* belongs
to a g-cycle of R. Thus if P, denotes the number of g-cycles of R in S%
then P,=N,/q, where N, is the number of g-periodic sequences in S X

Let m be odd. By Proposition 4, k is even and, from Proposition 7(b),
the periods of the sequences in S are even divisors of k. Let ¢ =27 be one
of these periods. Each 2z-periodic sequence is characterized by the elements
(61, V1), -y (G2, V5,) and if k<m+1, by Proposition 10(a), there exist
22*+1 ways of choosing these elements. Nevertheless it is necessary to
remove those sequences with period an even proper divisor of 2¢. Hence,

1
N,y =2*""—3% N, and P2,=t<22’— > rP2,>.
rrylé[t ",Jétf

By adding P,, for all divisors 2¢ of k, (a) follows.
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Let m be even. In this case, from Proposition 4, k is odd and the periods
of the sequences of S2* are the even divisors of 2k. If k <m + 1 and 2¢ is
one of these divisors, according to Proposition 7(b) and 10(a), there exist
just 2" ! ways of choosing the elements (g, v,), ..., (G5,, V,). Therefore

1
N21‘:2r+lizN2r and P2t:t<2t2 VP2r>.

rlt rl|t
r#£t r#t

Now (b) holds by adding P,, for all divisors 2¢ of 2k.

Lastly, we remark that the above computations are valid for the case
k=m+ 1, but, by Proposition 10(b), we have to rule out the two sequen-
ces such that g,=v; for all jeZ. These sequences belong to the same
2-cycle of R and hence statement (c) and (d) follow. ||

Next we obtain a characterization of the symmetrical cycles which will
be useful in determining E*

m*

ProposITION 15. Set meN and 0#keJ,,. Let R be the application

m:*

defined on S?* by (21) and let C be a cycle of R. Then C is symmetrical if

m

and only if there exists s € C such that ¥(s)=R(s).

Proof. To confirm the sufficient condition note that if there exists se C
such that ¥(s)=NR(s) then ¥(s)e C and, according to Proposition 12(b),
¥(t)e C for every t e C; this is, the cycle is symmetrical.

Now suppose that C is a symmetrical p-cycle of R and let s e C. Conse-
quently, there exists j such that 0<j<p—1 and ¥(s)=R/(s), or equiv-
alently from (21) and (22), we get that

Sy i 1=Si4; for all ieZ. (24)

Remember that s=(a, v) satisfies ¢,0,,,<0, for all ieZ, and hence

s, #5, when [ is even. Now we take i =2k in (24). Then it follows that

s;=s; and so j is necessarily odd. Therefore we choose §=RY"""*(s)e C
and, by taking into account Proposition 12(b), we obtain

P(5) = PRV~ D2(5)) = RO(¥(5)) = RO D2(s) = R(5),

and the proof is finished. ||

COROLLARY 16. Under the assumptions of Proposition 15 if C is a sym-
metrical cycle, then there exist exactly two elements of C satisfying
Y(s) =R(s).
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Proof. Let C be a symmetrical cycle of R of period p. From Propo-
sition 15 there exists at least one element §e C such that P(35)=R(3).
Since every element se C is given by R(5) for 0<i< p—1, then there
exists another se C satisfying ¥(s)=R(s) if and only if there exists
ie{l,..,p—1} such that P(R(s))=NR"""(s). By Proposition 12(b) this
equation is equivalent to R ~'¥(5)=R""'(5). Finally ¥(5)=R(s) implies
R +1(5)=R(s), and this equality admits the single solution i=p/2. So §
and R?*(5) are the only elements s of C that verify ¥(s)=R(s). |

Now we can calculate the value of EX

ProrosiTiON 17. Let meN and 0 #keJ,,.
(a) If mis odd and k <m + 1, then

k __ _Nnt+1
Ef =3 1,, where I,,=2""1—3I,.
2k e
r#t

(b) If mis even and k <m+ 1, then

EX =31, where I, =2UtD2_% [,
1k r|t
rAL
(¢) If m is odd, then Ejjﬁ“z(zz,mﬂlz,)— 1, with I,, defined as
in (a).
(d) If m is even, E"*! =X, \m i1 12) — 1, with I, defined as in (b).

m

Proof. From Proposition 15 and Corollary 16, the number 7, of sym-
metrical g-cycles of R will be obtained if we divide by 2 the number of the
g-periodic sequences s in S such that ¥(s) = R(s). These sequences verify

(see (21) and (22)) sy ;.1 =5;,, for all ie Z and since ¢ is a divisor of
2k we obtain that

Sy iv1=8i41 forall ieZ. (25)

Therefore s,y 1;=52 i1 for i=1,..,(g/2)—1, and so the values
815 e S(g/2) 11 determine completely the sequence s.

Now let m be odd. In this case we know that the periods of the sequen-
ces in S are ¢q=2t, where 2¢ is a divisor of k (see Proposition 7(b)).
Assuming that k<m+ 1, by Proposition 10(a) there exist 2*2 ways of
choosing the elements s, ..., 5, of each sequence verifying (25) for ¢ =2¢.
If we remove the sequences with period a proper divisor 2r of 2¢ and divide

the result by 2, then it follows that:

_nt+1
1, =2"""— Z I,,.
rlt
r#t
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By adding 7, for all the divisors 2¢ of k, we conclude (a).

Next we assume that m is even, then the periods of the sequences in S 2
are the even divisors 2¢ of 2k (see Proposition 7(b)). If k<m+1 from
Proposition 7 we know that s, ,= —s, for all ie Z. Note that if s is
2t-periodic then this relation implies that

Sip = —58; for all ieZ. (26)

From (25) (by taking ¢ =2¢) and (26) it follows that s, ;=8,,_,, =
—8, ;1 forall ieZ. So s, 1)p4i= —Sui1yp_iv1 for i=1,., (t—1)/2.
Then, in order to determine elements sy, .., s, it is enough to know
elements sy, ..., 5, 1y- If Kk <m+1 with the help of Proposition 10(a) we
can take 2'* ¢+ 12 different sequences in S2* verifying (25). If we ignore
the sequences with period a proper divisor 2r of 2¢ and divide the result by
2, then we obtain that

=242 %,
Sb
Finally statement (b) is proved if we add I, for all the divisors of 2k.
Lastly since the sequences such that o;=v; for all jeZ verify ¥(s)=
R(s), the proof of statements (c) and (d) are analogous to the correspond-
ing ones of Proposition 14. ||

Note that the values of DX and E¥ determine the value of C* (see (23))
and therefore we can prove Theorem B. This proof is the main goal of this
section.

Proof of Theorem B. From Corollary 5 it follows that

C,=Y Ct (27)

m?
kedn

where J,,={k=21:0<I/<(m+1)/2} if m is odd and J,,={k=2/+1:
0</<m/2} if m is even.
For k #0 we obtain C* from D* and E¥, from (23). Since C° =2, from

Propositions 14 and 17 and (27) the theorem follows. ||

5. LocAL PHASE PORTRAIT AT A CRITICAL POINT

We consider the system of differential equations given by

dx dy
E_ Z Pi(xa y)7 dl_ z Qi(xa J/), (28)

izm i=zm
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where P; and Q; are homogeneous polynomials of degree i in the variables
x and y. The expression of system (28) in polar coordinates is

dr ; do .
o i;n rfi@), = i;” rtgd0),
where
fi(0) =cos 8P;(cos 6, sen 0) + sen HQ;(cos 6, sen ), (29)
g:(0)=cos 80Q;(cos 0, sen ) —sen OP;(cos 0, sen ).
If we introduce a new time s via ds/dt=r""" then the above system
becomes
rr: Z ri7m+lf}(9), HI: Z r"*”’g,(é)), (30)
where the prime denotes derivative with respect s.
If we do the same transformations in the system
dx dy
Z_p -~ =
dt Hl(x’ y)’ dt Q"l(x9 y)’
we obtain system
r’:rlll(e)’ 0’:8"”(0)’ (31)

where f,

n

and g, are defined in (29).

Proof of Theorem C. First we consider that X,, is structurally stable
with respect to perturbations in H,, and distinguish the two cases of
Theorem A.

Case 1. E(X,,) has no critical points on 0D and I, # 0. By Proposi-
tion 3(a) E(X,,) has no critical points on p =0 and this circle is a stable
or unstable limit cycle. Since the system associated to E(X,,) (see (3)) was
obtained from (31) via the change p=r/(1+7r), the circle r=0 is also a
stable or unstable limit cycle for system (31).

The critical points of (30) and (31) on r =0 are determined by the zeros
of g,,(0), and so r=0 is also a periodic orbit for (30). Furthermore, since
the dominant terms of (30) in a neighborhood of r =0 are precisely rf,,(0)
and g,,(0), the orbit r =0 is a limit cycle with the same type of stability for
(30) and (31). Therefore the origin of R? is a focus with the same type of
stability for X and X,, and the theorem is proved in this case.
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Case 2. [E(X,,) has critical points on dD and all these points are hyper-
bolic. From Proposition 3(b), system (31) also has critical points on r =0
and they are hyperbolic.

Comparing (30) and (31) we observe that the critical points on r =0 are
the same for both systems. Furthermore the Jacobian matrices of these
systems in one critical point (0, 6*) are

(e my o)

<fm(0*) 0 >
0 £.(0%)

respectively. So all the critical points of (30) on =0 are hyperbolic and
the local phase portraits of (30) and (31) in (0, 6*) are topologically equiv-
alent. Since all these points are isolated critical points, they determine the
phase portraits of both systems in a neighborhood of »=0. Hence X and
X, are locally topologically equivalent at the origin. ||

and

In order to state that the converse of Theorem C is not true, we need to
use some techniques which appear in the work of Brunella and Miari
[BM]. We reproduce here these results.

Let X be an analytical vector field in R? such that X(0)=0. The system
associated to X can be expressed

X'=P(x,y)= Z aijxiyjs V=0, y)= Z b[jxiyj-
i+jeN i+jeN
We introduce the following subset of Z*:
T={(,j+1)a;#0} u{(i+1,)):b;#0}. (32)

Then the Newton polygon of the vector field X is the convex envelope of the
set

U {(+xj+y):Vx, ye[0, +0)}.
(i, j)eT
The Newton diagram I' of X is the union of all the compact edges y, of the
Newton polygon.
The polynomial vector field X, =(P,, Q) where

pP,= Z aijxiyja Q.= 2 bi/xiyj;

(i, j+1)erl’ (i+1,))el”
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is called the principal part of vector field X and the polynomial vector field
X, =(P,,Q,) where

P,= Y agpxy’, Q,= Y byxy/,
(i, j+ 1) ey (i+1,j)ey
is called the quasi-homogeneous component of the principal part X, relative
to V.

We shall say that two analytical vector fields X, Y on R? satisfying
X(0)=Y(0)=0 are locally topologically equivalent modulo center-focus at
the origin if either X and Y are locally topologically equivalent at 0, or 0
is a center or a focus for X and Y.

THEOREM 18. Let X be an analytical vector field on R? such that
X(0) =0. If there exists a quasi-homogeneous component X, of the principal
part X 4 such that 0 is an isolated singularity of X, then X and X, are locally
topologically equivalent modulo center-focus at 0.

Proof. See Theorem B of [BM]. |

Now we apply this result to prove that the converse of Theorem C is not
true.

ProPOSITION 19.  For each meN there exists some vector field X,, € H,

m m

which is not structurally stable with respect to perturbations in H,, such that

m

lhe phase portraits Of Xm = (Pm’ an) and X: (Zi;m Piﬂ Zi>m Ql) are
locally topologically equivalent at the origin.

Proof. Fix meN and consider the vector field X,,=(P,,, O,,)

associated to the system given by

, " , [(x+y)lll+]_ylll+l]
X ==) Yy = X .

(33)

From (7) the function g associated to X,, is g(A)=(1+ 4)" "' Its only
zero is — 1 with multiplicity m + 1, and so the corresponding critical points
of E(X,,) on 0D are (1, —n/4) and (1, 3n/4) that verify that g’(6) =0 when
0= —mn/4, 3n/4. Hence, by Proposition 6, X,, is not structurally stable with
respect to perturbations in H,,.

Now we consider the vector field X=(3,.,, P;, >.;>,, @;), where P, and
0O, are homogeneous polynomials of degree i and P,, and Q,, are defined
in (33). The set T associated to X (see (32)) contains the points (0, m+ 1)
and (m+ 1, 0), and therefore the only compact edge of Newton polygon of
Xis

y={(x, y)eR*:x, y=0,x+y=m+1}.
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So the only quasi-homogeneous component of the principal part of X is
X,=X,,. Finally, since the origin of X,, is an isolated critical point and is
not a center or a focus (the straight line of slope —1 is invariant under the
flow of X,,), we can apply Theorem 18 to obtain that X and X,, are locally

topologically equivalent at the origin. ||

6. LocaL PHASE PORTRAIT AT INFINITY

We consider the system of differential equations given by

dx m dy m
= P. -~ = . 4
7 Y Pi(x, p), 7 EO Qi(x, y), (34)

i=0

where P; and Q; are homogeneous polynomials of degree i in the variables
x and y. System (34) is expressed in polar coordinates by the equations

where f; and g; are defined as in (29).
The transformation J = 1/r writes the previous system as

dé . m 1 d0 m 1

= : (0 —=>) —g.(0).
d[ = 5,72 f‘l( )3 d[ igo 5,71 gl( )

Finally if we consider a new times such that dt/ds = 5" ', the above system
becomes

o' = _[5f;n(0)+52 17171(9)—'_ +5’11+70(0)]5

(35)
0 :gm(e) + (ngf 1(0) + -t (Smgo(ﬂ)-
After these changes of variables the proof of Theorem E is analogous to
the proof of Theorem C.

Proof of Theorem E. The infinity of X corresponds to the invariant cir-
cle 6 =0 of (35). Now if we apply to X,, the changes of variable that trans-
form (34) into (35), then we obtain

o= _5f;n(9)’ 0 =gm(0)‘ (36)

Since X, is structurally stable, the invariant circle 6 =0 of (36) (corre-
sponding to 0D for E(X,,)) is either an attractor or repulsor limit cycle, or

it contains a finite number of hyperbolic critical points. Now we observe
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that system (35) is obtained from (36) by adding terms of higher degree in
0. Therefore, by using the same arguments as in the proof of Theorem C,
the induced flows by (35) and (36) are topologically equivalent in a
neighborhood of 6 =0 and the theorem follows. |

Due to the analogy between the origin and the infinity, note finally that
the converse of Theorem E is false in the same way as it was the converse
of Theorem C.
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