INTEGRABILITY BY SEPARATION OF VARIABLES

JAUME LLIBRE! AND RAFAEL RAMIREZ?2

ABSTRACT. We study the integrability in the Jacobi sense (integrability by
separation of variables), of the Hamiltonian differential systems using the Levi-
Civita Theorem.

1. INTRODUCTION

The study of the integrability by separation of variables of the Hamilton-Jacobi
equations is a classical problem in Mechanics, dating back to the foundational works
of Jacobi, Stdckel, Levi-Civita and others.

In 1904 and in a letter addressed to P. Stackel and published in the Matematische
Annalen [19], Levi-Civita deals with the problem of the integration by separation
of variables. In the introduction of this letter he writtes: Ho motato che si possono
facilmente assegnare (sotto forma esplicita di equazioni a derivate parziali . . . )
le condizioni necessarie e sufficienti cui deve soddisfare una H affinche lequazione

ow ow
(]‘) H<(Zl7"'aZM78Z17"'aaZJw>ha

ammetta un integrale completo della forma
(2) W= Wl(zlaalv"'7aM) + "'+WM(ZM7Q17"'7QM)7

dove aq,...,apn and h sono le costanti arbitrarie. Da queste condizioni scatur-
iscono alcune consequenze di indole generale, che mi sembrano abbastanza interes-
santi, per quanto il dedurre da esse la completa risoluzione del problema apparisca
ancora laborioso, e non vi sia nemmeno - oserei affermare - grande speranza di
trovare tipi essenzialmente nuovi, oltre a quelli da Lei Stdckel scoperti. Indeed,
Levi-Civita shows that

Theorem 1 (Levi-Civita Theorem). Hamilton-Jacobi equation (1) has a first in-
tegral of the form (2), if and only if the Hamiltonian H satisfy the M(M — 1)/2
second-order partial differential equations
om on_H_ omon oH
an 8Pk 8zjazk 8Zj azk 8PJ8Pk
OH OF PH_ oM OH PH
6Pj 8zk (%JaPk 8Pk 8zj 8Pj8zk -

Lix(z,P) :=
(3)
07

2010 Mathematics Subject Classification. 34C05, 34C07.

Key words and phrases. separation of variables, Hamiltonian system, Levi-Civita conditions,
Hamilton-Jacobi equation, Lie algebra, Frobenius integrability, Stark problem, integrability in the
Jacobi sense, integrability in the Liouville sense, Lax equation.

1



2 J. LLIBRE AND RAFAEL RAMIREZ
for g k=1,..., M with j # k.

The application of this criterion to the investigation of the integrability of the
Hamiltonian systems is a non-trivial problem. Levi-Civita‘s result provides a crite-
rion for deciding when a given Hamiltonian H independent of the time is separable
or not, it does not give an effective method for finding the separable coordinates for
a given Hamiltonian. To find such coordinates it is in general a difficult problem
which has only been solved for particular Hamiltonians.

The integrability by separation of variables of the Hamilton-Jacobi equations has
recently received a big attention due to its applications to the theory of integrable
partial differential equations of Korteweg de Vries type and to the theory of quan-
tum integrable systems (see for instance [8, 21, 25]). In the review Separation of
Variables. New Trends see [21] Sklyanin argued that separation of variables could
be the most universal tool to solve integrable models of the classical and quantum
mechanics.

The question of separation of variables for Hamiltonian systems was studied
intensively in the second half of the last century (see for instance [1, 4, 5, 7, 9, 13,
12, 26, 21]). For an outline of the theory of separation of variables we refer to the
book of Kalnins [15].

There exists an equivalent definition of separability, originally due to Jacobi and
recently widely used by Sklyanin and his collaborators (see for instance [21]).

Consider a Hamiltonian mechanical system defined by the Hamiltonian H = H;
with M degrees of freedom and integrable in the Liouwvilles sense, i.e. there exist a
family of M — 1 first integrals Ho, ..., Hys such that

(a) they are in involution with respect to the Poisson bracket, that is

M
{Hj, Hy} =Y <8Hj oM _ o8, 8H"“) —0,
j=1

OP; 9z; 0z OP

for j,k=1,..., M,
(a) they are independent, i.e. the rank of the matrix formed by the gradients
of Hy,...,Hy is M except (perhaps) in a set of zero Lebesgue measure.

An integrable Liouville Hamiltonian system with M degree of freedom and M first

integral Hy = H, Ha, ..., Hys is separable in the canonical coordinates (21, ..., 2z,
Py, ..., Py) if there exist n non-trivial relations
(4) @j(Zj,Pj,Hl,...,HI\/j)ZO, for jzl,...,M,

connecting single pairs (z;, P;) of canonical coordinates with the M first integrals
Hy,...,Hy. Note that the knowledge of the separation relations (4) allows to
reduce the problem of finding a separated solution of the Hamilton-Jacobi equation
to quadratures. Indeed, one can solve the relations (4) with respect to P; then we
get that P; = f;(2;, Hi, ..., Hy) and then we can define the generatrix function

M,
S(Zla'~-7ZM7a1a"'7a]\/f):Z/ fj(uj’Hh"'7HM)|H1:O¢1,...,HMZO¢Mduj’
j=1"7%i0

of the Hamilton-Jacobi equation (see for instance [11, 22]).
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The aim of this paper is to study the problem of separation of variables by
using the classical approach, i.e. the Levi-Civita approach. In particular we give
new properties of the Levi-Civita conditions (see section 3), and we establish the
relations between the integrability in Jacobi and Frobienius sense (see Theorem
10).We determine a new equivalent expression for the Levi-Civita conditions (see
Theorem 13). We obtain all the Hamiltonian vector fields admitting a two or three
dimensional Lie algebra (see Theorem 18 and Propositions 24 and 25). Finally we

prove the integrability of some new Hamiltonian vector fields (see Propositions 26
and 31).

2. PRELIMINARY RESULTS. ON THE HAMILTON-JACOBI EQUATION

Let H=H(z1,...,2m, P1,..., Py) be a Hamiltonian. We study the Hamilton-
ian vector field

M M
OH 0 OH 0
associated to the Hamiltonian system
dzk - de - o
(6) E—{H7Zk;}7 W—{H,Pk}7 fOI' k—1,7M

The transformation of the R* space

(7) (ZlaszvplvaPM)H(ZTvvz}k\/D Pl*va;z)
under the condition
8(21‘,...,2';/[,1:’1*,...,131’(4))
8 det 0,
<) <8(21,...,Z]V[7P1,...,PM) 7&

is called canonical transformation if the Hamiltonian system (6)

is transformed into the Hamiltonian system

dz} dP}
9) %:{H*,z,jh L —{H B}, for k=1...M

The Hamilton-Jacobi theory wants to find the canonical transformations which
writes system (6) in its simplest form.

The following theorem is well known (see for instance [2, 10]).

Theorem 2. Transformation (7) satisfying (8) is canonical if and only if there
exists a function F' and a constant ¢ such that

M
(10) Y (Ppdzj, — Pedzy) — (H* = cH)dt = —dF(t,z1,...,2a0, Py, ., Par),

k=1

here F s such that det |~k £0
whnere 1S Suc a 8z]8Pk .

Among the group of canonical transformations there exists a subgroup which is
determined by the condition

82t 2%
det(B(Pl,...,PM) 70,
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Under this condition it is possible to choose (¢,z1,..., 2, 27,...,2};) as Hamil-
tonian variables. In these variables the function F' is usually denoted by S, i.e.
S(tyz1,os2my 215 2y) = Ft 21, 2m, Py oo P py s
Under these conditions from (10) we get that
08 oS 08
7:CP’ 7:—P*, 7:H*—CH
Dz y 0z k ot

The most interesting subcase of canonical transformations is when H* = 0. Clearly
that in this case from (9) it follows that

* *
2 = Qg P = By.

Hence to construct a canonical transformation it is necessary and sufficient to de-
termine S as a solution of the so called Hamilton-Jacobi equation

oS a8 a8
11 — - —_— .., — | =
( ) 8t + cH (t7 21, s M 5 621 3 ) aZM) 07

) %8
with det (azjaak> #0

Theorem 3 (Jacobi Theorem). The integration of (6) is equivalent to solve (11).

For more details of Jacobi Theorem see for instance [2, 10].

A solution S of the Hamilton-Jacobi equation, contains M + 1 undetermined
constants, the first M of them denoted as o, s, ..., aps, and the last one coming

oS
from the integration of —. If the Hamiltonian does not depend on the time ex-

ot
plicitly, then the derivative e in the Hamilton-Jacobi equation must be constant,

usually denoted by —h, consequently

(12) S:W(Zl,ZQ,...,ZM)—ht.
If the function W can be separated completely into M functions of the form
W (2m, a1, ag..ap) form=1,..., M, ie.

S = Wl(zh Ozl,Oég...OtM) +...+ WM(ZM,OQ, Oég...OzM) — ht,
then we say that the Hamiltonian system is integrable by separation of variables or

integrable in the Jacobi sense.

When the Hamiltonian H does not depend on ¢ from (11) and (12) the Hamilton-
Jacobi equation reduces to the equation (1).

3. PROPERTIES OF THE HAMILTONIAN SYSTEMS SATISFYING LEVI-CIVITA
CONDITIONS

The aim of this section is to prove some properties of the Hamiltonian systems
which admit a separation of variables. Differential system (3) has the following
properties.

(I) Partial differential system (3) can be written in the following equivalent
forms
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0*H 0*H OH

0 _ -

8zj82k 8Pj8zk 8Pk

O*H ai

on ou om ou |0 0 Tggp O OF;
8Pk BP] (9Zk 8Zj 82H aiH B

0 0 8Zk

OP;0P; ol

0 0 0 0 9=,

(ii) By considering that (3) can be rewritten as
OH GO 0N \OH (OH 0N OH 0, \ OH _
8Pk 3zk8Pj (9zk 8Pk8P] 8zj 8Pk 8zk8zj c’)zk GPkE)zj GPJ o

0,

and introducing the vector field I'y, = 9P, 0or 90 9P, (see formula

(5)) we easily deduced that equations (3) can be written as

OH\ O0H OH\ O0H
(13) Fk(@zj)a%_r’“(a&>azj_o

(iii) Denote by
OH ;0H
14 R = _——— /=
( ) J 8Zj 8PJ ’
then differential system (3) can be written as
(15) I'vR; =0, where k,j=1,....,M, j+#k.
Indeed, after some computations we can show that

_OH 0 OH O L
o aPk 6Zk J azk 6Pk J

__(OHNT(p (QHYOH | (OH\OHY _
o 8Pj k aZj 6PJ k 8PJ (92:]‘ o
(ID)

Proposition 4. Let H = H(z1,...,2m, P1,- .., Par) be a solution of (3).
Then H=H(Py,...,Py,21,...,20M) 48 also a solution of (3).

FkRj

Proof. 1t is evident. O

We observe that this property is important because if we have a Hamil-
tonian which is integrable in the Jacobi sense, then the same Hamiltonian
under the change z; «— P; is integrable in the Jacobi sense.

(I11)

Proposition 5. Let H be a solution of (3). Then F(H) satisfies (3) for
arbitrary C? function F.
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Proof. After some computations it is easy to show that
OF (H) OF(H)0H  OF(H) OF(H)0oH

oP; OH 0P;" 9z OH 9z
0*F(H)  OF(H) 0*H | 0*F(H)9H 0H
dP,OP, OH 0P,0P; = OHOH OP; 9P,
O°F(H) _ OF(H) 0°H _ 0°F(H)OH oH
dP,0z; OH 0P,dz;  OHOH 0z 0P
O°F(H) _ OF(H) 9°H  0°F(H)OH OH
0z,0z; OH 0z,0z; OHOH 0zj 0z’

Hence after some computations we get that
OF(H)OF(H) 0*F(H) n OF(H)OF(H) 0*F(H)
oP; 0P, 0z;0% 0z Oz, OP;0P;
_OF(H)0F(H) 0*H _ OF(H) OF(H) O’F(H)
OP; 0z, 0%z;0P; 0P,  0z; O0P;0z,
B (6F(H)>3 (87H87H O°H_ OHOH 0°H
OH OP; 0Py, 02j0z, ~ 0zj 0z, OP;0P;
_oHoH_GH__ o o 5y
OPj 0z, 0z;0P, 0Py 0z OP;j0z, /"
Consequently in view of (3) we obtain that
OF(H) OF (H) 0*F(H) n OF(H)OF(H) 0*>F(H)
OP; 0P, 020z, 0z 0z, OP;OP,
_OF(H)OF(H) O’F(H) _ OF(H) 0F(H) O*F(H)
OP; 0z, 0z;0PF; opr, 0z; OP;0zy

i.e. since the function H satisfies the Levi-Civita conditions, then the new
Hamiltonian F(H) is integrable in the Jacobi sense. O

0,

(V)

Proposition 6. Consider the functions
U= oz, P), V=Y Biz P,
j=1 j=1

where aj(z;, P;) and B;(zj, Pj) are C? functions which satisfy the conditions
804]‘ 86] 80@‘ 86]
LBy i= a2 TS 4,
ts ik = 5 0z, ~ om 0m, 7
Let F and G be C? functions.
(i) Then the Hamiltonian vector I'y with H = F(U) + G(V) is integrable
in the Jacobi sense if and only if
(16) FU)=-Xog|U +al, G(V)=Alog|V +1)|,
where a,b and \ are are arbitrary constants. Consequently
Vol

H(U,V) =log Uta
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(ii) Then the Hamiltonian vector T'y with H = F(U)G(V) is integrable in
the Jacobi sense if and only if

(17) FU)=U+a), GV)=(V+b"
where a,b and \ are are arbitrary constants. Consequently
U+a\*
HU,V) =
w= (755

Proof. For statement (i), we insert H = F(U) 4+ G(V) into the Levi-Civita
conditions (3) after some computations we get that

OF\? 862G oG\ ? 9°F
{aj, BiHow, B} <<8u> 5090 T ((%) 8u8u> =0,

for j,k=1,..., M and j # k. Hence, from the previous equation we obtain
0*G 0*F
_ovev_ _ ouau _ 1

GG

Y

or equivalently

892G )
__ovpv_ _ 0 (09GN 1
aa\?: oV \ov N
(ov)
PF
duou _ 0 (OF\T' _1
oF\2 _ avi\au) X
(ar)

After integration of these partial differential equations we obtain (16). So
statement (i) is proved.

For statement (ii), we insert H = F(U)G (V) into the Levi-Civita condi-
tions (3) after some computations we get that

o ton 0 (55 (e = (32) )+ (32) (- (2)) o

Thus
G OG (06N 109G
ovov ov) — x\ov )’
p 0P (OFV 1 (ory’
ouoU ou) A\OU )
Consequently
0?°G oG 0’F oF
ovov _ (v Yyov  ouoUu _ (1) aUu
oG A) G oF AN) F

v ouU
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Hence after integration we get (17). Thus the proof of the proposition is
done. ([
+a .

is
V+0b
integrable in the Jacobi sense, then from Proposition 5 we get that any func-

By considering that the Hamiltonian system with Hamiltonian

U
tion F' <V12> is integrable in the Jacobi sense, where F' is an arbitrary

C? function.

Problem 7. Assume that the Hamiltonian systems with Hamiltonian
F=F(z1,....,2m,P1,...,Py) and G=G(z1,...,2p,P1,...,Py)

are integrable in the Jacobi sense. Fstablish the conditions on F and G
under which F + G and FG are integrable in the Jacobi sense.

(V) The Lie algebra is a vector space g together with a bilinear map gx g — g;
(X,Y) — [X,Y] = XY -Y X, called the Lie bracket, satisfying the Jacobi
identity

[Zv [X’ Y“ + [Xv [Y, Z]] + [Yv [Z) X” =0,
for arbitrary X,Y, Z € g. In particular the set of vector fields on a manifold
M is a Lie algebra.

M

Proposition 8. Assume that the Hamiltonian vector field 'y = ZI‘j
j=1

gwen in (5), is integrable in the Jacobi sense, then [I';, I'y](H) = 0. In

other words if the Hamiltonian vector field 'y is integrable in the Jacobi
sense then T'j, T'y, and [T';, '] are tangents to the hypersurface H = h.

Proof. Consider
w00 = (5535 = 5,m,) (om e~ mcom) O
(2o _omoy(omo onoy,
0P, 0z, 0z, OP OP; 0z; 0z; OF;

B <8H 0*H _O0H 0*H )&f_((’?H 0’H _0H 0*H >8f
OP; 0P,0z;  0z; O0P,OP; ) Oz OP; 0z1,0z;  0z; 0P;0z ) 0Py
_(8H 0’H _O0H 0’H )Bf_(@H 0’H _O0H 0’H )3]‘
0Py, 02,0P; 0z, OP;0P, ) 0%; 0Py, 0z,0z; Oz, OP,0z; ) OP;’

where f = f(21,...,2m, P1, ..., Py) is an arbitrary C? function, or equiv-
alently

(18)
. _(p (9H\ Of _ OH\ Of \ _ o\ of o\ of
[, Tul(£) = (PJ (ap,) 02k L (az,) 8Pk> (Fk (ap) dz; L <azj> aP)’
Hence taking f = H from (13) we get that
OH\ 0H OH\ OH OH\ OH OH\ OH
vy 1) = (1 (ap) 95 ¢ (%) apj)(“ (9m0) 35" (5 ) om) =°

Since clearly I';(H) = I'y(H) = 0, from the definitions of I'; and I';, the
proposition is proved. [



INTEGRABILITY BY SEPARATION OF VARIABLES 9
4. INTEGRABILITY IN THE JACOBI AND FROBENIUS SENSE

Let © be a differential system in a manifold 9t and V(D) be the set of vector
fields X such that X (y) € © for all y € 9 (see for instance [24]).

Theorem 9 (Frobenius > Theorem). Differential system © is completely integrable
if and only if V(D) is a Lie algebra, ie. [X,Y] € V(D) for all vector fields
X, Y € V(D), or what is equivalent if Xy,..., Xy generate V(D). Then there

in

M
exist functions C%, = —CF, such that [X;, X,] = Z Cank.
k=1

Let I'; be the Hamiltonian vector fields given in (5). We say that the Hamiltonian
M

vector field 'y = Z I'; is integrable in the Frobenius sense if and only the vector
j=1

M
fields T'; for j = 1,..., M are such that [I';, I';] = ZCJ’?HF;C, The Hamiltonian
k=1

M
vector field I'y = ZI‘j is integrable in the Jacobi sense if and only the vector

j=1
fields I'; for j =1,..., M satisfy (15).

The next result show that a hamiltonian is integrable in the Jacobi sense if and
only if is integrable in the Frobenius sense.

M
Theorem 10. The Hamiltonian vector field 'y = Z I'; is integrable in the Jacobi
j=1
sense then if and only if it is integrable in the Frobenius sense.

0H 0 0H 0
PT’OOf. From the relation Fj = 8787 — 8787 it follows that
j 0z 0z OP;

r,+ 220
9) o _ a0
9z oH

ap;

0
Inserting P into (18) we obtain
<j

0
[Fj, Fk] = (Fk log

H OH
OH\ O0H OH\ OH 0
(20) * ((Fkap) 95 (Fkaz) ap) ap,

_((r, QH\OH _( OHNOHN\ 0
JaPk 8zk jazk 8P1c 15) k.
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Thus assuming that I'f is integrable in the Frobenius sense, i.e. [I';, I'y] = Z Chln,

then T, (GH) OH (8H> oOH

op. ) 95 92 ) 0P 0. Hence in view of Remark ?7? (see formula

OP;
(13)) we get that 'y is integrable in the Jacobi sense.

The reciprocity it is easy to obtain, indeed from (20) it follows that if I'y is
integrable in Jacobi sense then (13) holds, consequently we obtain that

(21) T, T] = <log OH )F (log D Z

6P
Hence we get that the functions C7 are such that C7) = 0if n 75 jorn#kand

; oOH oOH
J ko
(22) Cjk (log ETN ) Cjy = <log T ) )
In short the proposition is proved. O

Remark 11. The proof of Theorem 10 also can be done using

I + aii
0 o J 8P] aZj
oP; OH

0
instead of (19). Indeed inserting 8— into (18) we obtain

OH
(o (O 0H (o1 o\ 0
"\op; ) 0z, *\oz ) op; ) 0z

-(r, OH\ OH . (0H fLH)i
J 3Pk 8Zk J 6Zk 8Pk (92%.

Thus if Ty is integrable in the Frobenius sense, then [Fj, Ty = C]’-ﬁan and conse-

OH \ OH OH\ OH
F — =TI — | — = e. T 1S 1 ) )
quently (3P ) Do ((“)zk) P, 0, i.e. I'y is integrable in the Jacobi
sense. Hence we obtain that
OH OH
2 LTkl =Tk (log|=—| )T, =T, (log|=—1 | T
(23) [T, Tkl k(Og 8zj) J ](Og (9zk‘) ks

Consequently the functions C7) are such that CJ =0 if n #jorn#k and

OH OH
cl i =Tk <log oz, ) , Cix (log O )

Proposition 12. System

OH\ . OH OH\ . OH
E (m) = Ckapy U (8zk> =y
24 d d 9 d
H . OH H H
Lk (8P> CjkaTDk’ L <ap> kaazj
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can be written in the matrix form

(25) We=0,
where
2 2 )
O°H  0°H i 0
E)Pkazj 8Pk6P] J
0°H  9°H 0 i
W = é)zk&zj 8Pjazk ik
| o 0 0*H  0*H
gk 8P%82k 3Pk8Pj
2
0 ok 0*H 0*H

ik 92,0z,  OPR0z;
e _ (01 0H o om

B 3Pj ’ (9Zj ’ (9Pk ’ 6Zk7
non-trivial solutions if and only if det(W) = 0, or equivalently

T
) . Moreover the differential system (25) has

, g 9*H 2 9?H \°
J J 8P]8Pk 8zkazJ 8Pk8,zj 8zk6P]

Proof. From (25) by considering that the vector £ is a non-zero vector, then in view
of the relation

O°H  o*H  9*H  9*H \’
0Pj8Pk 8Zk82’j 8Pk(92j azkan ’
we obtain the proof of the proposition. O

det W = (cfkcjfk +

Theorem 13. Assume that
PH \° O?H \° ,
(26) (WJ + <6zk87:]> #0, for j#k,

then the Levi-Civita second order partial differential equations (3) are equivalent to
the equations

0°H  o*H  9*H 0*H
anaPk 8zk8zj 6Pk8zj azkan a
forjk=1,....M and j # k.

(27) —Ch Y+ 0,

Proof. The following identities hold

O®H_ (. (OH\OH . (0H)O0H
opP.0P; \" "\ oz ) op; "\ oP;) 0z
_OHOH (g OPH PH  °H PH
"~ 0P, OP; JRZIk T QPOP, 02,025  OP0z; 02,0P; )

OH (. (0H\OH . (0H)OH
020z, \ "\ 0z ) orP; " \oP; ) 0z

__OHOH (i oy 0*H 0*°H  9*°H O°H
0z 0z \ TFTIR T OPjOP, 024,0z;  OPy0z; 02,0P; )’
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for j # k. Indeed, from the relations

O*H (. (0H\OH | (OH\OoH
op.0P; \" "\ oz ) op; "\ oP; ) oz

OH aH( ?H 9°H  9°H 0°H > <8H) <8H>
_ I, Iy :

"~ 9Py OP; \OP;0P; 02,0z;  OP,0z; 02,0P, P

OP;
and in view of (22) we get that

OH OH\ 4 ; OH 0H
© (6m) (745, ) = ~Ciidr o

Hence we obtain the proof of the first identity. The proof of the second identity is
obtained in analogous way.

From these two identities under condition (26) we get that the Levi-Civita con-
ditions or what is equivalent the conditions (13) are equivalent to (27). Thus the
proof of theorem is done. [

Proposition 14. The following equations hold
) ) o o b o
(28) L Chy + TGy + C O+ CLCh s+ C O + C G =0
for jyn=1,..., M with n # j. Moreover if Cfnk =constants for j,k,m=1,..., N,
then kaCj]-k =0, forj #k.

Proof. From the Jacobi identity
[Fma [F]7 FkH + [Fjv [Fk7 F"LH + [Fka [FTYH F]]] = 07
and after some computations we get that
[Ty 05, T4l = Do (CHT5 + CHI) = (CLT; + ChTy) Ty

- (rmc;'k) T+ (rm(c,gj) T, + C%, D, Tj] + C D, T

(chjfk) T+ (r,,z(cfk) Ty, + C2 (CI Ty, + €I, 1)
+C5 (O Ty + O Tk
= (TnCy + ChChy ) T + (Tl + Ol ) T

+(Chem; + ChOm) T,

Consequently
Tes [T, T3l = (TuCty + Ciy i) T+ (TwCo, + O ) T
+ (Ojkcjk + Clzjc%) L,
05, Ok Tol) = (T5Cl + ClinCh) Th+ (D3O + Ch O ) T

+ (ChCl + Cly Gl ) T
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Hence, inserting these expression into the Jacobi identity we get

0= [Fma [FjvrkH + [Fja [Fkﬂl—‘mﬂ + [Fka [Fmvrjﬂ

km™~'jm

= (TG + ThCly + Ol Cly + CCly + Ch Gl + O Clh ) Ty

Hence we get (28). The proof of the second statement we obtain by putting m = j
in (28). In short the proposition is proved. O

Corollary 15. Under the assumptions of Proposition 14 if C'Zk is a constant for
jyn,k=1,...,N then

CI.Ch =0 forall j+#k.

Proof. Tt follows from (28) by considering that C’ik = constant for all j,n,k and
by putting n = j. O

Proposition 16. Relations (24) are equivalent to the equations
2 2
(8H) oR; ok OH <8H> oR; ok OH

o) ap, ~ “rape \ap ) am = ran
(20)

OHN* R _ j OH  (OH\"ORy _ ; OH
8Pk 8Pj - jk(‘)Pj’ 8Pj 8Zj - jk(’)zj’

with j # k, where the functions R; for j =1,..., M, are defined in (14) ,

Proof. From (24) we have
oH
OHN® 0 py_ (OHN' 0 | 0z | _ | (OH\ _ 4 OH
or;) op, "’ \op;) opr, | OH | ~ ’\opm,) *op.’
aP;

Hence after some similar computations we obtain the proof of the proposition. [

5. INTEGRABILITY IN THE JACOBI SENSE IN SOME PARTICULAR CASES

Assume that the hamiltonian H satisfies the conditions

0’H ‘
(30) aP,0P, #0, forall j#k.

If conditions (30) hold then the Levi-Civita conditions (3) can be written as (27).
In this section we shall study conditions (27) when

ChCl =0,  for forall j#k
Therefore the Levi-Civita conditions (27) becomes

0°H  O0*H 0°H  O0*°H

1 - =
(3 ) 8PJ8P;€ 8zkf)zj 8Pk8zj 6Zk8PJ

0.
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Theorem 17. Assume that a Hamiltonian vector field Uy (see formula (5)) is inte-
grable in the Jacobi sense. Then 'y admits a Lie algebra with the basis I'y,..., Ty
such that

L;,T%] =0, for jk=1,....M, j#k,
(i.e admits an Abelian Lie algebra) if and only if
(32) H = H(H1<21,P1),H2(227P2),. . -7HM(ZM;P]W))-

Proof. If H is given by the formula (32) then
OH _ OH 0H; OH _ 0H 0H;
an n aHj an, 82]‘ B 8Hj 8Zj ’

O*H O0*H OH; 0H, 0*H  0*H 0H; 0Hy,
OPLOP; OH,;0Hy, OP; 0P,  0P,0z; OH;0Hy 0z; OP;’
(33) O*H 0*H 0OH; 0H,
0z;0z, OH;0Hy 0z; 0z’
0*H 0°H 0OH,; OH
0z;0Py OH;0Hy 0z; 0P’
Consequently
m(mggg):qﬁwzq E(bgiﬁ)z&@ﬁz&

Hence by (23) we get that [I';,I'y] = 0. Thus the Lie algebra is Abelian. The reci-
procity can be obtained as follows. By considering that the vector fields I'y, ..., 'y,
generates an Abelian Lie algebra, then [I'y,I';] = 0, consequently from (23) we get

Ch = C’J]?k = 0. Therefore from (29) we obtain that
OR; ORp OR;  ORy
8Pk - 8Pj o 8zk o 8Zj

Consequently R; = R(z;, P;) for j = 1,..., M. Hence from (14) H must be such

that

=0, forall j#k,

gZ-i—Rj(zj7Pj)gg:07 for j=1,...,M.
The function H given by the formula (32) satisfies the previous equations. Indeed
OH OH 0H; 0H;
Bites ) = =g = ot a1t = o1ty
OP; 0H; 0P; OP;
where H; = H;(z;, P;). Clearly that in view of (33) the Levi-Civita conditions (31)
hold. In short the proposition is proved. O

Theorem 18. Assume that a Hamiltonian vector field Ty is integrable in the Jacobi
sense. Then I'y admits a Lie algebra satisfying

;. T%] = C4Ty, for jk=1,...,M, j>k Ck =0,

(34) 5 o
[0;,Tx] = CRT;, if Cl. =0,
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forjk=1,....M and j # k, if and only if the Hamiltonian H is of the form
(35)
H = Hy(znm, Py Hyve—1 (21, Prr—1, Hy—2 (2v—2, Pr—2, Hy—3 (-0, Hy (21, Py) .. L))

Proof. We shall study only the first case. The second case is proved in analogous
form.

From (23) and (34) we get that Cj’?k = 0 for j > k. Consequently from (29) it
follows that

OR; . 0R; . 0R; . O0R; . . 0R; o OR; -

OPy,  0zy 0Py 0z3 = 0Py Ozum
ORy . ORy . _ ORs . ORy .
87]33_({9723_“._8]3]\4_821\4_

ORy—1  ORpm—1 0
8PM o aZM B ’

Thus

Ry = Ri(z1, P1), Rz = Ry(22,P2,21,P1),...,Ry1 =, Ryr—1(2nr—1, Pyr—1, ..o 21, Pr)

Hence from (14) we obtain

OH OH
9 R, P = 0
971 + Ri(z1, 1)3P1 ;
oH oH
e Pa 21, P = 0
925 + Ra(22, Po, 21, 1)6P2 ;
oOH oOH
D21 +RM—1(ZM—1,PM—17---721,P1)m = 0,
oOH oH
—_— P 1, Pyv—q,... P)—= 0
Do + Ruy(zm, Pary 2vr—1, Prre, - - 21, 1)8PM ,

The solution of this system is the function (35).
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The reciprocity is obtained as follows. Assume that H is given by the formula
(35) then the following relations hold

OH _ OH, vy OH, OH _ OH, v1 OH,
821 621 =2 OHj_l’ 8P1 8P1 =2 aH]‘_l’
OH _ OHy v1 OH, OH _ OHy ¢1 OH,
822 52’2 i=3 8Hj71’ 3P2 3P2 i=3 5Hj,1’
(36)
OH  O0Hy_, 0Hy OH  OHy_ 1 OHy
0zpr—1 Ozni—1 OHp—1’ OPy—y Ozp_y OHp-_1’
8H - 6H]\/] 8H - 8H]M
aZ]u o 8zM ’ 8PM B aZpM.

Thus again from (14) we get that

M
3H1(21,P1) aifHJ
Oz =2

Hi(z. D) M
OH: (21, 1) OH,

oP
1 =2 8Hj,1

Ry(z1, P) =

__ O=m
oP;
M
0H;
8H2(227P27H1(217P1)) OH 2
_ 0zo Jj=3 i-1
Ro(z2, Pay 21, P1) = OHy (22, P, Hy (21, P1) M o,
P
P, e OH;_4

8H2<2’2,P2,H1(21,P1))
_ 82’2
OHj (22, Py, Hi(21, P1))’
0P
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OHy_, OHy

Ozp—1 OHpra

OHy—1 OHyy

OPn—1 OHp—1
0

O0zpr—1

Ryr—1(zv—1, Pri—1y -, 21, P1) =

Hy—a(zpm—1, Pr—1, Hy—2 (.., Hi (21, P1) . .

0
OPy—1

0
az HM(ZM7P]W;HM—1(-~-aH1(217P1)---)
Ry(zaa, Pagy .oz, Py = ——31

~——Hy(zne, Py Hy—1 (-2, Hy (21, Pr) - )
0Py

Hence
OR  ORy
8Pj N (92]'
From (29) we obtain that Cjk =0 for j > k. Thus from (24) and (23) we get (34).

=0, for j>k.

In view of (36) the function (35) satisfies the Levi-Civita conditions (31). Indeed,
from (36) for k > j it follows that

M M

OH  0H, 0H,  OH 0H; oM,
8Zj 62’]‘ n=j+1 6Hn_1 ’ 8Pj 8Pj =il 6Hn_1 ’
*H  oH; 9 [ {1 OH, O°H  0H; & ( +1 0H,
6Pj8Pk 8Pj 8Pk n=j+1 8Hn,1 ’ 8zjazk &zj 8Zk n=j+1 aHn,1 ”
OH  8H; ﬁ 0H, OH 9H; {1 0H,
aZj 822]' n=j+1 8Hn71 ’ 8PJ 8P] n=j+1 8Hn,17
°H  oH; 9 [ {7 9H. O°H  9H; & [ v1 9H,
8Pj62k (9Pj 8Zk n=jt1 6Hn—1 ’ 8Zj8Pk- 325]' 8Pk n=j+1 8Hn_1 7

Consequently
0’°H 0*°H _ 0’°H 0*°H
8Pj8Pk 8zk8zj 6Pk82j azk&Pj

=0, for k> j.
In short the proposition is proved. ([l

Remark 19. The functions (32) and (34) are well-known Hamiltonians (see for
instance [10]). The originality of Theorems 17 and 18 consist in providing the
relation with the Lie algebra of the Jacobi integrable vector field I'g.

5.1. Example. The Stark problem in arbitrary dimensions. The main in-
tegrable problems of Celestial Mechanics is the Kepler problem, the Euler problem
(two center Newtonian gravitational motion), and the Stark problem. This small
number of integrable problems explains why the Stark problem, corresponding to
the motion in a Newtonian gravitational field subjected to an additional uniform

Hy—1(zv—1, Pu—1, Hy—2 (o, Hi (21, P1) -
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force of constant magnitude and direction, has received special attention over al-
most two and one-half centuries (see for instance [17, 16, 3, 20]). The integrability
in the Jacobi sense of two and three dimensional Stark problem was first established
in [14, 17]. Here we extend this problem to arbitrary dimension and show that it
continues being integrable in the Jacobi sense.

The equations of motions of two-dimensional Stark problem are

=K y:-%ﬂ,

where p and ¢ are constants and r = /22 4 y2, and for the three-dimensional case
the equations of motions are

_pa LBy, pz

(37) T = 3 T3 ]

where p and ¢ are constants and r = /22 + y2 + 22.

In [17] the integrals of motion are determined, and the resulting quadratures are
analytically given. A complete list of exact, closed-form solutions is deduced in
terms of elliptic functions.

Now we shall illustrated the integrability in the Jacobi sense for the Stark prob-
N

lem in dimension IV > 3 whose kinetic energy for unit of mass is T' = Z a:? and its
j=1

N

Zx?, 1 and e are constants.

potential function is U = B expy, where r =
r
=1

The equations of motion are

. HI; .. HITN
Li=oTE  INT o g te

for j = 1,...,N — 1. Clearly the Hamiltonian vector field I'y with H = T + U
is not integrable in Jacobi sense in cartesian coordinates. However the authors of
[3, 20] and others have found that it becomes separable in parabolic coordinates for
N =2 and N = 3. We developed these results and proved that 'y is integrable in
the Jacobi sense for N > 3.

Proposition 20. The Hamiltonian vector field I' g with

1 o
H:—E #2-C —exn
‘j b

2j:1 r

in coordinates
& -
2 b

r=E&, Y=
for N = 2 becomes
PPy —dp (€t —nY)
2(82 +n?)
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and for N > 2 in coordinates

N-2
1= &ncosag H sin o,
j=2
N-2
To = £&nsinag H sin o,
j=2
N-2
r3 = &ncosas H sin a5,
j=3
N-2
e = £&nsinag H sin o,
=3
TN_2 = &ncosaicosany_gsinan_sg,
TN-—1 = &ncosan_z,
52 2
N = 72 U s
becomes
P£2+P3_4M_5(54_774) Cn-2
(38) = 24 2 RIS
2(82 +n?) &n
where

Cn—2= Hn_o(Pn_2,an_2, HN_3(PNn—_3,aNn—_3,...,Hi(P1,01)...))),

Hi_
Hi= P, Hj=P'+-—1% for j=2,...,N-2

sin” a;
N €2 4 p? 2
Proof. For N > 2 we get that r? = Zw? = (2) . The kinetic energy T
j=1
and potential energy U becomes
1 1 : 20 €
T — Z(i2 4 02) = —(£2 4+ n2)(£2 4+ 2 U—=_ _ S (e2_ 2
5@ +797) = (& + )& +7), o 2(5 n’),
respectively for N = 2 and
1
—_ -2
T= 9 Z%’
j=1
N—2 N—2
En (. : : : . (E+n07) 2, .
= 5 a%ganaj +a§]1;[?’sm2aj+...+a?v_2 —&-T(fz-ﬂf),
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for N > 2, respectively. Consequently the Hamiltonian H in coordinates (§,7, a1, ..., an—2)
for N > 2 becomes

1 P? P2 P )
H= o | 7 + 55 tob S - + P,
H sin? a; H sin? a; -
J J
j=2 j=3
P2 + P2 2# e
+ 52 Z — a5 (=07,
28 +n?)  &+n* 2
or equivalently
1 1 1
H= (P2 +—44444—<P2 ,+4444447<.“
26272\ V72 D gin2ay o N VP sin? an g
1 p?
" (P2 +—(m+ 2L ))).0))
(39) 2 Tsin?as\ 2 sinay
2 2
Pf + P7I 2’u,

€
+ _ e 2y,
20 +n7) £+ 3 (& =)
By introducing the Hamiltonians

Hj—l

H, = P2, Hj =P+

- , for 7=2,...,N—2,
sin® oy
we get that (39) can be written as

1

H= %22 (Hy—2 (PN—2,an—2, Hv_3(Pn_3,an_3,..., Hi(P1,a1)...))))

P? + P? 2 £
+2 52 g + 5 2+§(€2_772)
(&2+n?)  &+n

Cn-2 P§2+P13 2 75(527 2)

26202 2(&+n?)  E+n* 2 !

where Cy_» is the level of the function

Hy_9(Pn—2,an—2, Hn_3(Pn_3,an—3,..., Hi(Pi,a1)...)).

In short the proposition is proved. ([

Proposition 21. The Hamiltonian vector field T';r with Hamiltonian (38) is inte-
grable in the Jacobi sense. Moreover the N dimensional Stark problem has N — 1
independent first integrals

Hj,1

H1: Plz, H]:PJ2+M’ fOT' j:2,...,N72,
J
40
o) Hy_ = /‘ ndng [ _&€d§
vV Re(n) VS6(&)
where
Rs(n) = —enb+2nn* + (2u + \)n? + 2Cn_o,

Se(€) = €€% +2nE* + (21 — N)E* +2CN 2,



INTEGRABILITY BY SEPARATION OF VARIABLES 21
where C'n_o and \ are arbitrary constants.

Proof. Now we prove the integrability in the Jacobi sense of I'yy. Indeed, from (38)
it follows that

PE4+ Pl —dp—c(€—n") Cn_
= % 1 N-—2
i 2(62 +17%) Tep
1
= W (52772(1352 + P,? — 4,U - 5(54 — 774)) + 20N—2(§2 + ,'72)) )

Thus
EnP(PE+ Py —4p — (€' — ")) +2Cn 2(6% + %)) — 2(6% + 7*)E*°h = 0.
Consequently
&2 (nQ(Pr? —2u+en* — 2hn?) + QCN,Q)—l—nQ (§Q(P§2 —2u — et — 2n€?) + QCN,Q) =0.
which is equivalently to
n?(P? —2u+en* —2m?) +2Cn o = %,
52(P€2 —2p —e€* —2h€?) + 20N _o = —NE2,
where A is an arbitrary constant. Hence we get that
(P} —(2u+A)+en* —2hn*)+2CN_2 = 0, (P —(2p—X)—e&*—2h&*)+2CN_2 = 0.
Thus the variable is separated. Hence
nP, = +/—en®+2m* + 2p + M2 + 2CNn_2 := \/Rs(n),
EP; = £./e€6 +2hE% + (2u — N\)E2 + 2CN_2 = 1/S6(§),
or equivalently
N +n*)i = £/—en® +2hyt + (2u + N)n? +2Cn 2 := \/Re(1),
EE+nD)s = +/e0+ 281+ (2 — N)E% +2CN 2 := /S6(§).
By introducing the new time 7 such that dt = (£2+n?)dr we get after the integration

41 M:T 70, §de =74+,
4D VR T Vo

where 7y and 71 are arbitrary constants. From these relations eliminating the new
time variable 7 we get the first integral

Ft/’n@ _ [ 84 _ -

Vv Re(n) VS6(8)

where C = 79 — 71. Hence the Hamiltonian vector field I'y is integrable in the
Jacobi sense, it has N — 1 independent first integral (40). O

Proposition 22. The parametric expressions of the solutions of the N dimensional
Stark problem is the following

& =-2 P tm)

where P is the Weierstrass function.

2
_6

+PB(V—e(T +1)).
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2h 2h
Proof. After the change £* = X — e and 7> =Y + — we get that the polynomial
4Rg(€)/e and 4S6(n)/(—¢) becomes

4 8
Py(X) = 4X? — 075 (38X — bp)e +41%) X + 5o (270n—28” + (90X — 18hpu)e + 81%)

4 8
Qs(Y) = 4Y?2— 32 ((BX+6p)e +4h?) X — 3723 (27Cn—28% + (9hX + 18hpu)e + 8h?)

Consequently (41) can be rewritten as

(42) Ve(T +70), =V—e(t+m),

/ ax / dy

vV P3(X) VQ3(Y)
The problem is therefore reduced to quadratures, more specifically to elliptic inte-
grals. The key is now to invert those integrals to find parametric expressions of the
variables X and Y in functions of new time 7. By inverting integrals (42) we get
that

X =P(We(r+m)), Y=P—e(r+mn)).
where P is the Weierstrass function. In short the proposition is proved. (|
Remark 23. For N = 3 the Stark problem does not conserve the generalized
Laplace-Lenz vector F = (f1, fa, f3) defined by
s . s . 785
I ) R L —
VI +y: +z
L . L . Hy
fo= 2yt —zy) — iy —yit) - ———,
Va?+y? + 22
L . S . 1z
fa= #(zd —22) — gyt - 29) - ———.
Vol t+y +z
But since along the solutions of (37) we get that
fi= euz—zi),
f2: 5(2y272y),
f3: _E('Tx+yy)7
we get the first integral
(43) iz — w2) — Yz — 2) — — e
Va2 +y? + 22

In particular if we put in the previous equations y =y = 0 then we obtain that

+ %(:UQ +y?) =C.

fi= eQuz—zi),
f3 = —czz.

Hence we get that the first integral (43) becomes

L e € 4

This first integral was given in [17].



INTEGRABILITY BY SEPARATION OF VARIABLES 23

5.2. Hamiltonian vector field admitting a finite dimensional Lie algebra.
We shall study the Levi-Civita integrable Hamiltonian systems which admit a finite
dimensional Lie algebra formed by the vector fields I'y, ..., 'y; such that

(44) L), Tw] = C3,T; + CE.Ty,
where C;  and C’J’?k are constants which in view of Corollary 15 satisfy the conditions
C;kak =0, for j,k=1,...,M, and j#k.
Consequently (44) becomes
T, Tl = ChTx when €9, =0, or [[;,T}]=C%T; when C% =0,
or [I';,Tx] =0 when C;k =0, C’j]-“,C = 0, which is a particular case of (34).

Proposition 24. A Hamiltonian vector field U'y integrable in the Jacobi sense,
admits a two dimensional Lie algebra with basis I'y and I'y satisfying

[[1, Do) = CfoT1 + CfyTa, ClpCF, = 0,
if and only if

() H = H(Hl(zl,Pl),HQ(ZQ,PQ)) when 011210122:0,
( ) H = H(Zz,PQ,Hl(Zl,Pl)) when 0122:0,
(iii) H = H(z1, P1, H2(22, P2)) when Cly =0,
Proof. Is a consequence of Theorem 17 and 18. O

Proposition 25. The Jacobi integrable Hamiltonian vector field Iy admits a three
dimensional Lie algebra with basis 'y, Ty and I's satisfying

(45) [Fl, FQ] = GFQ, [F27 Pg] = 0, [F37 Pl] = —GF3,
if and only if
(46) H = H(z, P1, Hy(22, P2), H3(23, P3)).

Proof. For N = 3 we get that (see (21))
[[1,T9] = Oy + C4Ty,  with CH,O0% =0,
(47) [[3,Ty] = CZTy + C3,Ts, with C2,C3, =0,
[[3,I1] = C5 1 + C51 T, with  C5,C5, =0,

On the other hand from the Bianchi classification of three dimensional Lie-algebra
we get that the Lie algebra with basis e1, es and ez has the following representation
[61, 62] = aeg + b363, [62,63] = blel, [63, 61] = b2€2 — aes.

By compare with (47) we obtain that C}, = C3; = C3;3 = C1; = 0. Hence in view

of (29) we get that
3R2 _ 8R2 _ 6R2 o 6R2 -0
(9221 6P1 523 8P3 ’
8R3 . 8R3 . 8R3 . 8R3 —0
0z opP, 0z 0P, ’

3 2 _
C3 = —Cf =—a
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Hence from (29) we obtain

OH OH
— +R Py)—= 0
92, + Ry (22, 2)8P2 )
OH OH
—+R P;)— = 0.
925 + R3(23, 3)8P3
Clearly that the function (46) is a solution of these equations. In short the propo-

sition is proved. O

We observe that Proposition 24 and 25 is a consequence of Theorem 17 and 18.

6. INTEGRABILITY IN THE JACOBI SENSE FOR THE HAMILTONIANS SUCH THAT

0’H _ 0 AND 0’H
6Pj6'Pk h aZjaZk

#0 WITH j#k

Clearly under theses conditions the function H can be written as
M
H = ZHj(Zl, 22y e ey Z]\/[,Pj).
j=1

For these Hamiltonians the partial differential equations (3) become
0’H 0H 0 oH OH 0 o0H
~ 5 g 5p | )~ 5o 5o (lee |55 |) = 0.
8Zj3Zk 3Zk 82’]' 8Pk 82’]' 8Zk 6)Pj
for j # k, or equivalently from Theorem 13 we have
0’H  9*°H

(48)

49 Lok — ——— =0
(49) IRZIR POz 02,0P;
where
on
(1 OH|\ _ 0P ’H
J & 8Pk B 3£6Pk8zj’
0Py
k
o= OH
oOH op, O*H
i (1oe | Z2]) = - 9Lk
g (Og 0z, ) OH P02,
OP;
Let |A| be the determinant of the matrix
eu(a) o pu(z)
A= : . :
emi(zm - emm(2m)

where ¢;1(z;) is a set of M? arbitrary functions. Let 1;(z;) be a set of M functions.
Then the vector field I'y with

1 M
H =33 Aile, o) (PP = 5(2)
j=1
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1 A
where A; = ] (g' |> is called the Stdckel vector field (see for instance [23, 6])
i1

Proposition 26. The Hamiltonian vector field I' g with

H= ZA 21,22, ..., 2m) Hj (25, Py),
where H;(z;, P;) is an arbitrary function for j = 1,...,M, is integrable in the
Jacobi sense if and only if the functions A; for j = 1 , M satisfy the partial
differential equations
0?4, 0Ay 0A, 0A; 0A
50 A;A A; — AL =" =0
(50) k@zjazk azj 0z, k@zk 0z

forjkkn=1,... M and j # k.
Moreover if Hj(z;, Pj) = P2 )i (z;) where ¥;(z;) is an arbitrary function, for
j=1,..., M, then we obtain an Stackel system (see for instance [23, 6]).

Proof. By considering that
OH M oA,

ol o4; ;
azn J 8 H (ZJ7P)7 for n#j’
oH 0A; O0H;(z;, P;)
9, = ;(af” )+ 4, ),
OH & < OH, (zj,P)>
OP; = OP; ’
32H M 82Aj aAJ 8Hj(zj, P]) .
02,0z, ; 020z, Hy(z5, F5) 0z, 0z , for n#j,
O*H
oP0P, 0 for n#j,

Inserting these relations into (48) after some computations we get

) 2 )
AjAka?“ L N )(A 4 Ty 040y %8A”> =0,

020z, J 0z; 0z k 0z, 0z
for j,k,=1,...,M and j # k. Hence we obtain (50).
It is interesting to observe that if we apply (49) then we obtain that
0*H 9*H  0A; 0A; OHy, OH;
0P, 0z; 0z,0P; 0z Oz, OP; OP;
On the other hand by considering that

0*H
C’jk =TIy <log P,

_ A; 0H; 04,
a Ak an 82’]‘ ’
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we obtain
0’H 0°H _ A; OH; 0A, Ay OHy 0A;  0A 0A; OHy OH; _
OP,0z; 02,0P; Ay OP; 0z; Aj 0P, Oz 0z; Oz, 0P, OP;
Thus the condition (49) holds identically. On the other hand,since
J’-“k = iig‘gj aafjk =TIy (log‘gi ) for j #k,,
therefore after some computations we obtain that the functions A;(z1,...,%y,) is a
solution of (50).

k
CikCir —

Finally we observe that the integrability in the Jacobi sense of the Hamiltonian
M
H = ZAj (21,22, .., 20M) (Pj2 —1;(z;)) was established by Stéickel see (see for
j=1
instance [23, 6]). In short the proposition is proved. O

Finally we state the following problem.

Problems 27. (l) LetA] = Aj(zl,. . .,ZM) andaj = Oéj([’[1<2,’1,f)1)7 . 7I‘I]\/[(Z]\/[,f:)]\/[)

where H; = H;j(z;, P;) for j =1,..., M. Determine the conditions on the
functions A; and oy in such away that the Hamiltonian vector field I' g with

M
H = ZAj(Zl, . .,zM)aj(Hl, . .,HM),
j=1

is integrable in the Jacobi sense.
(i) Let Aj = Aj(z1,...,2m) and
aj = aj(zn, Py Hy—1 (2v—1, Py—1, Hy—2 (20—2, Py—2, . Hy (21, Pr) L))

Determine the conditions on the functions A; and o  in such away that the
Hamiltonian vector field U'y with H equal to
M

ZAn(Zla oo zm)om(Za, P, Have—1 (2v—1, Prr—1, Hyv—2 (2m—2, Pri—2, ... Hi (21, P1) ..

j=1
18 integrable in the Jacobi sense.

Remark 28. The functions (32) and (34) are well-known Hamiltonians (see for
instance [10]). The originality of Theorems 17 and 18 consists in providing the
relation with the Lie algebra of the Jacobi integrable vector field I'y.

The integrability in the Jacobi sense for the Hamiltonian vector field I'yy with
such that

0*H 0*H
——F—#0 and
8P]8Pk 8zjazk
can be obtained by applying Proposition 4 on the integrable Hamiltonian vector
fields in the Jacobi sense.

(51)

=0 with j#Ek,

Clearly under the condition (51) the function H can be written as
M

(52) H=> H(z,P,...,Py).
j=1

'))7
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For these Hamiltonians the partial differential equations (3) become
O 0H 0 (\ |OH[\ OH 0 (| |0H
oP;0P, 0P, 0P \ °|0z|) 0P, 0B, \ *®| 0z

>:0 for j#k,

or equivalently from Theorem 13 we have

; 0’H 0°H
ckcl — =0
IRIk S OPLOz 02,0P;
where
OH
1. [ 1og | ===
k ! <0g 2 > 7
Gk = OH
T 1oe | ==
J <Og azk > ’
Proposition 29. The Hamiltonian vector field I' g with
M
H = ZAj(Plv PQ, ey PM)Hj(Zj, PJ)
j=1

is integrable in Jacobi sense if and only if the functions A; for j = 1,2,...,. M
satisfy the partial differential equations

0%A, ~, 0A 04, 4 0A; 0A,
oP;oP, 'oP; P, " ‘op, op;
forjksn=1,...,M and j # k.

A; Ay

Proof. This proof is analogous to the proof of Proposition 26 after the change
P +— z, by using the properties of solutions of the Levi-Civita conditions (see
Proposition 4). In short the proposition is proved. O

In view of Proposition 4 the problems 27 can be stated for the Hamiltonians (52)
after the change P; +— z;.

6.1. Integrability in the Jacobi sense and Lax pair. One of the best meth-
ods for determining the involution set of first integrals for an integrable Liouville
Hamiltonian vector field T'y associated to a Hamiltonian differential system (6) is
the Lax pair method, for more details then the ones given in what follows see [18]
A Laiz pair for a Hamiltonian vector field is a pair of smooth quadratic matrices
A = (ajx) and B = (bjx), satisfying the equation called the Laz equation
dA

(53) - =[B.A]=BA-AB,

dA
where the derivative ’ is calculated along the solutions of (5).

If the Hamiltonian system admits a Lax pair then it has the involution set of
first integrals

F; = trace(A7), for j=1,..., M.
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For the particular case of the Hamiltonian vector field I'y with

LM M
H= 5 ZPJ? + Z akj(zx — 25) a2 — 21)
j=1 k,j=1, k<j
(54) J j J

1 M M
= 3B Vils— ) =T HV,
j=1 j=1

we shall study the Lax equation for the case when the matrices A and B are such
that

P a2 ai a1m
as P, ass agpg
A = DY . ?
UJM,H) PM,1 AN —1M
apri Apf M —1 PM
/ li /
vy aly a3 al v
/ li /
as Wy ajg a5y
B = : ) ,
a’ 0 a’
M—-11 - e M-1 M—1M
/ /
a’yn N Y s T o] s
where U; = ¥;(P,..., Py, 21, ..., 20) are convenient functions, a;i = a;x (2 —2k)

d
for j # k, and a}k = z (a;%(&)) with & = z; — 2, respectively. Clearly in this case
Fy = 2H = trace(A?).

The relation between the integrability in Jacobi and Liouville sense, as we ob-
served in the introduction, was study in particular in [21].

Problem 30. Determine the functions ¥q,..., Uy and aj, = ajk(z; — z) for
g,k =1,...,M for which the Hamiltonian vector field Ty with Hamiltonian (54)
with M — 1 independent first integrals F; = trace(L?) for j = 1,...,M — 1 is
integrable in the Jacobi sense.

To illustrate the solution of this problem we study the following particular case.

Proposition 31. Let A and B be the matriz such that

(i)

o
e}

P1 a12 .. a1 p

—ai2 P2 0 0 0

A 0 Pk (22 S 0
= 0 0 —Akk+1 Pk+1 0
0 0 0 0 0 0 P]\/[_Q aM—3,M—2 0

0 0 0 0 0 0 —QM—-3,M—2 PMfl 0

—ai1pm 0 0 0 0 0 0 0 PM




INTEGRABILITY BY SEPARATION OF VARIABLES 29

if M is odd, and

P1 ai2 0 0 0

a2 P2 O O 0

0 Py Qkk+1 - - - 0
A= 0 0 —Akk+1 Pk+1 0

0 0 0 0 PM_3 AN —3,M—2 0 0

0 0 0 0 —am—3m—2 Prr—o 0 0

0 0 0 0 0 0 PM,1 ap—1,M

0 0 0 0 0 0 anf—1,M PM

if M is even, and set

Uy aly 0 0 0
al, YUy 0 0 0
B 0 \Ifgk a’zk“k 0
- 0 0 a’2k+1k \Ifgk 0 ’
0 0 0 0 WUarq aM—2,M—1 0
0 0 0 0 aéw_2,M_1 WUar_q 0
0 0 0 0 0 0 U,
M—
if Misoddandk=1,..., , and set
\Ifg a’12 0 0 0
aly Uy 0 0 0
0o . Wor  ahyqp - 0
B: O 0 a’2k+1k \Ifgk O
0 0 0 0 Urn—o Aoz a2 0 0
0 0 0 0 a’M_&M_2 Waro 0 0
0 0 0 0 0 0 Wy apM—-1,M
0 0 0 0 0 0 AN —1,M \1’2
M —2
if M>2isevenandk=1,..., 5

Assuming that the Hamiltonian (54) is

1 2N N
(55) H=3 Y>PP-Y a3 =T+,
j=1 k=1
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if M =2N, and

1 2+ N
(56) H:§ Z szfza%k—l,zk:TJrV,
j=1 k=1

if M = 2N + 1, where agk—1 2k = a2k—1,2k(22k—1 — 22x) are arbitrary functions.

Then the Laz equation (53) becomes Pj = g—v forj=1,...,M.
Zj

Proof. After some computations it is easy to show that independently on the parity

of M the Lax equation (53) becomes Pj = g—v for j =1,..., M. We note that the
Zj

Hamiltonian vector field with Hamiltonian I'y with H given in (55) and (56) is
integrable in the Liouville sense. (]

Proposition 32. The Hamiltonian vector field Ty with H given in (55) and (56)
is integrable in the Jacobi sense.

Proof. Indeed, after the change of variables

k-1 — 22k k-1t 22k
U2k—1 = #7 V2k—1 = f?
fork=1,...,N, we get
Pop_1 = Zop—1 = Ugg—1 + Vo1, Py = Zop, = Uog—1 — Vok—1-

Consequently the Hamiltonians (55) and (56) become

2N N
H= Z (ugj—l + i)gj—l) - Za%j—l,2j(2u2j—1)
=2 j=1
and
IN+1 N
H= " (a3 1 +03_1) — ) ajj_y2(2uz;-1)
=2 i=1

respectively. Hence the Hamiltonian system is integrable by variable separation. [J
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