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ABSTRACT. We consider analytic or polynomial vector fields of the form

1o} 0
X=(-y+X)—+(@+Y)—,
(Cy+X) ot @ Y) o
where X = X(z,y)) and Y = Y (z,y)) start at least with terms of second
order. It is well-known that X has a center at the origin if and only if X has a

Liapunov-Poincaré local analytic first integral of the form H = 5(332 +42) +
oo

Z Hj, where Hj = Hj;(x,y) is a homogenous polynomial of degree j.

j=3

The classical center-focus problem already studied by Poincaré consists in
distinguishing when the origin of X is either a center or a focus. In this paper
we study the inverse center problem, i.e. for a given analytic function H of
the previous form defined in a neighborhood of the origin, we determine the
analytic or polynomial vector field X for which H is a first integral. Moreover,

o0
given an analytic function V =1 + Z Vj in a neighborhood of the origin,
j=1
where V; is a homogenous polynomial of degree j, we determine the analytic
or polynomial vector field X for which V is a Reeb inverse integrating factor.
We study the particular case of centers which have a local analytic first

1 oo
integral of the form H = §(x2 +92) [ 1+ > 7T, |, in aneighborhood of the
j=1

origin, where Y; is a homogenous polynomial of degree j for j > 1. These
centers are called weak centers, they contain the uniform isochronous centers
and the isochronous holomorphic centers, but they do not coincide with the
class of isochronous centers.

We extended to analytic or polynomial differential systems the weak con-
ditions of a center given by Alwash and Lloyd for linear centers with homo-
geneous polynomial nonlinearities. Furthermore the centers satisfying these
weak conditions are weak centers. Finally as an application we obtain the
necessary and sufficient conditions for the existence of a weak center in a class
of polynomial differential systems of degree four.

1. INTRODUCTION

Let

0 0
1 X=P— —
(1) 5‘:1:+Q8y’
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be the real planar polynomial vector field associated to the real planar polynomial
differential system

(2) .’iI:P(.’L‘,y), QZQ(x,y),

where the dot denotes derivative with respect to an independent variable here called
the time ¢, and P and @ are real coprime polynomials in R[z,y]. We say that the
polynomial differential system (2) has degree m = max {degP, degQ}.

In what follows we assume that origin O := (0,0) is a singular point, i.e.
P(0,0) = Q(0,0) =0.

The singular point O is a center if there exists an open neighborhood U of O
where all the orbits contained in U \ {O} are periodic.

The study of the centers of analytical or polynomial differential systems (2) has
a long history. The first works are due to Poincaré [23] and Dulac [11] . Later on
were developed by Bendixson [4], Frommer [12], Liapunov [20] and many others.

Assume that the origin of the analytic or polynomial differential system (2) is
a center. It is well-known that, after a linear change of variables and a constant
scaling of the time variable (if necessary), system (2) can be written in one of the
next three forms:

&= —y+X(z,y), 9 =2x+Y(zy),
(3) x = y+X($7y)v y = Y(xvy)’
T = X(z,y), y = Y(x,y),

where X (z,y) and Y (z,y) are analytic or polynomials without constant and linear
terms defined in a neighborhood of the origin. Then the origin O of the analytical
or polynomial differential system (2) is called linear type, nilpotent or degenerate if
after a linear change of variables and a scaling of the time it can be written as the
first, second and third system of (3), respectively.

In this paper we shall study the differential system of the linear type
(4) t=—-y+X, y=x+Y,

where X = X(z,y) and Y = Y (z,y) are real analytic functions in an open neigh-
borhood of O whose Taylor expansions at O do not contain constant and linear
terms. For X, Y polynomials of a given degree, the Poincaré center-focus problem
asks about conditions on the coefficients of X and Y under which O is a center.

In the study of the center-focus problem the following theorems play a very
important role (see for instance [20, 23, 25])

Theorem 1. For the analytic differential system (4) there exists a formal power
series

o0

W = ZWn = %(1'2 —|—y2) + an(xvy)a

n=2 n=3
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where W; = W;(z,y) is a homogenous polynomial of degree j such that

aw oWz oWy

ows oW,
+( +87y+ ay +> (x+Y(z,y))
= > o+
J=1

where v; are the Poincaré-Liapunov constants.

Assume that the formal power series W converges. If the constants v; = 0 for

1 oo
j € N then there exists a first integral H := §(x2 +y2) + Z W;, and consequently
j=3
the origin is a center. If there exists a first non—zero Liapunov constant v;, then
the origin is a stable focus if v; < 0 and unstable if v; > 0.

Poincaré and Liapunov proved the next two results, see for instance [23, 20, 13,
26].

Theorem 2. A planar polynomial differential system

(5) i=—y+ Y X;(xy), y=z+Y Y(x,y),

j=2 j=2
of degree m has a center at the origin if and only if it has a first integral of the
form

(6) H=Y Hyle.y) = 30 +47) + Y Hyla,)
j=2 j=3

where X, Y; and H; are homogenous polynomials of degree j.

The analytic function (6) is called the Poincaré-Liapunov local first integral.

Theorem 3. An analytic planar differential system

(7) iz_?J"’ZXj(x’y)? y:x+2}/j’($,y)7

=2

has a center at the origin if and only if it has a first integral of the form (6).

Theorem 2 is due to Poincaré, and Theorem 3 is due to Liapunov.

From Theorems 1, 2 and 3 it is clear that an analytic or polynomial differential
system (4) has a center at the origin if and only if the Poincaré-Liapunov constants
vg = 0 for k > 1 (Poincaré’s criterion). Moreover, the vi’s are polynomials over Q
in the coefficients of the polynomial differential system. A necessary and sufficient
condition to have a center is then the annihilation of all these constants. In view of
the Hilbert’s basis theorem this occurs if and only if for a finite number of k, k < j
and j sufficiently large, vy = 0. Unfortunately, trying to solve the center problem
computing the Poincaré-Liapunov constants is in general not possible due to the
huge computations.
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Although we have an algorithm for computing the Poincaré-Liapunov constants
for linear type center, we have no algorithm to determine how many of them need
to be zero to imply that all of them are zero for cubic or higher degree polynomial
differential systems. Bautin [2] showed in 1939 that for a quadratic polynomial
differential system, to annihilate all vy’s it suffices to have vy, =0 for i = 1,2,3. So
the problem of the center is solved for quadratic systems. This problem was solved
for the cubic differential systems with homogenous nonlinearities (see for instance
[25, 31, 32]).

We recall the following definition. Let U be an open and dense set in RZ. We
say that a non-constant C™ with r > 1 function F': U — R is a first integral of
the analytic or polynomial vector field X on U, if F'(z(t),y(t)) is constant for all
values of ¢ for which the solution (z(t),y(t)) of X is defined on U. Clearly F' is a
first integral of X on U if and only if Y =0 on U.

Now we shall introduce another criterion for solving the center problem due to
Reeb.

We need the following definitions and notions. A function V' = V(xz,y) is an
inverse inverse integrating factor of system (2) in an open subset U C R if V €

CHU),V #£0in U and

'(v) ,2(7)
r) T) gy (o0 0y
or 0Oy

=0 P—+

ox dy ox @ Jy
The first integral F' associated to the inverse inverse integrating factor V' is given

by the line integral or path integral

F(%Z/)Z/W<—dy+ )

We note that {V = 0} is formed by orbits of system (2). The function 1/V defines
an inverse integrating factor in U\{V = 0} of system ( ) which allows to compute
a first integral for (2) in U\{V = 0}.

We consider now the relation between the existence of a center and that of an
inverse integrating factor for analytic or polynomial vector fields. The main result
is given by the following theorem which is analogous to Theorems 2 and 3.

Theorem 4. [Reeb s criterion] (see for instance [29]). The analytic differential
system (7) has a center at the origin if and only if there is a local nonzero analytic
inwverse integrating factor of the form V = 1+ h.o.t. in a neighborhood of the origin.

An analytic inverse integrating factor having the Taylor expansion at the origin
V =1+ h.o.t. is called a Reeb inverse integrating factor.

Darboux gave his geometric method of integration in his seminal work [8] of
1878. The geometric method of Darboux uses algebraic invariant curves of a poly-
nomial differential system for computing a first integral of the system. There were
numerous publications on the problem of the center using the Darboux method
during the last part of the 20th century and the beginning of the 21st century (see
for instance [6, 16, 34]). In fact there is the following conjecture due to Zoladek
[34], see also [6]. See these papers for more details on this conjecture.
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Conjecture 5. Suppose that the polynomial differential system (4) has a center at
the origin. Then this system has a Darboux first integral or an algebraic symmetry.

To show that a singular point is a center for system (4) we have two basic
mechanisms: we either apply Poincaré-Liapunov Theorem and we show that we
have a local analytic first integral, or we apply the Reeb inverse integrating factor.
Another mechanism for detecting centers has been given by Mikonenko see [28].

The main objective of the present paper is to analyze the center problem from
the inverse point of view (see for instance [17, 30]). Indeed, either given an analytic
function H of the form (6) we shall determine the analytic functions X and Y in
(4) in such a way that the function H is a first integral of the differential system

o]
(4), or given an analytic function 1+ Z V; in a neighborhood of the origin we shall
j=1
determine the analytic functions X and Y in (4) in such a way that the analytic
differential system (4) has the function V as a Reeb inverse integrating factor.

We say that a center at the origin of an analytic differential system is a weak
center if in a neighborhood of the origin it has an analytic first integral of the form

1 o0
H = 5(acz +y?) [ 1+ Z T; | , where T; is a homogenous polynomial of degree
=1

j. We have characterized the expression of an analytic or polynomial differential
system having a weak center at the origin, see Theorem 15. Moreover we prove
that the uniform isochronous centers and isochronous holomorphic centers are weak
centers.

We have extended the weak conditions of a center given by Alwash and Lloyd
in [1] for linear center with homogenous polynomial nonlinearities (see Proposition
10), to a general analytic and polynomial differential system see Theorem 25. Fur-
thermore the centers satisfying the generalized weak conditions of a centers are weak
centers. Finally as an application we obtain the necessary and sufficient conditions
for the existence of a weak center in a class of polynomial differential systems of
degree four.

2. PRELIMINARY CONCEPTS AND RESULTS
In the proofs of the results that we provide in this paper it plays an important
role the following results.

As usual the Poisson bracket of the functions f(z,y) and g(z,y) is defined as

of 0g Of Og

{fig} = 9y Oy dr

We will need the following result.

Proposition 6. The next relation holds

2m
/O {H27\Ij}|mzcost,y:sintdt = 0

for arbitrary C function ¥ = U (x,y) defined in the interval [0,27].
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Proof. Indeed, if we change x = cost, y = sint then it is easy to show that
ov ov d¥(cost, sint)

{HQ’\I/H —cost.y=sint — Lo — Y5 =
Freos T 8:[/ o r=cost,y=sint dt
Hence,
27 . t=2m
; {H2, U, cost, y—sint @ = ¥(cost,sint)|,—" = 0.
O
The following result is due to Liapunov (see Theorem 1, page 276 of [20]).
Theorem 7. If all the roots \1,..., A\, of the equation
P11 — A P21 - Pn1
P12 P2—A ... Pn2
Pin DPan <o+ DPnn — A
are such that the relation A = miA1 + ...+ mpA,, is not vanishing for an arbitrary
non-negative integers my, ..., my linked by the expression m =mqi +...+m, # 0.
Then for an arbitrary given homogenous polynomial U = U(x1, ..., x,) of degree m
there exists a unique homogenous polynomial V.=V (x1,...,z,) of degree m which

is a solution of the equation

n

ov
Z (pj1.%‘1 + ... —l—pjnxn) ({97 =U.
— X
Jj=1
In particular, for n = 2 the partial differential equation

2% aVv

8 — —y— ={H,V} =0,
( ) xay y@x { 25 } ;
has a unique solution V if and only if

)\1m1 + )\ng = z(ml - m2) 7é 0 with m= mi + Mo 7é 0.

As a simple consequence of Theorem 7 we have the next result.

Corollary 8. Let U = U(x,y) be a homogenous polynomial of degree m. The linear
partial differential equation (8) has a unique homogenous polynomial solution V' of
degree m if m is odd; and if V is a homogenous polynomial solution when m is
even then any other homogenous polynomial solution is of the form V + c(x? +
y>)™/? with ¢ € R. Moreover, for m even these solutions exist if and only if

27
/ U(l’, y)'x:cos t,y=sint dt = 0.
0

In what follows some examples of planar vector fields having a center are studied.

2.1. Hamiltonian system. When system (4) is Hamiltonian, i.e. there exists a
function F' = F(z,y) such that
OF (z,y)

—y+ X(z,y) = *Tya r+Y(z,y) =

OF (z,y)
ox

1
Hence F = §(x2 +y?) + h.o.t. is a first integral.
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2.2. Reversible system. Besides Hamiltonian systems there is another class of
systems (4) for which the origin is a center, namely the reversible systems satisfying
the following definition.

We say that system (4) is reversible with respect to the straight line | through
the origin if it is invariant with respect to reversion about ! and a reversion of time
t (see for instance [7]).

The following criterion goes back to Poincaré see for instance [24], p.122.

Theorem 9. The origin of system (4) is a center if the system is reversible.

In particular this theorem is applied for the case when (4) is invariant under the
transformations (z,y,t) — (—=z,y,—t) or (z,y,t) — (z, —y, —t).

2.3. Weak condition for a center. The following condition weak condition for
a center was due to Alwash and Lloyd [1, 18], see also [18].

Proposition 10. The origin is a center of a polynomial differential system of the
form

(9) t=—-y+Xm, y=z+Yn,

where X,, and Y, are homogenous polynomial of degree m, if there exists u € R

such that
0X oY,
2 2 m m _
(z +y)< 9 +8y> w2 X +yYm),

and either m = 2k is even; or m = 2k — 1 is odd and p # 2k; or m = 2k — 1 is odd,

w =2k and
27
0x,, 0Y,,
—a T=cos =sin dt =0.
/0 (3x+3y> by

In [9] the author proved that if y = 2m then system (9) has the rational first
integral

22+ 9% =22V, —yXon)
([L’Q + y2)m

2.4. Cauchy-Riemann condition for a center. Another particular case of dif-
ferential systems with a center are the systems satisfing the Cauchy—Riemann con-
ditions (see for instance [7]).

Proposition 11. (Cauchy-Riemann condition for a center) Let O be a center of
(2). Then O is isochronous center if P and Q satisfy the Cauchy-Riemann equations

oP _9Q 9P 9Q

10 or _oQ ob _ 0Q
(10) or Oy y ox

A center of system (4) for which (10) holds is called a holomorphic center, which
is also an isochronous center, see for more details [21] and [22]. We recall that a
center of system (4) located at the origin is an isochronous center if all the periodic
solutions in a neighborhood of the origin have the same period.
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3. STATEMENT OF THE MAIN RESULTS

The main results are stated in the following four subsections.

3.1. Analytic and polynomial vector fields with a linear type center. We
state and solve the following inverse problems for the centers of analytic and poly-
nomial vector fields.

Inverse Poincaré-Liapunov’s Problem Determine the analytic (polynomial)
planar vector fields

) N
=(—y+>_ Xj)5- > Vi) o <
(11) X=(-y+ Xj)3x+(x+j=2yj)3y7 for k< oo,

for which the given function (6) is a local analytic first integral where X; = X;(x,y),
Y; =Y;(z,y) for j > 2 are homogenous polynomials of degree j.

Inverse Reeb Problem Determine the analytic (polynomial) planar vector fields

oo
(11) for which the V =1+ Z Vj is the Reeb inverse integrating factor, i.e.
j=1

ov A% (0X(x) +8X(y)>

24 X(y)— =
8x+ (y)ay v ox dy

(12) X ()

The inverse Poincaré-Liapunov’s problem and inverse Reeb problem for the an-
alytic (k = oo) planar vector fields has been solved in the following theorem which
provides the expressions of the analytic differential systems (7) in function of its
first integral (6) or in function of its Reeb inverse integrating factor.

Theorem 12. Consider the analytic vector field X. Then this vector field has a
Poincaré-Liapunov local first integral if and only if it has a Reeb inverse integrating
factor. Moreover,

(i) the analytic differential system associated to the vector field X, for which
H = (22 +4?)/2 + h.o.t. is a local first integral can be written as
(13)

&= _y+z Xj = _y+2({Hj+17m} +91{vax} +... +gj71{H2,.%'}),
j=2 j=1
= 1—|—Zgj {H,x}
j=1

Jj=2 Jj=1

= [14+> g | {H v}
j=1



(i)
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where g; = g;(z,y) is an arbitrary homogenous polynomial of degree j which
o0

we choose in such a way that the series Zgj converge in the neighborhood
j=1
of the origin.
The differential system associated to the vector field X, for which V =
oo

1+ Z V; is a Reeb integrating factor can be written as
j=1

=14 Vi | {Fa}, o= (14> V; |{Fy},

j=1 j=1

o0
where F = ZF]- and Fy = (22 + y?)/2, F; = Fj(z,y) for j > 2 is an
j=2
arbitrary homogenous polynomial of degree j which we choose in such a
o0

way that ZFj converges, i.e. F is an arbitrary Poincaré-Liapunov local
j=2
first integral.

In fact, in the proof of Theorem 12 we provide the expression of the vector
fields having a given Poincaré-Liapunov local first integral and the expression of
the vector fields having a given Reeb inverse integrating factor.

The inverse Poincaré-Liapunov’s problem and inverse Reeb problem for the poly-
nomial planar vector fields (k = m < oo) has been solved in the following theorem
which provides the expressions of the analytic differential systems (7) in function
of its first integral (6) or in function of its Reeb integrating factor.

Theorem 13. Consider the polynomial vector field X,,. Then this polynomial vec-
tor field has a Poincaré-Liapunov local first integral if and only if it has a Reeb
inverse integrating factor. Moreover, the differential system associated to the vec-
tor field X, for which H = (22 +y?)/2+h.o.t. is a local first integral can be written

as

o0
g= |14 g | {H 2}

j=1

{Hntv,zy + 1+ g ){Hm, 2} +. .o+ (L+ g1+ + gm—1){H2, 7},

1+Zgj {Hvy}

Jj=1

= {Hnt,y} + QA+ 9){Hm,yt+...+ A +91+ ...+ gm-1){Ha,y}.
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where

1 oo

H: §(x2+y2)+ZHj:Tle+1 +7—2Hm+...+TmH2
=2
(15)
- /Q (de+1 + (14 g)dHm+ ...+ (1+g +...+gm,1)dH2)
¥
-1
where Q = [ 1+ Zgj , v is an oriented curve (see for instance [33]), T; =
j=1

7j(x,y) is a convenient analytic function in the neighborhood of the origin such that
7;(0,0) = 1, and g; = g;(z,y) is an arbitrary homogenous polynomial of degree j
which we choose in such a way that ) is the inverse Reeb inverse integrating factor
which satisfies the first order partial differential equation

(16)  {Hps1, Q4+ {Hp, (1 +g)Q + . 4 {Ha, (1+ g1+ ...+ gr_1)Q} = 0.

Remark 14. From the proof of Theorem 13 it follows that (16) is equivalent to the
infinite number of first order partial differential equations

0= {Huni1, 91} + {Hm, 92} + ...+ {Hs gm—1} + {H2,9m},

0= {Hmni1,97 — 92} + {Hm, 9192 — g3} + ... + {H3, 919m—1 — g}
a7) +{Hz, 919m — gm+1},

with unknowns the homogenous polynomials g; of degree j > m. Hence by Corollary
6 we obtain the conditions

2m
/ ({Hm+1’ gl} + {Hm’ 92} +...t {H?Hgm—l})'a::cos t,y=sin t dt = O’
0

2
/ ({Hms1,97 — g2} + {Hm 192 — g3} + - .-+ {H3, 919m—1 = 9m}) | _on s yesin 4t =0,
o ,

The first condition, by Corollary 8 guarantees the existence of the solution g, of
first equation of (17), the second condition, again by Corollary 8, guarantees the
existence of the solution gm41 of the second equation of (17), and so on.

3.2. Analytic and polynomial vector fields with local analytic first inte-
1
gral of the form H = 5(:52 + %) (1 + h.o.t.). We say that a differential system

(4) has a weak center at the origin if it has a local analytic first integral of the form
1 o0
H=(@+y") (14 T(n,9) | = Ha®(z,y),
j=1

where T ; is a convenient homogenous polynomial of degree j.

The aim of this section is to study the weak centers for analytic and polynomial
differential systems.
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In the study of the weak centers plays a fundamental role the differential systems
of the form

(18) z=—-y(l4+A)+zp, y=z(l4+A) + yop,

where A = A(z,y) and ¢ = ¢(x,y) are convenient analytic functions, as we can
show from the following theorem.

Theorem 15. An analytic differential system (7) has a weak center at the origin
if and only if this system can be written as

i 3
T= —-y|1+ Z (Tj 1+ 91T] 2+ ...+ §gj_2T1 —+ gj—l)
+£§:({T>1 Hy} + gi{Yj_a, Ho} + ...+ gj—2{T1 HQ})
2 j=2 e T ’ ’
—y(1+A)+zp

(19)

3
29] 2T1 +97 1)

. ]—|—1

Y= Ji(l-i-z — ;- 1+291Tg 2+ ...+
Y
2

50 ({0 a Hay 4+ 9u{T 2 Ha} o+ gy-a{T, Ho) )

where To =1, go =1, g; and Y; are homogenous polynomial of degree j for j > 1

oo
and has the first integral H = Hy [ 1 + Z T; | . Moreover assuming that
j=2

i+ 1 j 3
%qu + %911}72 +..+ igj—QTl +gj-1 =0,
{Y -1, Ha} + g1{ Y2, Ho} + ... + gj—2{ Y1, Ha} = 0,
for 7 > m+ 1, we obtain necessary and sufficient conditions under which the poly-

nomial differential system (19) of degree m and has the first integral

(20) H:H2®:H2(1+,LL1T1+...+Mm_1’rm_1),
where p; = pi(xz,y) is a convenient analytic function in the neighborhood of the
origin for j=1,...,m—1.

The singular point of system (4) located at the origin is an isochronous center if

all the periodic solutions in a neighborhood of it has the same period.

Corollary 16. The weak center of a polynomial differential system (18) is an
isochronous center if and only if

(21) /27r 40 =2
o 14+ A(rcosf,rsinf) ™
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where (r,0) are the polar coordinates, and r satisfies that

H(rcosf,rsinf) =r%/2 | 1 +Z 7Y j(cos 0, sin 0)

j=1

is a constant on any periodic solution surrounding the isochronous center.

A center O of system (2) is a uniform isochronous center if the equality xy—yi =
k(22 4+ y?) holds for a nonzero constant x; or equivalently in polar coordinates (r, 6)
such that x = rcosf, y = rsinf, we have that 6 = k.

Corollary 17. The weak center of an analytic differential system (18) is a uniform
isochronous center if and only if

. =1
T = —y+$;j+l({Hj791}+--'+{H2,9j1});
(22)

=1
Y= x+y;M<{Hj791}+"'+{H2vgj1}>~

Moreover the weak center of polynomial differential system of degree m (18) is a
uniform isochronous center if and only if (22) holds and

{Hj1} + ... +{H2,951} =0,

holds for j > m+ 1. In particular for quasi-homogenous differential system (9) we
have that (22) becomes

T
b= —y+ ———{Ha\ g1},
T y+m+1{ 2, Gm—1}
. Yy

- H,m,,
Y $+m+1{2g 1}

2/(1—m)
-1
and has the Poincaré-Liapunov first integral F' = Hy (1 + m_'_lgm—l) .
m

The inverse approach to study the uniform isochronous center was given in [19].
Theorem 15 has the following additional corollary.

Corollary 18. Assume that the planar differential system (5) has a center at the
origin. Then this center is a holomorphic isochronous center if and only if system
(5) can be written as (18), i.e. is a weak center, with the function A and @ satisfying
the Cauchy—Riemann conditions

0 oA 0 OA

N T )

dr Oy Jdy Oz
Hence p+i(1+A) = f(z) where z = x+1iy, and f = f(z) is a holomorphic function
on C. Moreover, a polynomial differential system (18) with a holomorphic center at
the origin is Darboux integrable.

Remark 19. From Corollaries 18 and 17 it follows that all the uniform isochronous
centers and all the holomorphic isochronous centers for polynomial differential sys-
tems are always weak centers.
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It is important to observe that there is not a relation between isochronous centers
and weak centers, i.e. there exist isochronous centers which are not weak centers
and weak centers which are not isochronous centers. Then for instance the quadratic

isochronous center )
4x 16y
T 0 ) = 1——= )
5 y=a(l-=7)
is not a weak center because it has the first integral H = (9 — 24y +3222)% /(3 — 16y)

for more details see [5]. On the other hand the quadratic system

T=—y—

i=-—y—a"—3y°, §=ux+2my,
has a weak center at the origin because it has the first integral H = (1+2y)(2®+y?)

but it is not isochronous see [5]. In fact in [18] we provide all the quadratic system
with weak centers.

We observe that any linear type center after an analytic change of variables is
locally a weak center. This follows from the following theorem which goes back to
Poincaré and Liapunov, see [23, 20, 27].

Theorem 20 (Poincaré normal form of a nondegenerate center). For a polynomial
differential system (5) with a center at the origin, there exists a local analytic change
of coordinates

(23) u=z+hot, v=y+hot,

and an analytic function ¥ = W(u? + v?) such that the coordinate change (23)
transforms system (5) into the form

o, _on
Ov YT Bu

1
where H = 3 / (14 U(u®+v?)) d(u® + v?). Without loss of generality we can
assume that ¥ (0,0) = 0.

Now we introduce the following definitions and notations.

Let R[z, y] be the ring of all real polynomials in the variables « and y, and let X
be the polynomial vector field (2) of degree m. Let g = g(x,y) € Rz, y]\R. Then
g = 0 is an invariant algebraic curve of X if

0 0
Xg=P5l+ Q% = Ky,
dy

ox
where K = K(x,y) is a polynomial of degree at most m — 1, which is called the
cofactor of g = 0. A function g = g(x,y) satisfying that ¢ = 0 is an invariant
curve (i.e. formed by orbits of the vector field X) is called partial integral. If
g € R[z,y]\R then g is called a polynomial partial integral or a Darboux polynomial.
If the polynomial g is irreducible in Rz, y], then we say that the invariant algebraic
curve g = 0 is irreducible, and that its degree is the degree of the polynomial g. A
first integral F of the polynomial vector field (1) is called Darboux if

F = ek(m’y)/h(‘”’y)gi\l (337 y) ce gﬁ‘"(:r, y)a

where k, h, g1, ..., g, are polynomials and Aq,..., A, are complex constants. For
more details on the so—called Darboux theory of integrability see for instance Chap-
ter 8 of [10].
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We introduce the following definition. We say that a polynomial vector field X
of degree m is quasi—Darboux integrable if there exist r polynomial partial integrals

g1,...,g- and s non-polynomial partial integrals fi,..., fs analytic in D C R?
satisfying
af; af;
X(fi) =P L =K. f;
(fj) ax +Qay jfja
where K; = K;(z,y) is a convenient polynomials of degree m — 1, for j =1,...,s

such that the function

F = F@n/mev g () gh (@, 9) [ (2,y) - f50 (2, y),

is a first integral, where k = k(x,y), h = h(x,y) are polynomials, and A1,..., A,
K1,...,Ks, are complex constants. We observe that a generalization of the Darboux
theory was developed in the paper [14], which evidently contains the above defini-
tion with another name, but for our aim we shall use the name of quasi-Darboux
integrable.

We have the following conjecture.

Conjecture 21. A polynomial differential system (18) having a weak center at the
origin is quasi-Darbouz integrable.

This conjecture is supported by several facts which we give below.

Proposition 22. A polynomial differential system (18) with a weak center at the
origin is quasi—-Darboux integrable in a neighborhood of the origin with the first
integral

m—+1

H = %(gﬂ +y2) [ 1+ ; (2, y)Y;(2,y) | == Haf(z,9),

where Hy = 0 is an invariant algebraic curve and f = 0 is an analytic (non
polynomial) invariant curve with cofactor 2¢ and —2¢ respectively.

3.3. Center problem for analytic or polynomial vector fields with a gen-
eralized weak condition of a center. First we prove the following two proposi-
tions.

Proposition 23. Assume that a differential system (4) satisfies the relation

with p € R\{0}. Then the system can be written as in (18) with

_2(9(-y+X) 09@+Y)
w(%y)—H( o T oy )

)=u(w(—y+X)+y(w+Y)),

and A = A(z,y) an arbitrary analytic function in a neighborhood of the origin.
Moreover system (4) has the inverse integrating factor (xz2 + y?)*/?, and it can be
written as

(25) @ = (22 +y ) Fay = (2 + ) Ey),
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with
e / —Xdy + Ydzx N d(z? + y?)
v\ (@2 Y22 222 + y?)m/2
—Xdy + Yda
(26) 2 4 2 (u=2)/2 / Y T
_ Q_M(m +y) + . ($2+y2)ﬂ/2 Zfﬂ# )
= —Xdy + Yda
1 242 7 if =2
og\z*+y Jr/7 @1 if p

Note that if in (24) we have that p = 0, then system (4) is a Hamiltonian system.

Proposition 24. Consider the polynomial differential system (2) of degree m which
satisfy the relations

27
oP 0
(27) A (895 + aif) ‘a::cost, y=sintdt = 0.
~ m—+1 m—1
Then there exist polynomials H = Z Hj and G = Z G; of degree m + 1 and
j=3 j=1

m — 1 respectively such that system (2) can be written as

i= P={H,z}+ (14 G){Hy,z},

(28) v= Q={H,y}+ 1+ G){Hazy}.

Note that we have extended the definition of “weak condition for a center” given
in subsection 2.5 for a quasi-homogenous polynomial differential system to a general
analytic differential system. Proposition 10 can be generalized as follows.

Theorem 25. [Generalized weak condition of a center of an analytic (polynomial)
differential systems] We consider an analytic (polynomial) differential system (7).
Then the origin is a weak center if there exists p € R\{0} such that (61) hold.
Moreover this differential system can be written as (25) with the first integral:

(14 (1= 1/N)Y + q(H2))dHs + HadY
r= ( ) ) |

with A =2/p and T = Y(x,y) and g = q(Ha) are a convenient analytic functions,
or which is equivalent

T= -y <1 +q(Hs) 4+ (1 —-1/0)T + % (IZI + y%i)) + g{T,Hg},
(29)
j= o (1 () + (1= 1/ + (xff ; yzz)) + 201, ).

Moreover, if (29) is a polynomial differential system of degree m, i.e. T =Y (xz,y)

[(m=1)/2]
is a polynomials of degree m —1 and q(Hs)) = Z a; H ™ here [(m—1)/2] is
j=1
the integer part of (m —1)/2, o is a constant for j =1,...,[(m —1)/2] such that

A—1
1+a1+7/\ 1(0,0) # 0.

then the system (29) is quasi Darbouz-integrable with the first integral F which is
given in what follows
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[m/2]
(i) If \#1 and H (n—1/X) #0, then
n=2
Hy
oy = (m—1)/2)-1 \ VO
Ty 1+ . apH> " amHs
1—1/A2  2—1/Ax 7 [(m-=-1)/2] -1/
The algebraic curves Ho = 0 and
T+ 1+ay Oé2H2 + amHé(mil)/Z]il —0
R 5 WL S 5 N [P Y5 B 5 W
are invariant curves with cofactors {g, Ha} and (1 — 1/A\){g, Ha}, respec-
tively.
(ii) If A\=1 and 1 4+ oy # 0, then
(31) F = Hye~ (Trasfatasty /2 ran #{DA7/([(m-1)/21-1)) /Q+a),

The algebraic curves Hy = 0 is invariant with cofactor {Ha, Y}.

[((m—1)/2]
(i) If 1/[m/2) <A=1/k<land [ax J[ (n—k)| #0, then
n=2,n#k
H
(32) F= 2 0T
N S I 1 (=1
i ppi- k—1
T+ 1_k+_2 R+ anH; ™ log Hy
J=2,j#k
The algebraic curve Hy = 0 and non-polynomial curve
14 oy [(m-1)/2 - .
=7 . Hy “logHy =0
f +1*k+jzzzj:¢kj*k 5~ +opHy Tlog Hp )

are invariant curves with cofactors {Y, Ha} and (1—k){Y, Ha}, respectively.
We observe that — lim 0 flz,y) =0.

(z,y)—(0,
[(m—1)/2]
(iv) If 1/[(m—1)/2] <A=1/k<l,ox=0and [] (n—k)#0, then
n=2,n#k
H.
(33) F= - .
P GV I /(6=1)
T ! g
TRt X g
Jj=2,j#k
The algebraic curves Ho = 0 and
[(m—1)/2]
14 Qaq Qi i—1
=7 gl =
g=T+3—p+ Z —Hj 0
J=2,j#k

are invariant algebraic curves with cofactors {g, Ha} and (1 — k){g, H2}
respectively.
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The given first integrals has the following Taylor extension at the origin F = Ho(1+
h.o.t.) Consequently the origin is a weak center.
In an analogous way we can study the analytic case.

3.4. Linear centers with degenerate infinity. We shall study the following
class of differential systems

m—1 m—1
(34) d=—y+ Y Xj+aRu1, y=v+ Y Y;j+yRum 1,
j=2 j=2
where R,;,—1 = Rpn—1(x,y) is a convenient nonzero homogenous polynomial of

degree m — 1. Such system are polynomial differential systems with a degenerate
infinity. This name is due to the fact that in the Poincaré compactification of (34)
the line at infinity is filled with singular points.

Proposition 26. Assume that a polynomial differential system (5) has a center at
the origin with a first integral H given in (6). Then this system has a degenerate
infinity if it can be written as

m m—1
. — xr
T = ng+1fj{q/j7$} + m7+1 Z{Hmjtlfja gj}7
j=1

Jj=2

m m—1
. = )
y= ng+1fj{‘1’jail/} + p—— Z{Herlfja 9i}s
j=1

j=2
j—1
where ¥; = ZHk'
k=2

Proposition 26 characterizes the polynomial differential systems having a degen-
erate infinity and a linear type center at the origin.

Proposition 27. Polynomial differential system (18) has a degenerate infinity if
it can be written as

m—2 m—2
Jj=2 j=2
(35) m—2 m—2
g= a1+ > M) +Y > ¢+ ypm1,
j=2 Jj=2
i.e. Am,—l = O

All the results of this subsection are proved in section 7.

4. THE PROOFS OF SUBSECTION 3.1

Proof of Theorem 12 . First we prove the “only if part”.Assume that the analytic
differential system (7) has a Poincaré-Liapunov local first integral. Then we shall
see that it can be written as (13).
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Consider a general analytic vector field with a singular point at the origin. Then
it can be written as that we write as

X=Xy | =+ | S Vilay) | =,
= _7( y) or = J( y) ay

where X; and Y} for j = 0,1, ... are homogenous polynomials of degree j. Since the
analytic first integral H starts with Hy = (22 +y?)/2, without loss of generality this
implies that X;(x,y) = —y and Y3(z,y) = z. Hence the following infinite number
of equations must be satisfied

dH 0 Hj
0= —= ) (= Xo+ X
pr <$‘|‘ or T )( y+Xo+Xz+...)
O H.
+(y+ 3+...)(x+Y2+Y3+...)
dy
= Xy +yYe + {Hs, H3}
OH OH
+a X5+ yYs + —— Xo + — Vs + {Ha, Hy}
or oy
O H O H 0H 0H
42 X4+ yVi+ —— X+ =0 Ya 4+ 2 Xy + —Yo + {Hy, Hs} + ...
Or dy Or Jy
Xp b yVy+ =8 X, 4+ 28y, 4 X, - Y, o (H, H,
+r Xy +yY, + Oz -1+ ay n—1+ + Oz 2+ ay 2"’{ 2 H—l}
Consequently
(36)
Xy +yYs + {Ha, H3} = 0,
O H. OH.
e Xy +yYs+ ——Xo + Yy + {Hy, Hy} = 0,
ox dy
3H3 8H3 0H, 0H,
X Y. X Y- X Y- Hy,Hs} = 0
x X4 +yYy + or 3+ y 3+ Ey 2 + ay >+ {Ha, Hs} )
0 Hj 0 H, 9H,
X, +yY,+ 08X, 4 X Yo+ {Hy, Hyy1} = O,
rXnty +8m 14+ oz 2+ oy >+ {H>2, Hpp1}
8H3 8Hn+1 6Hn+1
X, Yo 4+ 8 X, 4+ X Yo 4+ {Hy, Hyyot = 0,
TXpp1 T YYnpr + o7 +.o oz 2 + 2y >+ {Hz, Hypo}

First, we introduce the notations

k

k
XO = ZX] = Z ({H]+17}+91{HJ7}+ ce +gj71{H27})7
j=2 j=2
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where k < oo and g; = g;(x,y) is a homogenous polynomial in the variables x
and y of degree j, for j =1,2,... k.
The first equation of (36) can be rewritten as follows
0H 0H
x| Xo+ 3 +yl|Ys— 3) = 0
Jy Ox

Solving it with respect to X5 and Y5 we obtain

0 H.
X2 - 8y3 —Yyg1 = {Hg,.r} +g1{H2,$} = XQ(x)’
O H.
Yo = 8:103 + 291 = {Hs,y} + 91 {H2,y} := Xa(y),

where g1 = ¢1(z,y) is an arbitrary homogenous polynomial of degree one. By
substituting these polynomials into the second equation of (36) we get

OH O H, OH 0 H.
:C<X3+4+g1 3>+y(Y3—4—9 3>=0

Jy dy dx 10z
By solving this equation with respect to X3 and Y3 we have
0H 0 H.
X3= — 8y4 -0 8y3 —yg2 = {Hy,z} + g1{Hs, 2} + g2{Ha, 2} := X3(z),
0H 0 H.

Yy = 8; + 91 6x3 + g2 = {Ha,y} + g1{Hs,y} + g2{H2,y} := X3(y),
where g5 = go(z,y) is an arbitrary homogenous polynomial of degree two. By
continuing this process we obtain X4,Yy, ..., X,,Y,, i.e.

(37) Xn= {Hpi1,z}+g1{Hn, 2} + ...+ gn1{Ha,z} := X, (x),

Yn = {Hn+17 y} + gl{Hna y} +...+ an — 1{H27y} = Xn(y)a

where g, = g,(z,y) is an arbitrary homogenous polynomial of degree n. Hence,
[ee]

since Z g; converges in a neighborhood of the origin, we get that

j=1
T = _y+X2+X3+"'+Xj+"':_y+X(33):—y+ZXj(x)
j=2
= | 1+) g | {H 2},
j=1
j= 2+ V2 +YVs+. . +Yit+...=a+X@) =2+ ) X(y)
j=2

= 1+Zgj {Hvy}

=1

o0
Note that the function 1—1—2 g; is an analytic integrating factor of the differential
j=1
system (13) i.e. it is a Reeb inverse integrating factor.
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“

Now we prove the “ if ” part. We assume that system (5) has a Reeb inverse
integrating factor. From the equation (12), i.e.

8V1+8V2+8V3+

Ox Oz or

oV, 0V, 0OV
AL 3+”.>

(X1+X2+X3+...)<

dy dy Oy
X, 0V, 08Xy 0Yy 0X3 0Y;
ax+ay+az+ay+ax+ay+'“)

+(Y1+Y2+Y3—|—...)<

= (1+V1+V2+...)(

if follows that

(38)
0X; 0Y:
0= 221,90
Ox * oy’
A% A% 00X, 0Ys
Yi X =
oy A Ox Ox + oy’

oV, Vs oy oy 0X3 0Y; 00X, 0Ys
Y; X X Y- = —
18:1/+ 18m+28x+28y 8w+8y+vl<8x+8y)’

From the first equation of (38) we get that
0B Y 0 Fy

872/7 I_Wa

where Fy = Fy(x,y) is an arbitrary homogenous polynomial of degree 2. From the
second equation of (38) we obtain

8 BFQ 8 aFZ o
e (et ) gy (e ) =o

X, =

hence
(9 F3 8 F2 0 F3 a F2
39 Xo=-3 oy 22y, =S8 gy 02
(39) 2 Ay Yoy 2 8x+18x’
where F3 = F3(x,y) is an arbitrary homogenous polynomial of degree 3. From the
third equation of (38) we obtain

8<X3+V16F‘3+V28F12>+8<§/3_{/18F3_V26F‘2>:0’

Or ox oy dy dy or
thus
OFy 0 F3 O F, OF, O F3 O Fy
X3=— % -V Y; = \% V
3 Oy oy 2oy B 8x+18x+28x’

where Fy = Fyx,y) is an arbitrary homogenous polynomial of degree 4. By contin-
uing this process we get
0X; 0Y;
T
ox 0y

{F;,Vi} + ... +{F,V,_1} =
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by considering that {Fy,V,,} = 0 (V aFj) 4 (VnaF]> we deduce the rela-

oy \ "oxr) oz oy
tion
0 O F; 0 Fy 0 OF; 0 Fy
— [ X; e R )+ X, - V=L —— . -V, —=) =
ax(J—Hﬁay-&- + +Vj1ay)+ay(] Vl@x leé)x)

By using the notation

k k
=Y X=> ({Fu,}+Vi{F,} +... +Via{F, ),

j=12 =12

where k < oo, V; = Vj(x,y) and F; = F;(x,y) are homogenous polynomial in the
variables x and y of degree j, for j =1,2,..., k, we get that

jl(x):{F%m}: X1,

Xi(y) ={Fyt= Y,

Xo(z) = {F3,2} + Vi{Fa,2} = Xo,

(40) Xo(y) = {Fs,y} + Vi{Fa,y} = Ya,

X(2) = {Frgr, 2} + Vi{Fr, 2} + ..o+ Vi { P2} = X,
Xon () = {Frms1,y} + Vi{Fr,y} + oo+ Vin 1 {Fo, gy} = Yo,

(41)
Xm+k—1($) = {F7rz+k793} + Vl{Fm—1+k7x} +...F Vm+k—2{F2yx} = Xpmyk—1,

Xnk—1(¥) = {Fmrr ¥} +Vi{Fm 1wy + oo+ Vi 22,9} = Yogro1,

where k > 1 and Fj, = Fi(x,y) is an arbitrary homogenous polynomial of degree

oo
j, for j > 3, such that the series F' = ZF]‘, converges at neighborhood of the
j=2
origin. By considering that we are interesting in studying the linear type center
then X; = —y and X; = x then we have that Fy = (22 + y?)/2. Therefore

F=?+y?))24Fs+F,+...,

“

is a Poincaré-Liapunov local first integral this prove the “ if ” part of the theorem.
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Moreover, by summing we get

b= —y+ Y X;=Y (Fjzo} +Vi{Fa}+ ...+ Vi {F,2})
j=2 j=2

= 1+ZVJ {va}
=2

g= x4+ Y X;=> {Fiuy} +Vi{Fu}+... + Vi {Fa,y})
=2 =2

= [1+>_ Vi | {Fy),

=2

Thus the proof of the theorem follows. O

Remark 28. From the “only if” part follows that the arbitrariness which we deter-
mine the vector fields with the given Poincaré-Liapunov local first integral is related
oo

with the Reebs inverse integrating factor V. =1+ Zgj and from the ” if” part fol-
j=2
lows that the arbitrariness which we determine the vector fields with the given Reebs

inverse integrating factor is related with the Poincaré-Liapunov local first integral
F=(@?+y?)/2+F3+Fyi+...

Proof of Theorem 13. Now we assume that the vector field X' is polynomial of de-
gree m. First we prove the ”only if“ part. From (37) it follows that if X,, =Y, =0
for n > m + 1, then

(42)

F= —y+ Y Xi(r)=—y+ > K@)
Jj=2 j=2

= —y+{Hpi, 2} + 0 +g){Hn,z}+...+ 1 +g +... +gm_1){Hs, 2},
o0 m

J= z+Y X)) =z+> Xy
j=2 j=2

Clearly, if X,, =Y, =0 for n > m + 1, then

4

(X37)n+1($) = {Hpny2,2} + g1 {Hpt1,2} + ... + +gm-1{Hs, 2} + gn{H2, 2} = 0,
Xn1(y) = AHmi2,y} + 91{Hmt1, 9} + .o+ +gm—1{Hs,y} + gm{H2,y} =0,
Xmk(@) = {Hmarr1, 2} + 1{Hmsr, 2} + - -+ gmak—1{Hz,2} =0,
Xre(W) = {Hmirs1,9} + 9{Hmar, ¥y} + -+ Gmar—1{H2,y} =0,
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for k > 2. This system of partial differential equations of first order is compatible
if and only if the following relations hold

{Hm+1>gl}+{Hm7g2}+~-~+{H37gm71}+{H27gm}: 07
{Hpsi 01} + {Hpmsr—1,92} + ... + {H2, gmst—1} = 0,

for k > 2. Hence, in view of Proposition 8 we get that

(44)

dt = 0.

x=cost,y=sint

2m
/ ({H7rz+1agl}+{Hma92}+-~-+{H3vgm—1})
0

We shall study partial differential equations (43) under the conditions (44).
For k = 2 from (43) we get
(45) de+2 = _glde+1 - ggde + ... = gm_ldH3 - gdeg,

where g, = gm(z,y) is an arbitrary homogenous polynomial of degree m which
satisfies the first order partial differential equations (see (44) for n = m+1.) Hence
the two first partial differential system (43) is compatible, consequently integrating
the 1-form (45) we obtain

Hiis = — / (GndH o1 + GodHs + -+ g 1dHs + g Hy)
Yy

On the other hand from (43) and using that H; are homogenous polynomial of
degree j, we get that

Hpypyo = — (m+Dg1Hpmy1+ ...+ 39m-1Hs + 29, H2) .

m+2
For k = 3 system (43) becomes
{Hmis, 2} + g1 {Hms2, 2} + ... 4 gm{Hs, 2} + gms1{Ha, 2} = 0,
{Hmi3, 4} + 91{Hmi2,9} + -+ gm{Hz,y} + gmi1{Ha,y} = 0,
which in view of (45) system (46) can be written as
{Hpys, 2} + (97 — 92) {Hmy1, 2} + (9192 — 93) {Hp, 2}
+ oo+ (919m-1 — gm){Hs, 2} + (919m + gms1) {H2, 2} = 0,
{Hmis,y} + (97 — 92) {Hms1, 9} + (9192 — 93) {Hm, y}
oot (919m-1 — gm){H3, ¥} + (919m + gms1) {H2,y} = 0,

where g,11 = gm+1(x,y) is an arbitrary homogenous polynomial of degree m + 1
which satisfies the first order partial differential equation

{(91 — 92) » Hms1} + {(9192 — 93) s Hm}
+.o..t {<glgm—l - gm)7H3} + {(glgm - gm-‘rl) >H2} =0.

Hence, in view of Proposition 8 we get that

_/0 ’ ({(9% —92) s His1} + {(9192 — 93) , Hin}

(46)

(47)

(48)

dt =0.

r=cost,y=sint

+.o A+ {(919m-1 = gm)s H3}>
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On the other hand, from (47) and in view of the fact that H; are homogenous
polynomial of degree j we get that

1
Hpys = —m<(m +1) (9 — 92) Hmgr —m (9192 — g3) Hpm

— ...+ 3(919m-1 — gm)Hz — 2(919m — +Gm+1) H2>-

Under the condition (48) system (47) is compatible, consequently after the integra-
tion de 1-form

dHpmis = — (93 — 92) dHpi1 — (9192 — 93) dHp,
— oo+ (919m—1 — gm)dH3 — (919m — Gm+1) dHa,

we get that
Hyys = —/7 (91 — 92) dHpmi1 — (9192 — g3) dH,p,
=+ (919m—1 — gm)dH3 = (919m — Gm+1) dH>
= —%” ((m +1) (97 — 92) Hn1r —m (9192 — 93) Him

— -+ 3(919m—1 = 9m)Hz — 2(919m — Gm+1) Hz)
For k = 4 system (43) becomes
{Hpta, 2} + gi{Hpgs, 2} + oo+ gm{Ha, 2} + g1 {Hs, 2} + gmio{H2, 2} = 0,
{Hm+a, 2} + g1{Hmas,y} + -+ gm{Ha, ¥} + g1 {H3,y} + gms2{H2,y} = 0O,

which in view of (45) system (46) can be written as
(49)
{Hpya, 2} + (*gf + 29192 — 93) {Hmt1,2}

+ (—9%92 + 9391 + 95 — 94) {Hm. 2} + ...+ (919m+1 — 93 9m—1 — gm2) {Ha, 2} =0,
{Hpmra,y} + (93 + 29192 — 93) {Hm+1,y}
+ (=gig2 + 9391 + 93 — 91) {Hm, v} + ...+ (919m+1 — 939m—1 — gm+2) {H2,y} =0,

where g,12 = gm+2(,y) is an arbitrary homogenous polynomial of degree m + 2
which satisfies the first order partial differential equation

0= {—9¢}+29192 — g3. Hmns1} +{—9392 + 9391 + 93 — g1, Hp}

(50)
+ ...+ {(92 — 91)9m + G19m+1 — Gm+2, Ho}.

27
/ ({(—g:f + 29192 — 93) » Hms1}
0

dt =0.

x=cost,y=sint

+...+ {((92 — 91 gm—1+ G19m — 9m+1) ; H3})

Under this condition system (49) is compatible, consequently after the integration
of the 1-form

dHps = — (=93 + 29192 — 93) dHpmg1— .. — ((92 — 971)9m + G19m+1 — Gmt2) dHo>
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and using the property of homogenous polynomial we get that

Hippa = /Z (9 (92 — 91) + 919541 — Git2) AHpmio— ;.

m

= i (m+2—75)(95(92 — 93) + 919541 — gj+2) Hmioj.
j=1

—_

By continuing this process we deduce that
dHpyr = —Br—1dHpyy1 — BrdHpy — ... — (5m+k—2 + gm+k—2)dH2 for k>5,
where 8, = B;(z,y) are homogenous polynomial of degree j, and gp4x—2 is an

arbitrary homogenous polynomial of degree m + k — 2 which we choose as a solution
of the first order partial differential equation

(51) {Be=1, Hmt1} + ... + {Bm+k—2 + Gmtk—2, Ho} =0 for k>5,

Thus

Hyyr = (=Br—1dHpi1 — BedHm — ... — (Bmak—2 + gmir—2)dH?)

S~

1
= (o DowHog Mg o+ .+ 2002 Ho)

for k > 5, where a4, is a convenient homogenous polynomial of degree k.

From these results it follows that the homogenous polynomials H;;q and g;_1
for 7 > m we determine by the line integral and as a solution of the linear partial
differential equation respectively.

By summing we finally obtain

(52)
H= Y H;j=(a+y%)/2+ Y H,
j=2 j=3
= /(1—91—gz—...—gmfl—gm...+g%+.--+93n71+gfn+.--)de+1
¥
+ /(1—g2—gg—...—gm_l—gm...—glgg—glgg+...>de
.
+ / 1—gm gmH—...—29192—legg—...—2glgm,1—g%—g%...)ng
¥

= TerleJrl + T Hm, +~~~+T2H27

where 7; = 7;(,y) is a convenient analytical function, for j =2,...,m+ 1.
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o0
Hence, if Z g; converges in a neighborhood of the origin, then in view of the
j=3
Taylor expansion
2

AR SR <D VR I
j=1

1+Z gj J=3
j=1

we get that
Q= 1—g1—gz—..-—gm_1—gm..-+g%+-.-+g72n_1+931+-..
1+g)2= 1-g2—93— .. —Gm-1—Gm---— G192 — 9193 + .- -,
AI4+g+.  F+9m-1)2= 1=gmn—Gmt1 — .. — 20192 — 29193

— = 201gm1— G — G5 ...

Therefore the function (52) can be written as follows

H = (£C2+y2)/2+z Hj =1mi1Hppr + i Hp + ...+ 12 Hy
=3

Y

On the other hand, by summing (44), (48), (50), (51) and etc. we get

{—91—gg—...—gm_l—gm...—|—g%+...—|—gfn_1+g7271—|—...,Hm+1}
Hl-g2—93— - —Gm-1—Gm---— G192 — 193 + ..., Hp}
1= Gm — Gms1 —--- — 29192 — 29193 — - .. — 2919m—1 — 95 — G5 - .., Ha}

={ % Hnp1} +{Q1 +g1), Hn} + ... +{Q(L+ g1+ ... + gm-1), Ha} = 0.
Hence we obtain that the polynomial differential system (42) of degree m can be
written as (14) where 1 + Z g; is the Reeb inverse integrating factor. In short the

j=2
proof of the “only if part” and the statement (i) follows. This proves the “only if
part” of the theorem.

Now we prove the ” if” part. We assume that V' =1+ Z V; is the Reeb inverse
j=2
integrating factor. From (40) and (41) it follows that If X; =Y; =0 for j > m+1,
then

Xe(z) = {Feyr, 2} +Vi{Fp,z}+ ...+ Vi {Fo,z} =0,

Xe(y) = {Friny} + Vi{Fry} + .o+ Vi {Fo,y} =0,
for k> m+1.

(53)
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System of partial differential equations of first order (53) is compatible if and
only if

(54) Vi, Fi} +{Va, Fa} + ...+ {Vie1, Fo} =0,

where k£ > m + 1. The proof of statement (ii) can be obtained analogously to the
proof of statement (i), if we take g; =V, and Hj4 1 = Fj41 for j=1,...,m.

Finally we observe that from (15) it follows that

OF
FT Q{Hmir, o} + 1+ g ){Hm zh+ ..+ L+ 91+ gm-1){H2,2}),
OF
O = QUHper 4+ (L ) oy} 4+ (4 g1+t g ) H,)),
0’ H 0*H
From the condition = ———, we get the condition (16). In short the theorem
oxdy Oydzx
is proved. O

Example 29. We shall determine the quadratic system having the Reeb integrating
factor

V= (la+ Ay)?/A=1 =14 (2b— A)y + (A — 2b)(A — b)y?

F2(A = ) (A= D)(3A -2y + ..

1+ Vi+ Vot Vadt...,

where A and b are nonzero constants. The quadratic polynomial differential system
(39) in this case becomnes

OF, , OF,
Xo=—""T—-(20—A Yo=—= 20— A
2 ay ( )y7 2 Oz +( )33%

where F3 is a homogenous polynomial of degree 3, which satisfies the conditions
(54) for k = 3. Hence we obtain that F3 = bx’y + rky3, where k is a constant.

Therefore

Xy = —bx? — (A —2b+ 3r)y?, Yo = 2bzy + (A — 2b)zy = Axy.

5. THE PROOFS OF SUBSECTION 3.2

Proof of Theorem 15. Necessity We suppose that system (4) has a weak center at
the origin . Consequently there exists an analytic local first integral H = Hy(1 +

ZTj) := Hy®. Then from Theorem 12 it follows the necessary and sufficient
j=1

conditions on the existence of a linear type center for an analytic differential system
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differential system. Thus (13) becomes

(55)
. 0P yod x 0P x
T = V{H7$}——V<y(1>+H28y)— —Vy <@+28+28>+V2{@,H2}
= (1) (0 S T
j=1 j=1 j=1

= /j+1 ' 3
= —y<1 + (jTj—l + lngj—2 +.+ §9j—2T1 + Qj—l) )

j=2
e’} e}
= —y(l—FZA +%ZQ]
Jj=2 Jj=2

oo .+1 . 3
= ,’L‘(l-ﬁ-Z(j j1+';ngj2+...+2gj2T1+gj1>)

j=2
0o y 0o
= $(1+ZAJ)+§ZQJ
j=2 j=2

Sufficiency Now we suppose that (19) holds and show that then the origin is

a weak center. Indeed, from (55) we obtain that H, = 2V H3{®, H»}, b =

d® i)
—2V®{®, Ho}, thus —— = —— then H = H>® is a first integral, consequently
dH> Ho

the origin is a weak center.

The second statement we prove as follows. Under the assumption

j+1 3
-y Z ( j—1 T+ ng] 2+ ..+ §gj—2T1 +gj—1>

= [(ji+1 j 3
T Z (jTj—l + %ngj—z + ...+ §gj—2T1 + 9;‘—1)
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_|_

NS

o0

> ({Tj—17H2} +9{ Y2, Ha} + ...+ 9j—2{T17H2}> =0
j=m
which is equivalent to the equations

j+1
9 T 1+2

{Yj-1, Ha} + gi{Yj—2, Ho} + ... + gj—2{T1,Ha} = 0

3
gl o+...+ §9j—2T1 +gi-1= 0

for j > m+ 1, from (55) we get the following polynomial differential equations of
degree m.

. +1 ] 3
T= —y|l+ Z (J j-1+ %91Tj72 +...+ §gj72T1 + 9j1)
T m
t3 Z ({Tj—l, Hot + gi{Yj—2, Ha} + ... + gj—2{T17H2})7

Jj=2

. +1 3
Y= $(1+Z ]7 - 1+291Tj2+-~-+29j2T1+9j1>
Y

+2

Ms

(101, Ha} + 9u{05 2, Ho} + .+ gj2{ X1, Ha})

[
¥

J

Here TJ is a convenient homogenous polynomial of degree j, such that Hy =
(2?2 +y?)/2, H j+2 = HyY;, for j =1...m+ 1 and g, is an arbitrary homogenous
polynomial of degree j satisfying (16). Consequently in view of (15) we obtain the
local first integral (20). Thus the theorem is proved O

Example 30. The following cubic polynomial differential system has a center at
the origin (see [35])
1 2

. y
b= —ytg (@ —ay =27~y — ) = —y(I+y+ 5

T 2
5 r—y—y’)

2 (
A 1 2 2 _ .3\ _ Y y 2

g= v45 @y’ —¢’) =a(l+y+ )+ 5@ —y—v?)
Consequently this system can be rewritten as (18) with the functions ¢ and A de-

1
termined as follows 1 + A = 5(1 +((y+1)?, o =2 —y—1y> and hence the center
is a weak center.
In order to illustrate Theorem 13 we study the following quadratic systems.
Example 31. For the quadratic differential system
&= —y — bx? — dy? U=z + Axy,
_ d—b—A ,
the functions Hs and g1 are Hs = 2by Hy + — Y and g1 = (A —2b)y. It

is easy to show that the solution of equation (16) for m = 2, i.e. the equation
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Hs, Q} 4+ {Hy, (1 +¢1)Q} =0, is Q@ = (1 + Ay)?*/A=1. Consequently from (15) the
quadratic system has the following first integral

o) = [ (L A @Hy o+ (14 1))
= (14 Ay)?/4 (2(b(A+ b)(A +2b)Hs + (d — A — b) (1 — 2by + by*(A + 2b))) ,

A+b—d+h
and from it we obtain the Poincaré-Liapunov first integral H = Qb—E—A m b)?;l J(rxé;y)) =
HQ + h.o.t..

In particular if d — A — b = 0, then the quadratic polynomial differential system
has a weak center at the origin with Hy = 2by Hy, and Poincaré-Liapunov first
integral H = (1 + Ay)?*/A~1H,.

Proof of Corollary 17. From the equation A = 0 and in view of of (22) we get

+1 3
Z <j D) Tj1+ 91Tg 2+...+ 59j—2T1 +gj1> =0,
j=2

hence by considering that H; = H>Y;_5 we obtain that

Hj1= 1 (Jo1H; + ... +3gj_2H3s +2g;_1H>),

for j > 2. On the other hand, in view of the previous relation it follows from (22)
that

20 =

M

<
||
N

<{Tj—17 Hy} 4+ gi{Yj—2, Ha} + ... + gj—2{71, H2})

I
E\H
gk

{Hjs1, Ha} + gi{Hj, Ha} + ... + gj—z{H&Hz})

J

(
>

I
E\H
Mg

]7{]911‘[ +...+2gj_1Hs, Ho} + g1 {H;, Ho} + ... + gj—2{Hs3, HQ})

<.
||
N

I
|
&~

<.
+ | =

71 ({jngJ + ...+ 2gj_1H2, HQ) — gl{Hj,Hg} — .. — gj_Q{H37H2})
2

<
||

+ | =
—

I
|
&~

<
||
N

g g Hy Ha} = G+ Vg {Hj, Ha) + . .))

+ | =

I
|
&~

1 Hitor Ho) —gu{Hy Ha} 4. )

<
||

oo

1
= _E]ZZ

(
(
(
(

1 OH,  OH, g , 691
e (@5 S5 g ) - 52+ S (1 2} +.0) )
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- = i : (962+y2)({Hja91}+-~-+{H279j—1}>

Hy 2 j+1
— 1
j=2

Hence, if we assume that {H;,¢1} + ... + {H2,9j—1} = 0 for j > m + 1 then we
obtain the conditions under which the polynomial differential system has a uniform
isochronous center at the origin. Thus the proof of the corollary follows. O

Proof of Corollary 16. First we observe that differential equations (18) in polar
coordinates x = r cosf, y = rsin § becomes
7 = ro(rcosf, rsind), 0 =1+ A(rcos,rsinb),

hence in view of that the center is weak center, then the polar coordinates must be
such that H(rcosf, rsinf) = C = constant. Hence we get that the weak center is
an isochronous center if and only if (21) holds, thus the corollary is proved. O

Proof of Proposition 22. Since at the origin of system (18) there is a weak center,
we have an analytic first integral H = Hsf in a neighborhood of the origin. So
clearly Hy = 0 and f = 0 are invariant curves of system (18). It is easy to check

dH
that —= = 2H5p. From the first integral H = Hy f we get that

dt
dH, df df
—= Hy— =2H Hy— =0.
dtf+ 27 20 f+ 2 0
df e
Thus i —2¢ f, and the proposition is proved. O
Proof of Corollary 18. From the Cauchy—Riemann conditions it is easy to obtain
condition SA 8 SA 8 a( A)
14 14 P+
—+ = =0, — — — =0 —— =0,
o oy oy or 9z

i.e. the functions A and ¢ are harmonic functions. Moreover differential system
(18) in complex coordinates z = x4+ iy and Z =  — iy becomes

(56) Z2=1iz+20(2) := f(2),
where f = f(z) is a holomorphic function, ®(z) = ¢ +iA. Clearly if we have a
differential system z = 2U(z) where ¥ = wu(x,y) + iv(z,y) then this differential
system can be rewritten as follows

T =—yv+2au Y =20+ yu,
i.e. can be rewritten as (18) with 1 + A = v and ¢ = w.

From equations (56) we get

ERCEIN

hence after the integration the existence of the first integral

57) / (fcg) . (J;g))) i [ ) < const.
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follows.

Now we prove that a holomorphic center for a polynomial differential system is
d
Darboux integrable. Indeed from (57) it follows that F = 2 / ImTZ) is a first
z

integral.

We shall study the case when

m—1

f(z) =z(i+9(2)) == H (z — zs)ks for ks €N:ki+ko+...+kp_1 =m—1,
s=1

where z, are complex numbers for s = 1,...,m — 1, such that

(58) Ref’(0) := 0, Imf’(0) = 1.

Under this condition the origin is a holomorphic isochronous center.

We develop 1/f(z) and 1/f(2) as follows

1 Aél) m—1 Agl) . m—1 AEQ) N . m—1 Agkg)
- _ )2 — ks’
f(2) z —r—zs o (2 2) — (2= 2)
5= ()
f(2) f=))
k! , .
where AL = s =l ipl™), ol =0, 60 =1 with o), 5 €
dn
R and f(™(z) = %Sf) We get after the integration
(1) moloa) mol 4(2) mol (k) )
0 S S s
L( z —r-zs o (2 z) = (2 —zs)k
A(()l) m—1 Agl) m—1 AgZ) m—1 Agké)
- —_ d
ﬁ( P TP M AR M

(z — zs)A-(‘l)
F= log ;iol
(z—z)"
s=0
mol @) mol ne
TE G TR TR
m-l A(2) m-1 Ak
— 2 G2 +...+ 2 (1= ky) (2 — 25) Lths
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where zp = 0. In view of the relation

1 arctan —Ys
2=z =/(z—z,)2+ (y — ys)%€ T Es
Hence
g i A g HAD+AD) arctan Lo
F= log (|2 —z) e R B
s=0
m—1 (2) m—1 (ks)
Aj As
V.= - -+
(z—Zs Z (1 —ks) (2 — zg)~1Fks
s=1 5=
m—1 fng) m— A(ks)
s=1

and by considering condition (58) after tedious computations we obtain that the
first integral is a Darboux first integral:

m—1

o Zagl)arctany_ys
) r—x
F= ¢iF = *“I’H (¢ — 2%+ (y —ys)?) ™ es=0 ’
m—1 .
. Zagl)arctanM
r—x
= (2> +¢?) ’NH (2 =22+ (y—9:)2) " es=1 )

So the first integral F' has a Taylor expansion in the neighborhood of the origin has
the form F = (22 + y?) (1 + h.o.t.) . Thus the holomorphic isochronous center is a
weak center. In short the proposition is proved. (I

We observe that the problem on the existence the first integral for the complex
differential system was study in particular in [27]

Proof of Proposition 23. From (24) it follows that
r(—y+X - dzp)+ylx+Y — yp) =0,
o(—y+X) 0@+Y)
ox dy
—y+ X =—-vy+uzp, z+Y =zv+yp,

where A = 2/p and ¢ = . Thus

where v = v(z,y) is an arbitrary function. Denoting v = 1 4+ A we get that
differential equations (4) coincide with (18). On the other hand in view of the
relations

0H, O0H>
(*Z/JFX)WJF( r+X)—— oy

which is equivalent to

0 —y+ X 0 z+Y B
) 5 (b ) oy (@) =0

N Hyp = A, 8(—y+X)+8(x+Y) 7
dx dy
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i.e. Hj is inverse integrating factor. Thus differential system (4) can be written as
(25) with F' given by the formula (26). In short corollary is proved. O

Proof of Proposition 24. Suppose that P and @ can be written as in (28) where
H and G are polynomials, and we shall see that such polynomials exist when (27)
holds. Then

oH oH
— =—yG-P, — =-— .
9y yG S Ba G+ Q
o0 9*H
H sideri h h
ence by considering that e 8y 8y o we get that
oG oG or  0Q
- — H —
* Ay Yor = {H. G} = Oz oz oy oy’
By considering that (27) holds, then in view of Corollary 8 we deduce that there
m—1
exists a polynomial G = Z G such that
j=1
3G 0G; BP 0Q,
_ H e J

We can determine the function H as follows

~ T m—1 y m—1
= [ (2> Gr@i- [ WY G+P)|  dn
T Yo j=1

0 j—
J 1 T=x0

where G; = Gj(x,y) is the solution of equation (60). In short the proposition is
proved. ([

We observe that from (28) it follows that

- oP 0
xP+yQ:{H7H2}7 (9:17 +£_{H25G}

thus in view of Proposition 6 we obtain that

27
/ (2 P(2,9) + 4 Q(,9)) lo—cont,y—sinedt = O,
0

oP 0Q
/o (8:5 + ay) le=cost, y=sintdt = 0.

We consider an analytic differential system (7) under the assumptions

oxX 9y
(w2+y2)<8x+6y>— p(aX +yY),

27
0X 0Y
a . @=cos t, y=sin tdt = )
[ (G5 bremssmamai = o

where 1 € R\{0}.

(61)

The previous result can be extended for the analytic vector field. Thus we have
the following proposition.
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Proposition 32. Let (2) be an analytic differential system which satisfies the re-

lation
27
oP  0Q
[) (895 + ay) ‘a::cost, y=sintdt =0.

Then there exist analytic functions H = ZHj and G = Z G; such that

j=2 j=1
: oH - . OH .

t=P= oy G={H,z}+G{Hz,2}, §=Q= %‘HUG ={H,y}+G{H2,y}.
Proof. 1t is analogous to the proof of Proposition 24. O

Finally We have the following remarks related with differential system (18).

Remark 33. (a) It is easy to observe that the singular points of differential
system (18) lies on the intersection of the curves

(*+y?) o(z,y) =0  (z*+5%) 1+ A(z,y)) = 0.

In particular if A = 0 then the only singular point is the origin. If the vector
field is polynomial of degree m, then by Bezout Theorem the mazimum
number of singular points of system (18) is (m —1)? + 1.

(b) If in (18) we assume that A = w(z? + y?) — 1, and ¢ = N2 + y?), then
system (18) becomes

i=-yw@+y*)+zA2*+y?), g=zw@®+y?) +yra® +y?),

which is called the lambda—omega system (see for instance [15]).
(¢c) It is well known the following result.
Let X be an analytic vector field associated to differential system (4).
Then X has either the focus or a center at the origin, and under a formal
change of coordinates differential system associated to X can be reduced to
the Birkhoff normal form

b= —y(1+ So(2? +9?)) + 251 (2% + y?),
= (14 S2(z®+97) +ySi(z* +97),

where S; = Sj(x? +y?) for j = 1,2 are formal series in the variable z* +y>
(see for instance [3]). Clearly these differential equations are particular case

of (18).

6. THE PROOFS OF SUBSECTION 3.3

Proof of Theorem 25. We shall study only the case when the differential system is
a polynomial differential systems of degree m.

It is possible to show that condition (24) is equivalent to (59). Hence from the
first of condition of (61) and in view of Proposition 23 we get that a polynomial
differential system (4) can be written as (25) with F' given in the formula (26).
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On the other hand in view of Proposition 24 and the second of conditions (61)
we get that there exist polynomials H = H(x,y) and G = G(z,y) of degree m + 1

and m — 1 respectively, such that the following relations hold
) i= —y+X={H,z}+G{Hy,z},
j= z+Y ={Hy}+G{Hs,y},

Hence ax oy
a2 T T {H2, G}, =X +yY ={H, Ha},

consequently condition (24) becomes 2Hy{Ha, G} = u{H, Hy}. Thus
NHo{H>,G} = {H, Hy} <= {Ho, H + \H2G} = 0,

where A = 2/u. Hence

(63) H = —\H>G + \p(H,) := H,Y

here p(H>) is a polynomial of degree [(m — 1)/2], where [(m — 1)/2] is the integer
part of m — 1)/2 such that

p(HQ) = a1H2+a2H22+. . .+OémH£"L_1)/2] = HQQ(HQ) and G = 71/)\ T+q(H2)
Thus by putting (63) into differential system (62) we get

b yfyjyaﬂzgy(1+r+a)

- _HQ%— (1+%T+q(ﬂz)),

- —y (1 +4(Hz) + (1= 1/N)T +1/2 (xif +yg§)> + 50},
g = x+%§+xG:H2%§+x(1+T+G)

- HQ%JF;E(H%TJFM(HZ'))

= <1 +q(Hs) + (1= 1/N)T +1/2 <xglf + yzD) + %{T,HQ}.

Consequently '
Hy, = Hy{Y,Hs},

. A—1
= (1 2 gm)) (1)
hence
dY _1-X, 14 q(H>)
dHy N Ho Hy,

After the integration this first order linear ordinary differential equations we have
the following solution

_ 1 H
oo
2

where C' is an arbitrary constant. Consequently we have the following particular
cases.
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37
[(m=1)/2]
(i) fA#1and ] (n—1/A) #0, then
n=2
Y- g/t I+ar  Hy OlmHg[(m_l)/Q]_l
2 1—1/x 2-1/x 7 [(m-1)/2]-1/\
(ii) If A =1, then
[(m—1)/2]-1
a3H22 OémHQ
T=C-(1 log Hy — cio Hy — — -2
(i avlog il = aatla = 5 (n 1771
[(m=1)/2]
(i) 1 <A=1/k<1/[(m—1)/2]and [] (n—k)#0, then
n=2,n#k
_ 14+ o _
__grk=1( _ 1—k 2—k
T= —H( C+ T H; 2_kH2
k42 110 Qi [(m—1)/2]—k
—ay log Hy — H, — H}—... - —™ ___H :
k08 M2 T Gk M2 T Ty T [(m—1)/2]— k2 )
[(m=1)/2]
(iv) If 1/[(m—1)/2] <A=1/k <1,z =0and [[ (n—k)#0, then
n=2n#k
[(m=1)/2]
_ 1+ ag o 4
YT=Hy'C- - —Lmj.
2 ¢ 1—-k Z j—k 2
Jj=2,j#k

Excluding the constant C' in the obtained solutions we deduce the first integrals F'
given in formula (30), (31),(32),(33). |

A—1
Remarks 34. (a) If in the equation (29) the relation 1+a1+TT(O, 0) =0,

holds then the origin is not linear type. Indeed, under this condition the
given equation becomes

m—1 i [(m-1)/2]
_ , it d
—y [ d-1/n+ m + Z a;Hy ™ | + {7, Ha},
j=1 j=2
m—1 j [(m—1)/2] y
j—1
D=1+ 3 e |+ ST M)
j=1 j=2
m—1
where T = Z T;, and T; is a homogenous polynomial of degree j for
j=1

j=1...,m—1
(b) The first condition (61) is necessary as it follows from the next example.
Consider the analytic differential system

. B H, % 2 nB _
i = <1+g+1G> 5110y +az(2?+y?)" = -y +X,

(64)

. B Hy 0G _
Y= :1:(1+5+1G> F+10z +ozy(x er) =z+Y,
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where o (Liapunov constant) and 8 > 0 are real numbers, G = G(x,y) is
an analytic function in R%. It is easy to prove that (64) satisfies the first
of condition (61) for arbitrary o # 0 with p =2(8+1) and A=1/(8+ 1),
but the origin of this system is a focus . Moreover differential system (64)
can be rewritten as

b= (@ + )T R}, g= "+ Ty,
where V = (2% 4+ 42)P+1 is an inverse integrating factor and a first integral
18 5
1+ —G

+1 j
e 26(93267+y2)ﬂ + aarctan(y/z) if B #0,

H2€_2G_2a arctan (y/x) lf ﬁ =0,
defined in R? \ (0,0). It is easy to prove that in this case

Oy+X) L OE+Y) i 6y 4 90(8 + 1)@ + )P,

Ox dy
consequently
0~y +X) A +Y)
=cos =sin =2 1 i

(¢) The second of condition (61) for analytic differential system is necessary
as it follows from the next example. If it holds then in view of Proposition
24 we get that analytic differential system (7) can be written as (28). In
this case we have

/02“ (8(—y8 ; X) N a(xaz Y)

) |.’,8=COS t, y=sin tdt

2T

= {H27 G} |a:=cost,y=sintdt = O,
0

and that differential system (28) satisfies the second conditions of (61) for
arbitrary G and H. Clearly there exist analytic function G and H for which
the origin is a focus and the first conditions of (61) does not hold.

7. THE PROOFS OF SUBSECTION 3.4

Proof of Proposition 26. From (14) and (34) it follows that
8Hm+1 aH’H’L

m-1Yy = —TR;_1,
) Dy +q oy + .o+ gm—1Y x 1
OH 1 0 H,,
+ 91 +-~-+gm—1x:yRm—1~
ox ox
Thus

OHpv1  OHpio oH,  OH, OH,  OHy\
dy L 1<y dy i 8x>+"'+gm1<y8y +m8x>_0'

Hence by considering that H; is homogenous polynomial of degree j we get that

1
Herl = _m7+]_ (mngm =+ (m — 1)92Hm,1 4+ ... 2gm71H2> .
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Substituting this polynomial into (65) we obtain

1 OH,, dg1 OH,,
= (& H, S 1
m+1(m By g1+m 9y (m+1)g y
8H2 8gm—1 aHZ
e+ 2—=gm 2H. — Dgm-1——
+ot 8yg 1+ 2Hs oy (m+1)g 18y)

_ ! OHpy , OHn\ 091 ( 091, 091 0Hn
Com+1 e yay oy o yay dy

1 6H2 6H2 6gm_1 8gm_1 69771—1 8H2
+'“+m+1(<x8x +y8y> y "Tor Y Jy dy
T m—1
= mt1 ;{Hm—&-l—jv gj} =aRp_1.
1 m—1
Thus R,,—1 = pe ;{Hm_lrl_j, gj}. So we proved the equation of & in (35).
The proof for g is similar. O

Proof of Proposition 26. Follows from the equalities

m—2 m—2
t= —y(l+A)+zp=—y(l+ Z A+ Z A —yAi + 20m1
j=1 j=1
m—2 m—2
g= 2(1+N)+ye=a+ D A)+y > Aj+ahm 1+ yom
j=1 j=1

Thus the following relations must be hold
YA+ T0m_1 = TRy 1, TApm_1 +YOom—1 = yRpm_1,

hence A,,—1 =0 and ¢,,—1 = R;,—1. In short the proposition is proved. O

8. APPLICATION OF THEOREM 12 AND 13

In this section we study how to determine the Poincaré-Liapunov first integral
and the Reeb inverse integrating factor for a given analytic or polynomial differential
system. This problem is solved by applying Theorems 12 and 13.

Given an analytic vector field X with a linear type center at the origin of coor-
dinates, we shall use the expression of (13) to determine its first integral H and its
Reeb inverse integrating factor. Thus, from (13) equating the terms of the same
degree we get

{Hjt1, 2} + gi{Hj 2} + ...+ gj—1{Hz, 2} = X},
{Hj+lay} +91{H],y} + .. +gj—1{H27y} = }/}7
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for j > 2. Hence

6;;3 = —X»—ygi,
88123 = Y —zq1,
OHi _ .  OH
By = —4A3— 0 By — Y92,
OHi _ o OHy
or 3— 01 O g2,
(66) 88215 = —Xy—g 86];4 - 92887};3 — Y93,
OHs _ ., _ OHy _ OHs _
or 4— 91— o g2 o xgs,
OHe _ . _ OHy  0Hy,  OHs
dy = 501 dy g2 dy g3 dy Y494,
OHs _  _ OHs _ OHy  OHs
or 5 —J1 o g2 o g3 o xg4,

From the first two equation of (66) it follows that g must satisfy the first order
partial differential equation

8X2 0Ys
(67) {H2>gl} 87177

which by Corollary 8 has a unique solutlon g1. Substituting g; into the first two
equations of (66) and using the Euler’s Theorem for homogenous polynomial we

1
obtain H3 = g (I‘Yé — ng — Zngg) .

We determine g5 as the solution of the first order partial differential equation

8X3 0Ys

{Hs, 92} = +87 —{Hs, 91},

where ¢; is the solution of (67). Then by Corollary 8 we get that under the condition

™ OXy 0Ys
/0 ((’)J; + = or {H3791})

there exists go = ga(x, y) of the form go(x, y)+cHy where ¢ is an arbitrary constant.
Hence from the third and fourth equation of (66) we get

dt =0,

r=cost,y=sint

1
H, = 1 (xY3 — yX3 —3g1Hz — 292 H>) .

We determine g3 as the solution of the first order partial differential equation
8 X 0Y,
{HQag?)} . + == o1 - {H4agl}_{H3792}7

where g1, g2, H3 and Hy are solutions of the previous differential equations. Then
by Corollary 8 we get that there exists a unique solution gs. Hence from the fith
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and sixth equation of (66) we get
1
Hs = £ (2Yy —yXy —4g1Hy — 392 H3 — 2g3H>) .

By continuing this process we obtain the expression H and of the inverse integrating
-1

factor | 1+ Z g;

j=1

In order to illustrated this previous algorithm for computing the homogenous
polynomials g;’s and H;’s we have the following proposition.

Proposition 35. The polynomial differential system of degree four
= —y(l+nix+ ngy)
(68) +z(a1z + asy + asx> + a7y® + agx’y + a9$:l/2)7
y= z(l+mnz+nay)
+y(a1z + a2y + agx® + a7y3 + a8x2y + agacyZ),

has a weak center at the origin if and only if one of the two set of condition holds

at +a3 # 0,
ainy + agng = 0,

(69)
2a3a¢ + a1 (a? — 3a3)ar + az(a3 — a?)ag = 0,

2a3aias + az(a3 — 3a?)ag + 3ai(a? — a3)ay = 0
or

n?+n3# 0,
ainy +agng = 0,

(70)
2nine + a1(3n? — n3)arz +n1(n} —nd)ag = 0,

2n3nias + 3na(n3 — ni)ar +n1(3n3 — n})ag = 0.

Moreover system (68) under conditions (69) or (70) is invariant with respect to a
straight line.

Proof. Necessity. We suppose that the origin is a center of (68) and we shall prove
that (69) or (70) holds. First we prove the necessity of the condition ainq+agngs = 0.
Indeed, from Theorem 13 it follows that the differential system (68) can be written
as

{Hs, 2} 4+ (1 + g1){Hy, 2} + (1 + g1 + g2){H3, v}

+(1+ g1+ g2 + g3){Ha, v}

= —y(1 +nyz + noy) + z(ar1r + asy + agz® + ary® + agr?y + agry?),
{Hs, yt + (L +g){Ha,y} + (1 + 91 + g2){H3,y}

+(1+ g1+ g2 + g3){H2, 7},

= z(1 4+ ma 4 nay) + y(ar1x + azy + asz® + ary® + agz®y + agry?)

(71)
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We prove that this partial differential system has solution if and only if a;n; +
asng = 0. Indeed, from (71) equating the terms of the same degree we obtain

{Hs,z} + gi{H2, v} = —y(nix + nay) + x(ar1z + azy),
{Hs,y} + g1{H2,y} = z(niz + n2y) + y(ar1z + ay).

By determining the homogenous polynomial g; as the unique solution of the equa-
tion {Ha, g1} = (n2+3a1)z+(3az —nq)y, we get that g1 = (n1 —3az2)x+(n2+3a1)y.
By the homogeneity we finally obtain that Hs = 2Hs(asx —a1y). By inserting these
polynomials into the system

{Hy, 2} + g1{H3, 2} + go{Ha, 2} = 0,

(72) (Haoy) + 0 (Hay) + g2{Hay} = 0,

Hence we get go from the equation {Hs, g2} + {Hs,91} = 0.
By Corollary 8 we deduce that this equation has solution if

27
(73) / {H37 gl}lz:cos t,y=sin t dt = 47T(a’1n1 + a2n2> =0.
0

We study the case when asa; # 0. Then we consider system (68) with ny = — a2z,
ai

In view of (73) and by the homogeneity of Hy from (72) we get that

3a1 +n
H, = 71(1 2 Hyy ((a? — a3)y — 2a1a22) + c1 H3,
1
3a1 +n
go = %(my — asx)? + coHo,
1

where ¢; and ¢y are arbitrary constants. By inserting g1, g2, H3 and Hy into the
equation

{Hs, v} + g1{Hy,x} + go{H3, 2} + g3{H2, 2}
= z(agx® + azy® + agx®y + agry?),

{Hs, y} + 91{Ha,y} + 92{H3,y} + g3{H2,y}
= y(agx® + ary® + agz?y + agzy?)

(74)

and by Corollary 8 we get that the equation
{Hy, g1} + {Hs, g2} + {H2, 93} = 5(a62” + azy® + asz’y + agzy®)

has a unique solution g3. From (74) we can obtain the homogenous polynomial H.
Consequently we get that equations (71) have solutions if and only if te relation
ainy + asng = 0 holds. The case when ajay = 0 it is easy to study. Thus the
necessity of this condition is proved.

Now we study the remain equations of (66), i.e.
{Hji1, 2t + gui{Hj, 2z} + ...+ gj-1{Hz,2} =0
{Hjr1, v} + o {Hj, v} + ..+ gj—1{H2,y} =0,
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for 7 > 6. For j = 6 we get

0 Hg _ 0 Hj 0Hy 0 Hj

(75) ay = -9 Dy — 92 dy — 93 Dy — Y94,
0 Hg O0Hs OHy 0 Hs
or N or Oz — 9 Ox ~ 94

where Hj, Hy, H5, g1, g2 and g3 are homogenous polynomials obtained in the pre-
vious equations. The homogenous polynomial Hs which satisfies (78) exists if and
only if the homogenous polynomial g4 is a solution of the equation

(76) {H57 gl}+{H4a 92}+{H3a 93}+{H27g4} :Oa
and by Corollary 8 we need that

2m
0 / ({H3vg3} + {H47 92} + {H5’ gl})|a::cos t,y=sin tdt
0

37T(77,1+2(12)
= " T (A X — ag )
s (CL1 2 — ag 1)7

(77)

where \; and )\, are defined as

1
AL = 52 (2a3a6 + a1(a? — 3a3)ar + az(a3 — a})ay) ,
2
Ag 1= 2 (2a3a1as + az(a3 — 3ai)ag + 3a1(af — ad)az) .
oW1

Under the condition (78) differential equation (76) has a solution g4 which by
Corollary 8 can be obtained with arbitrary term of the type c(z? + 32)2.

By using the homogeneity of Hg we get

5 4 3 2
Hs = ——=g1Hs — —goHy — —g3H3s — —g4H>.
6 691 5 692 4 693 3 694 2

Since the integral of homogenous polynomial of degree 5

2m
/ ({H67 gl} + {H57 92} + {H47 93} + {H37 g4})|x=cost7y=sint dt = 03
0

then by Corollary 8 we obtain that there is a unique homogenous polynomial gs
satisfying

{Hs, g1} + {Hs, 92} + {Ha, g3} + {Hs3, g4} + {H2,95} = 0.

Partial differential equations of first order

dH; OHs  OHs  O0H,  OH;

(78) Ty— —g1 y — 92 dy — g3 ay — 94 dy — Y95,
0 Hr 0 Hg 0 Hy OHy 0 Hs
Br T e e %ar o T

have a solution if and only if

2m
/ ({H'?a gl} + {H67 92} + {H47 93} + {H37 g4})|m:cost,y:sint dt
0

71'(3&2 —'fll)
= " om2al (L1 + p2A2) =0
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where H; and g;_; for j = 2,3,4,5,6 are homogenous polynomial of degree j, and
w1 and po are
2781a%a3 + 2673a3a3n, + 690a3asn? + 819a3 + 927azn, + 230a3n? — 216ca3,
5301a3a3 + 1305a3aon, — 414a3n? — 2457a1a3 — 2781ara3n; — 690a;a3n? + 648a;d’c,
respectively, where ¢ ia a constant. Under the previous condition the homogenous
polynomial H7 can be calculated and we obtain
6 5 4 3 2
H;=——g1Hs — —goHs — —gsHy — —gsHs — —gs5Ho>.
7 791 5 792 5 793 4 794 3 795 2
By solving the system
2
m202 £ e = 0,
2a2
71'(30,2 — ’fll)

25243 (A1 + p2)e) = 0,

with respect to A\; and A2 and by considering that the determinant of the matrix
of coefficients is

(2a3 + n1)(3az — n1)(379a3 + 259asn, + 4617),

and assuming that (2as + n1)(3az — n1) # 0 we deduce that A\ = Ay = 0. It
is possible to study the case when (2az + n1)(3az — n1) = 0 and the case when
aias = 0. Thus we obtain the necessity of condition (69). In analogous way we can
study the case nang # 0.

Sufficiency. We need the following results. Let
(79) T =K1 X + KoY, y=—koX + K1Y,

be a non-degenerated linear transformation, i.e. k3 + x5 # 0. Then differential
system (18) becomes

X= -v (1 +A(X, Y)) +XQX,Y),
(80)
V= X (1 +A(X, Y)) FYQX,Y),

where A(X,Y) = A(ki X + koY, —ko X +5k1Y) and G(X,Y) = (k1 X +rK2Y, —ko X +
I€1Y).

The proof of the next claim is easy. The differential system (80) is invariant
under the transformation (X,Y,t) — (—X,Y, —t) if and only if it can be written
as

X= -Y(1+6:1(X%Y))+X%20,(X2Y),

(81) _
Y= X(1+61(X%Y)) +XYOs(X2Y),

and the differential system (80) is invariant under the transformation (X,Y,t) —
(X,-Y,—t) if and only if it can be written as

X= -Y(1+61(X,Y?)+XY0y(X,V?),

(82) .
V= X(1+60:(X,Y?)+Y20,(X,Y?),
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Doing the change of variables (79) to system (68) we obtain system (80) for m =
4. From the claim system (68) written in the form (81) is invariant under the
transformation (X,Y;t) — (=X, Y, —t) if and only if

k1n1 + k2n2 = 0,
kias — kear = 0,
(83) 2 2 2 2 2
2/432(16 + K’/l(lfl - 3[‘@2)(17 + HQ(KZQ - Hl)ag = 0,
2k3k1as + Ko (k3 — 3Kk%)ag + 3k1 (K2 — K3)ar = 0,

and it is invariant under the transformation (X,Y,t) — (X, =Y, —t) if and only if
king — koni + k1a1 + koas = 0,
(84) 2K3a6 + k1 (3k3 — K3)ar + k1 (K3 — K3)ag = 0,
2K3k1a8 + 3k (K3 — K3)ar + k1(3k3 — k3)ag = 0.

We suppose that (69) or (70) hold and we claim that then the origin is a center
of system (68). Now we prove this claim. First we study the case when a} +
a3 # 0. Then after the change 2 = a1 X — a2Y, y = a2 X + a1Y, we get that this
system coincides with system (81) for m = 4 and with k; = a1 and k2 = az, and
consequently system (68) is invariant under the change (X,Y,t) — (—X,Y, —t) i.e.
it is reversible. Thus by Poincaré Theorem 9 we get that the origin is a center. We
suppose that n? + n2 # 0. Then after the change z = n1 X — nyY, y = no X +n,Y,
we get that this system coincides with system (82) for m = 4 with k; = n; and
K2 = m2, and consequently system (68) is invariant under the change (X,Y,t) —
(X, =Y, —t) i.e. it is reversible. Thus in view of the Poincaré Theorem we get that
the origin is a center. By considering that x? + k3 # 0. Then from the two first
conditions of (83) and (84) it follows that a;ny +azne = 0. In short the proposition
is proved. O
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