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ABSTRACT

The Titius-Bode law tells us that the distances of the planets sufficiently far from the Sun roughly follow
a geometric progression of ratio equal to 2. We give a gravitational explanation of this fact taking into
account the motion of the solar system around the center of mass of the galaxy.

1. INTRODUCTION

Let a be the mean distance from the Sun to a planet. If the
planetary orbit is an ellipse with the Sun at one focus
(Kepler’s first law), then a is the semimajor axis of the el-
lipse.

The Titius-Bode law says that the distances @, from the
Sun to the planets in astronomical units are approximately
given by the formula a, =0.4+40.3x2* for
k= — «,0,1,2..,7 (except for Neptune, see Table I or
Voight (1974, pgs. 32-79)). This law was observed by Jo-
hann Daniel Titius in 1766 and divulged by Johann Elert
Bode in 1772. Of course, at that epoch, Uranus, the aster-
oids, Neptune, and Pluto were unknown.

Let 1, be the motion of the k th planet with respect to the
(k — 1)th planet when the mean motion of this last is chosen
equal to unity. Then, if the orbits of the planets are Keplerian
(by Kepler’s third law), we have n, = (a,/a,_,) ">~

The Titius-Bode law tells us that the distances of the plan-
ets sufficiently far from the Sun roughly follow a geometric
progression of ratio equal to 2. This fact will be called the
Titius-Bode limit law. Notice that if a, /a, _, =2, then n,
~1/3 (in fact, if a, /a, _, = 3*/> = 2.08, then n, = 1/3).
Therefore, another version of the Titius-Bode limit law says
that the period of the k th planet must be close to three times
the period of the (X — 1)th planet.

Our goal is to give a gravitational explanation of the exis-
tence of this Titius-Bode limit law in the solar system, taking
into account the motion of the solar system around the cen-
ter of the galaxy.

In fact, we shall consider a simplified model of a solar
system formed by two planets, the Sun, and center of the
galaxy. In this model we shall prove that if the inner planet
describes a circular orbit, then the best nearly circular linear-
ly stable periodic orbit candidate to be the orbit of the outer
planet is such that its mean distance from the Sun is close to
twice the inner planet’s mean distance from the Sun. This
will be our gravitational approach to the Titius-Bode limit
law. .

We assume the following peculiarities of the planetary or-
bits of the solar system which do not follow from the law of
gravitation: (a) all the planets approximately in a plane, (b)
planetary orbits nearly circular, rotations all in the same
sense (direct). Of course, these two properties seem to be
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due to the cosmogony (origin) of the solar system (see
Voight 1974, p. 104).

Different papers have been published on the Titius-Bode
law (see the references given in the paper of Horedt, Pop,
and Ruck 1977). In this paper some numerical examples
concerning the Titius-Bode law are presented. On the other
hand, Ovenden (1973) applied the principle of least interac-
tion to the solar system in order to discuss the possible phys-
ical reasons for the distribution of planetary orbits. How-
ever, none of these works takes into account the motion of
the solar system around the center of mass of the galaxy in
explaining the Titius-Bode law.

II. THE MODEL

We consider a restricted four-body problem. The four bo-
dies are the Sun, an inner planet, and the center of mass of
the galaxy as the primaries, and the fourth body a massless
outer planet, attracted by the previous three primaries but
not influencing their motion.

In a restricted problem of three bodies, the motion of the
two primaries satisfies precisely the equations of motion of
the two-body problem. Consequently, the logical generaliza-
tion is to establish a solution of the problem of three bodies
and find the motion of the fourth body under the gravitation-
al attraction of the three primaries. Since the exact solution
is not known for the three-body problem given by the center
of mass of the galaxy, the Sun, and the inner planet, we as-
sume the motions of the three primaries and accept an ap-

TABLE 1. Data for the planets of the solar system.

a Period of

k a; observed revolution mass
Mercury — 0.4 0.39 88400 0.06
Venus 0 0.7 0.72 224470 0.81
Earth 1 1.0 1.00 1¥00 1.00
Mars 2 1.6 1.52 1786 0.11
asteroids 3 2.8 2.90
Jupiter 4 52 5.20 11v86 317.8
Saturn 5 10.0 9.55 29v46 95.1
Uranus 6 19.6 19.20 84v02 14.5
Neptune 30.09 164v80 17.2
Pluto 7 38.8 39.50 247¥70 0.1
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