

PERGAMON

Averaging analysis of a perturbated quadratic center ${ }^{3}$

Jaume Llibre ${ }^{\mathrm{a}, *}$, Jesús S. Pérez del Río ${ }^{\mathrm{b}}$, José Angel Rodríguez ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{\mathrm{b}}$ Departamento de Matemáticas, Universidad de Oviedo, Avda, Calvo Sotelo, sin, 33007, Oviedo, Spain

Received 15 March 1999; accepted 14 September 1999

Keywords: Limit cycles; Bifurcation from a center

1. Introduction and the main result

The main open problem in the qualitative theory of real planar differential systems is the determination and distribution of their limit cycles. A classical way to produce limit cycles is by perturbing a system which has a center, in such a way that limit cycles bifurcate in the perturbed system from some of the periodic orbits of the center for the unperturbed system (see for instance [6]). It is well known (see for example [2]) that perturbing the linear center $x^{\prime}=-y, y^{\prime}=x$ by arbitrary polynomials p and q of degree n (i.e. $x^{\prime}=-y+\varepsilon p(x, y), y^{\prime}=x+\varepsilon q(x, y)$), we can obtain up to first order in ε at most $[(n-1) / 2]$ bifurcated limit cycles, where [] denotes the integer part function. Also, it is known that perturbing the quadratic center $x^{\prime}=-y(1+x), y^{\prime}=x(1+x)$ (note that essentially it is the linear center with a straight line of singular points) inside the quadratic systems we obtain two bifurcated limit cycles (see [5]), instead of $\left[\frac{1}{2}\right]=0$. In this paper we shall prove that if we perturb the above quadratic system inside the polynomial systems of degree n we can obtain up to first order in ε at most n limit cycles.

[^0]
[^0]: The first author is partially supported by a DGES grant number PB96-1153, and the second and third authors are partially supported by a DGES grant number PB95-1054.
 ${ }^{*}$ Corresponding author. Tel.: +349-3-581-13-04; fax: $+349-5-581-27-90$.
 E-mail addresses: jllibre@mat.uab.es (J. Llibre), jesus@etsiig.uniovi.es (J.S. Pérez del Río), chachi@ pinon.ccu.uniovi.es (J.A. Rodríguez).

