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CENTER PROBLEM FOR Λ–Ω DIFFERENTIAL SYSTEMS

JAUME LLIBRE1, RAFAEL RAMÍREZ2 AND VALENTÍN RAMÍREZ1

Abstract. The Λ-Ω systems are the real planar polynomial differential equa-
tions of degree m

ẋ = −y(1 + Λ) + xΩ, ẏ = x(1 + Λ) + yΩ,

where Λ = Λ(x, y) and Ω = Ω(x, y) are polynomials of degree at most m − 1

such that Λ(0, 0) = Ω(0, 0) = 0. We study the center problem for these Λ-Ω
systems. Any planar vector fields with linear type center can be written as an
Λ-Ω systems if and only if the Poincaré-Liapunov first integral is of the form

F =
1

2
(x2 +y2)(1+O(x, y)). These kind of linear type centers are called weak

centers, they contain the class of center studied by Alwash and Lloyd [1], and
also contain the uniform isochronous centers, and the holomorphic isochronous
centers, but they do not coincide with the all class of isochronous centers.

The main objective of this paper is to study the center problem for two
particular classes of Λ-Ω systems of degree m.

First if Λ = µ(a2x − a1y), and Ω = a1x + a2y + Ωm−1, where µ, a1, a2
are constants and Ωm−1 = Ωm−1(x, y) is a homogenous polynomial of degree

m− 1, then we prove the following results.
(i) These Λ-Ω systems have a weak center at the origin if and only if (µ +

m− 2)(a21 + a22) = 0, and

∫ 2π

0
Ωm−1(cos t, sin t)dt = 0;

(ii) If m = 2, 3, 4, 5, 6 and (µ + m − 2)(a21 + a22) ̸= 0, then the given Λ–Ω
systems have a weak center at the origin if and only if these systems
after a linear change of variables (x, y) −→ (X,Y ) are invariant under

the transformations (X,Y, t) −→ (−X,Y,−t). .
Second if Λ = a1x + a2y, and Ω = Ωm−1, where a1, a2 are constants and

Ωm−1 = Ωm−1(x, y) is a homogenous polynomial of degree m − 1, then we
prove the following results.

(i) These Λ-Ω systems have a weak center at the origin if and only if a1 =

a2 = 0, and

∫ 2π

0
Ωm−1(cos t, sin t)dt = 0;

(ii) If m = 2, 3, 4, 5 and a21 + a22 ̸= 0, then the given Λ–Ω systems have a
weak center at the origin if and only if these systems after a linear change
of variables (x, y) −→ (X,Y ) are invariant under the transformations
(X,Y, t) −→ (−X,Y,−t).

We observe that the main difficulty to prove results (ii) for m > 6 is related
with the huge computations necessary for proving them.

2010 Mathematics Subject Classification. 34C05, 34C07.
Key words and phrases. linear type center, analytic planar differential system, weak center,

reversible system.

1



2 J. LLIBRE, R. RAMÍREZ, V. RAMÍREZ

1. Introduction

Let X = P
∂

∂x
+ Q

∂

∂y
be the real planar polynomial vector field associated to

the real planar polynomial differential system

(1) ẋ = P (x, y), ẏ = Q(x, y),

where the dot denotes derivative with respect to an independent variables here
called the time t, and P and Q are real coprime polynomials in R[x, y]. We say
that polynomial differential system (1) has degree m = max {degP, degQ}.

In what follows we assume that the origin O := (0, 0) is a singular or equilibrium
point, i.e. P (0, 0) = Q(0, 0) = 0.

The equilibrium point O is a center if there exists an open neighborhood U of
O where all the orbits contained in U \ {O} are periodic.

Suppose that the polynomial differential system (1) has a center at the origin.
It known that doing a linear change of variables and perhaps a constant scaling of
the independent variable, system (1) becomes in one of the next three systems:

(2)
ẋ = −y +X(x, y), ẏ = x+ Y (x, y),
ẋ = y +X(x, y), ẏ = Y (x, y),
ẋ = X(x, y), ẏ = Y (x, y),

where X(x, y) and Y (x, y) are polynomials starting at least with quadratic terms
in a neighborhood of the origin. If the origin of system (1) is a center we say that
it is of linear type, nilpotent or degenerate if after a linear change of variables and
a scaling of the time it can be written as the first, second or third system of (2),
respectively.

The study of the centers of analytical or polynomial differential systems (1) has
a long history. The first works are due to Poincaré [15] and Dulac [6] . Later on
were developed by Bendixson [3], Frommer [7], Liapunov [12] and many others.

Here we shall work with the differential systems of the form

(3) ẋ = −y +X, ẏ = x+ Y,

where X = X(x, y) and Y = Y (x, y) are polynomials, and the degree of the poly-
nomial differential system (3) is m = max {degX,deg Y } ≥ 2. The center-focus
problem asks about conditions on the coefficients of X and Y for distinguish when
the origin of system (3) is either a focus or a center.

In this paper we shall study the particular case of differential systems (3) of the
form

(4) ẋ = −y(1 + Λ) + xΩ, ẏ = x(1 + Λ) + yΩ,

where Λ = Λ(x, y) and Ω = Ω(x, y) are polynomials suchm = max {deg Λ, degΩ}+
1.

Systems (4) are called Λ–Ω systems. First we observe that if these systems have
a center at the origin then they have a first integral of the form

(5) F =
1

2
(x2 + y2)(1 +O(x, y)).
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This kind of centers having first integral of the form (5) are called weak centers, they
contain the uniform isochronous centers and the holomorphic isochronous centers
(for a prof of these results see [11]), but they do not coincide with the all class of
isochronous centers (see Remark 19 of [11]).

This class of planar polynomial differential systems (4) appear in different fields.
If we assume that Λ = λ(x2+y2)−1, and Ω = ω(x2+y2), then system (4) becomes

ẋ = −y λ(x2 + y2) + xω(x2 + y2), ẏ = xλ(x2 + y2) + y ω(x2 + y2),

which is called a lambda–omega system (see for instance [8]). On the other hand it
is well known the following result (see for instance [2]).

Theorem 1. Let X be a polynomial vector field associated to the differential system
(3).

(i) Then X has either a focus or a center at the origin, and under a formal
change of coordinates the differential system associated to X can be written
in the Birkhoff normal form

(6)
ẋ = −y(1 + S2(x

2 + y2)) + xS1(x
2 + y2) := P,

ẏ = x(1 + S2(x
2 + y2)) + yS1(x

2 + y2) := Q,

where Sj = Sj(x
2+y2) for j = 1, 2 are formal series in the variable x2+y2

and such that S2(0) = S1(0) = 0.
(i) If X has a center at the origin then the formal system (6) becomes analytic

with S1(x
2+y2) = 0 (see for instance [15, 12]) with the first integral x2+y2.

Consequently any linear type center locally is a weak center.

Finally, by applying the inverse approach in ordinary differential equations see
[9] the following theorem is proved and shows the importance of system (4) in the
theory of ordinary differential equations (see Theorem 13 in [11]).

Theorem 2. The polynomial differential system (3) has a weak center at the origin
if and only if it can be written as (4) with

Λ =
m∑
j=2

(
j + 1

2
Υj−1 +

j

2
g1Υj−2 + . . .+

3

2
gj−2Υ1 + gj−1

)
,

Ω =
1

2

m∑
j=2

(
{Υj−1, H2}+ g1{Υj−2,H2}+ . . .+ gj−2{Υ1,H2}

)
,

where Υ0 = 1, g0 = 1, gj and Υj are homogenous polynomials of degree j for j ≥ 1
and has the first integral of the form

H = H2Φ = H2(1 + µ1Υ1 + . . .+ µm−1Υm−1),

where H2 = (x2 + y2)/2, and µj = µj(x, y) is a convenient analytic function in the
neighborhood of the origin for j = 1, . . . ,m− 1.

2. Statement of the main results

In this section we give the statements of our main results which will be proved
in sections 4, 5 and 6, also we state some conjectures.
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Proposition 3. The polynomial differential system of degree m

(7)
ẋ = −y(1 + (m− 2)(a1y − a2x)) + x(a1x+ a2y +Ωm−1),

ẏ = x(1 + (m− 2)a1y − a2x)) + y(a1x+ a2y +Ωm−1),

where Ωm−1 = Ωm−1(x, y) is a homogenous polynomial of degree m−1, has a weak
center at the origin if and only if

(8)

∫ 2π

0

Ωm−1(cos t, sin t)dt = 0.

Moreover system (7) has the first integral

(9) H =
H2(

1 +
m− 1

m+ 1
G(x, y) + Γ(x, y) + Φ(H2)

)2/(m−1)
= H2(1 + h.o.t.),

where G is a polynomial of degree m− 1 and such that {H2, G} = −(m+ 1)(a1x+
a2y + Ωm−1), Γ = Γ(x, y) is a convenient polynomial and Φ(H2) is a convenient
polynomial if m even and a convenient function if m is odd (see the proof for the
expressions of Γ and Φ).

We observe that if we take a1 = a2 = 0 in Proposition 3 we obtain following
corollary.

Corollary 4. The polynomial differential system of degree m

(10) ẋ = −y + xΩm−1 ẏ = x+ yΩm−1,

has a weak uniform center at the origin if and only if (8) holds. Moreover sys-
tem (10) has the Poincaré-Liapunov first integral (9) where G is a homogenous
polynomial of degree m− 1 and such that {H2, G} = Ωm−1.

Conti in [5] proved the first part of Corollary4, but the second part providing an
explicit expression of the first integral of system (10) is new.

Remark 5. The weak centers obtained in Proposition 3 and Corollary 4 in general
are not invariant with respect to the transformation (x, y, t) −→ (−x, y,−t). Indeed
the polynomial differential system of degree 2k given by formula (7) and (10), when
Ω2k−1 is an arbitrary polynomial of degree 2k − 1, in general is not reversible and
has the weak center at the origin.

We recall that a polynomial differential system has a uniform center at the origin
if written in polar coordinates x = r cos θ, y = r sin θ we obtain that θ̇ is constant.

Conjecture 6. The polynomial differential system of degree m

(11)
ẋ = −y(1 + µ(a2x− a1y)) + x(a1x+ a2y +Ωm−1),

ẏ = x(1 + µ(a2x− a1y)) + y(a1x+ a2y +Ωm−1),

where (µ+m−2)(a21+a22) ̸= 0, and Ωm−1 = Ωm−1(x, y) is a homogenous polynomial
of degree m − 1 has a weak center at the origin if and only if system (11) after a
linear change of variables (x, y) −→ (X,Y ) it is invariant under the transformations
(X,Y, t) −→ (−X,Y,−t).

Theorem 7. Conjecture 6 holds for m = 2, 3, 4, 5, 6.
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Conjecture 8. The polynomial differential system of degree m

(12)
ẋ = −y(1 + a1x+ a2y) + xΩm−1,

ẏ = x(1 + a1x+ a2y) + yΩm−1,

where a21 + a22 ̸= 0, and Ωm−1 = Ωm−1(x, y) is a homogenous polynomial of degree
m − 1 has a weak center at the origin if and only if system (12) after a linear
change of variables (x, y) −→ (X,Y ) it is invariant under the transformations
(X,Y, t) −→ (−X,Y,−t).

Theorem 9. Conjecture 8 holds for m = 2, 3, 4, 5, 6.

The only difficulty for proving Conjectures 6 and 8 for the Λ–Ω systems of degree
m with m > 6 is the huge number of computations for obtaining the conditions
that characterize the centers.

3. Preliminary results

In the proofs of the main results of this paper it plays a very important role the
following results and notations which we can find in [11] .

As usual the Poisson bracket of the functions f(x, y) and g(x, y) is defined as

{f, g} :=
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

The following result is a simple consequence of the Liapunov result given in Theorem
1, page 276 of [12] .

Corollary 10. Let U = U(x, y) be a homogenous polynomial of degree m. The
linear partial differential equation {H2, V } = U, has a unique homogenous poly-
nomial solution V of degree m if m is odd; and if V is a homogenous polynomial
solution when m is even then any other homogenous polynomial solution is of the
form V + c(x2 + y2)m/2 with c ∈ R. Moreover, for m even these solutions exist if

and only if

∫ 2π

0

U(x, y)|x=cos t, y=sin t dt = 0.

Proposition 11 (see Proposition 6 of [10]). The next relation holds∫ 2π

0

{H2,Ψ}|x=cos t, y=sin t dt = 0

for an arbitrary C1 function Ψ = Ψ(x, y) defined in the interval [0, 2π] .

Proposition 12 (see Proposition 24 of [10]). Consider the polynomial differential
system (1) of degree m which satisfies∫ 2π

0

(
∂P

∂ x
+

∂Q

∂ y

)
|x=cos t, y=sin tdt = 0.

Then there exist polynomials F = F (x, y) and G = G(x, y) of degree m + 1 and
m− 1 respectively such that system (1) can be written as

(13) ẋ = P = {F, x}+ (1 +G){H2, x}, ẏ = Q = {F, y}+ (1 +G){H2, y},

with G(0, 0) = 0.
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We need the following definitions and notions. A function V = V (x, y) is an
inverse integrating factor of system (1) in an open subset U ⊂ R2 if V ∈ C1(U), V ̸≡

0 in U and
∂

∂x

(
P

V

)
+

∂

∂y

(
Q

V

)
= 0

Theorem 13 (Reeb ’s criterion). (see for instance [16]) The analytic differential

system ẋ = −y +
∞∑
j=2

Xj , ẏ = x+
∞∑
j=2

Yj has a center at the origin if and only if

there is a local nonzero analytic inverse integrating factor of the form V = 1+h.o.t.
in a neighborhood of the origin.

An analytic inverse integrating factor of the form V = 1+h.o.t. in a neighborhood
of the origin is called a Reeb inverse integrating factor.

The analytic function

H =
∞∑
j=2

Hj(x, y) =
1

2
(x2 + y2) +

∞∑
j=3

Hj(x, y),

where Hj is homogenous polynomials of degree j > 1, is called the Poincaré-
Liapunov local first integral if H is constant on the solutions of (3).

Theorem 14 (see Theorem 13 and Remark 14 of [11]). Consider the polynomial

vector field X = (−y +
m∑
j=2

Xj)
∂

∂x
+ (x +

m∑
j=2

Yj)
∂

∂y
. Then this vector field has a

Poincaré-Liapunov local first integral H if and only if it has a Reeb inverse inte-
grating factor V . Moreover, the differential system associated to the vector field X
for which H = (x2 + y2)/2 + h.o.t. is a local first integral can be written as

(14)

ẋ = V {H,x}

= {Hm+1, x}+ (1 + g1){Hm, x}+ . . .+ (1 + g1 + . . .+ gm−1){H2, x},

ẏ = V {H, y}

= {Hm+1, y}+ (1 + g1){Hm, y}+ . . .+ (1 + g1 + . . .+ gm−1){H2, y},

and V and H are such that

(15)

V = 1 +
∞∑
j=1

gj ,

H =
1

2
(x2 + y2) +

∞∑
j=2

Hj = τ1Hm+1 + τ2Hm + . . .+ τmH2

=

∫
γ

(dHm+1

V
+

(1 + g1)dHm

V
+ . . .+

(1 + g1 + . . .+ gm−1)dH2

V

)
,

where γ is an oriented curve (see for instance [17]), τj = τj(x, y) is a convenient
analytic function in the neighborhood of the origin such that τj(0, 0) = 1, and
gj = gj(x, y) is an arbitrary homogenous polynomial of degree j which we choose
in such a way that V is the inverse Reeb integrating factor which satisfies the first
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order partial differential equation

(16) {Hm+1,
1

V
}+ {Hm,

1 + g1
V

}+ . . .+ {H2,
1 + g1 + . . .+ gm−1

V
} = 0.

Remark 15 (see formula (44) and the proof of Theorem 13 of [10]). From (16),and
(15) the following infinite number of equations must hold
(17)

{Hm+1, g1}+ {Hm, g2}+ . . .+ {H3, gm−1}+ {H2, gm} = 0,

{Hm+1, g
2
1 − g2}+ {Hm, g1g2 − g3}+ . . .+ {H3, g1gm−1 − gm}+ {H2, g1gm + gm+1} = 0,

...
...

...
...

Consequently
(18) ∫ 2π

0

({Hm+1, g1}+ {Hm, g2}+ . . .+ {H3, gm−1})|x=cos t,y=sin t dt = 0,∫ 2π

0

(
{Hm+1, g

2
1 − g2}+ {Hm, g1g2 − g3}+ . . .+ {H3, g1gm−1 − gm}

)∣∣
x=cos t,y=sin t

dt = 0,

...
...

...
...

Conditions (17) and (18) are equivalent to the following relations .
(19)

{Hm+j+1, g1}+ {Hm+j , g2}+ . . .+ {H3, gm+j−1}+ {H2, gm+j} = 0,∫ 2π

0

({Hm+j+1, g1}+ {Hm+j , g2}+ . . .+ {H3, gm+j−1})|x=cos t,y=sin t dt = 0,

for j ≥ 0.

Theorem 14 can be applied to determine the Poincaré-Liapunov first integral
and Reeb inverse integrating factor for the case when the polynomial differential
system is given (see section 8 of [11]. Indeed, given a polynomial vector field X
of degree m with a linear type center at the origin of coordinates, using (14) we
determine its first integral H and its Reeb inverse integrating factor. Thus, if in

(3) X =

m∑
j=2

Xj and Y =

m∑
j=2

Yj with Xj and Yj homogenous polynomials of degree

j, from (14) equating the terms of the same degree we get

{Hj+1, x}+ g1{Hj , x}+ . . .+ gj−1{H2, x} = Xj

{Hj+1, y}+ g1{Hj , y}+ . . .+ gj−1{H2, y} = Yj ,
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for j = 2, . . . ,m. Then

(20)

∂ H3

∂y
= −X2 − yg1,

∂ H3

∂x
= Y2 − xg1,

∂ H4

∂y
= −X3 − g1

∂ H3

∂y
− yg2,

∂ H4

∂x
= Y3 − g1

∂ H3

∂x
− xg2

∂ H5

∂y
= −X4 − g1

∂ H4

∂y
− g2

∂ H3

∂y
− yg3,

∂ H5

∂x
= Y4 − g1

∂ H4

∂x
− g2

∂ H3

∂x
− xg3,

...
...

...
...

...
...

∂ Hm+1

∂y
= −Xm − g1

∂ Hm

∂y
. . .− gm−2

∂ H3

∂y
− gm−1

∂ H2

∂y
,

∂ Hm+1

∂x
= −Ym − g1

∂ Hm

∂x
. . .− gm−2

∂ H3

∂x
− gm−1

∂ H2

∂x

∂ Hm+k+1

∂y
= −g1

∂ Hm+k

∂y
. . .− gm+k−2

∂ H3

∂y
− gm+k−1

∂ H2

∂y
,

∂ Hm+k+1

∂x
= −g1

∂ Hm+k

∂x
. . .− gm+k−2

∂ H3

∂x
− gm+k−1

∂ H2

∂x

...
...

...
...

...
...

for k > 0. From the first two equation of (20) it follows that g1 must satisfy the
first order partial differential equation

(21) {H2, g1} =
∂ X2

∂x
+

∂ Y2

∂x
,

which in view of Corollary 10 has a unique solution. Substituting g1 into the first
two equations of (20) and using the Eulers Theorem for homogenous polynomial
we obtain

(22) H3 =
1

3
(xY2 − yX2 − 2g1H2) .

We shall determine g2 as a solution of the first order partial differential equation

(23) {H2, g2} =
∂ X3

∂x
+

∂ Y3

∂x
− {H3, g1},

where g1 is a solution of (21). Then in view of Corollary 10 we get that under the
condition

(24)

∫ 2π

0

(
∂ X3

∂x
+

∂ Y3

∂x
− {H3, g1}

)∣∣∣∣
x=cos t, y=sin t

dt = 0,
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g2 exists and has the form g2(x, y) = g̃2(x, y) + cH2 where c is a constant. Hence
from the third and fourth equation of (20) we get

(25) H4 =
1

4
(xY3 − yX3 − 3g1H3 − 2g2H2) .

We shall determine g3 as a solution of the first order partial differential equation

(26) {H2, g3} =
∂ X4

∂x
+

∂ Y4

∂x
− {H4, g1} − {H3, g2},

where g1, g2 and H3,H4 are solutions of the previous differential equations. Then
in view of Corollary 10 we get that there exist an unique solution g3. Hence from
the fifth and sixth equation of (20) we get

(27) H5 =
1

5
(xY4 − yX4 − 4g1H4 − 3g2H3 − 2g3H2) .

By continuing this process we obtain that if gm−1 is a solution of the equation

(28) {H2, gm−1} =
∂ Xm

∂x
+

∂ Ym

∂x
− {Hm, g1} . . .− {H3, gm−2},

which exist if and only if

(29)

∫ 2π

0

(∂ Xm

∂x
+

∂ Ym

∂x
− {Hm, g1} . . .− {H3, gm−2}

)∣∣∣∣
x=cos t, y=sin t

dt = 0,

where the homogenous gm−2, . . . , g1 are solutions of the previous first order differ-
entia system, then the homogenous polynomial of degree m + 1 can be calculated
as follows

Hm+1 = − 1

m+ 1
(xYm − yXm −mg1Hm − . . .− 2gm−1H2)

Finally under the conditions
(30)
{H2, gm+k−1} = −{Hm+k, g1} − {Hm+k−1, g2} . . .− {H3, gm+k−2},

0 =

∫ 2π

0

(
− {Hm+k, g1} − {Hm+k−1, g2} . . .− {H3, gm+k−2}

)∣∣∣
x=cos t, y=sin t

dt,

we get that
(31)

Hm+k+1 = − 1

m+ k + 1
(−(m+ k)g1Hm+k − (m+ k − 1)g2Hm+k−1 − . . .− 2gm+k−1H2)

for k > 0. Thus we get the expression of H and of the integrating factor 1+

∞∑
j=1

gj .

Below we need the following results.

Let

(32) x = κ1X − κ2Y, y = κ2X + κ1Y,

be a non-degenerated linear transformation, i.e. κ2
1 + κ2

2 ̸= 0. Then differential
system (4) becomes

(33)
Ẋ = −Y

(
1 + Λ̃(X,Y )

)
+XΩ̃(X,Y ),

Ẏ = X
(
1 + Λ̃(X,Y )

)
+ Y Ω̃(X,Y ),
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where Λ̃(X,Y ) = Λ(κ1X − κ2Y, κ2X + κ1Y ) and Ω̃(X,Y ) = Ω(κ1X − κ2Y, κ2X +
κ1Y ). Here we say that system (3) is reversible with respect to a straight line l
through the origin if it is invariant with respect to reversion about l and a reversion
of time t (see for instance [5]). In particular Poincaré’s Theorem is applied for the
case when (3) is invariant under the transformations (x, y, t) −→ (−x, y,−t), or
(x, y, t) −→ (x,−y,−t).

In the proof of the results which we give later on we need the Poincare’s Theorem
(see for instance [14], p.122.)

Theorem 16. The origin of system (3) is a center if the system is reversible.

Since a rotation with respect to the origin of coordinates is a particular trans-
formation of type (32), when a center of system (4) is invariant with respect to
a straight line it is not restrictive to assume that such straight line is the x axis.
So the center of system (4) will be invariant by the transformation (x, y, t) −→
(−x, y,−t) or (x, y, t) −→ (x,−y,−t). We shall study only the first case, i.e. we
shall suppose that the Λ-Ω system is invariant with respect to the transformation
(x, y, t) −→ (−x, y,−t).

The following proposition is easy to prove (see for instance [13]).

Proposition 17. Differential system (33) is invariant under the transformation
(X,Y, t) −→ (−X,Y,−t) if and only if it can be written as

(34)
Ẋ = −Y

(
1 + Θ1(X

2, Y )
)
+X2Θ2(X

2, Y ),

Ẏ = X
(
1 + Θ1(X

2, Y )
)
+XYΘ2(X

2, Y ),

Remark 18. Using the notations of (33) and (34) after some computations we
can prove that the following relations

Λ̃(X,Y ) =
m−1∑
j=1

Λ̃j =
m−1∑
j=1

∑
k+n=j

λknX
kY n = Θ1(X

2, Y ),

Ω̃(X,Y ) =
m−1∑
j=1

Ω̃j =
m−1∑
j=1

∑
k+n=j

ωknX
kY n = XΘ2(X

2, Y ),

hold if and only if

λ2l−1,j = 0 for l = 1, 2, . . . , [m/2] and j = 0, . . . ,m− 2l,

ω2l,j = 0 for l = 0, 2, . . . , [(m− 1)/2] and j = 0, . . . ,m− 1− 2l,

where [ ] denotes the integer part function. Consequently, [m2/4] coefficients of Λ̃

must be zero, and [(m2 + 2m− 3)/4] coefficients of Ω̃ must be zero.

Corollary 19. Polynomial differential system (34) can be written as

(35)
Ẋ = −Y

(
1 + Θ1(X

2, Y )
)
+X{H2, Φ} = P (X,Y ),

Ẏ = X
(
1 + Θ1(X

2, Y )
)
+ Y {H2, Φ} = Q(X,Y ),

where Φ = Φ(x, y) is a polynomial of degree at most m − 1 such that {H2, Φ} =
XΘ2(X

2, Y ). In particular all uniform isochronous centers which after a linear
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change of variables (x, y) −→ (X,Y ) are invariant under the transformations
(X,Y, t) −→ (−X,Y,−t) can be written as

(36) Ẋ = −Y +X{H2, Φ}, Ẏ = X + Y {H2, Φ},

Proof. By considering that∫ 2π

0

XΘ2(X
2, Y )

∣∣
x=cos t, y=sin t

dt =

∫ 2π

0

Θ2(1− sin2 t, sin t) cos t dt = 0.

By Corollary 10 we get that there exists a polynomial Φ such that XΘ2(X
2, Y ) =

{H2, Φ}. Thus we have the formula (35). Since for uniform isochronous centers
Θ1(X

2, Y ) = 0, the corollary follows. �

Proposition 20. Any weak center invariant at the origin of system (35) satisfies
that the integral of the divergence on the unit circle is zero.

Proof. The weak center of of system (35) satisfies

∂P

∂X
+

∂Q

∂Y
= 2{H2, Φ}+X

∂{H2, Φ}
∂X

+ Y
∂{H2, Φ}

∂Y
+ {H2,Θ1}

=

{
H2, 2Φ +X

∂Φ

∂X
+ Y

∂Φ

∂Y
+Θ1

}
.

From Proposition 11 satisfy that∫ 2π

0

(
∂P

∂X
+

∂Q

∂Y

)∣∣∣∣ X = cos t
Y = sin t

dt = 0.

�

4. Proofs of Proposition 3 and 4

Proof of Proposition 3. Sufficiency: If

∫ 2π

0

Ωm−1(cos t, sin t)dt = 0 then (12) holds

with
P := −y(1 + (m− 2)(a1y − a2x)) + x(a1x+ a2y +Ωm−1),

Q := x(1 + (m− 2)(a1y − a2x)) + y(a1x+ a2y +Ωm−1),

because Ωm−1 is a homogenous polynomial of degree m − 1 and from the Euler
Theorem for homogenous polynomial we have

∂P

∂x
+

∂Q

∂y
= (m+ 1) (a1x+ a2y +Ωm−1) .

Therefore ∫ 2π

0

(
∂P

∂x
+

∂Q

∂y

)∣∣∣∣ x = cos t
y = sin t

dt = 0.

Then in view of Proposition 12 we get that there exist polynomials F and G of
degree m+ 1 and m− 1 respectively, such that system (7) can be written as

(37)
ẋ = P = {F, x}+ (1 +G){H2, x},

˙x = Q = {F, y}+ (1 +G){H2, y}.
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After some computations we obtain

{F,H2} = 2H2(a1x+ a2y +Ωm−1),

{G,H2} = −(m+ 1)(a1x+ a2y +Ωm−1).

Therefore {F +
2H2

m+ 1
G, H2} = 0. Consequently F = − 2H2

m+ 1
G+ p(H2), where

p(H2) = b0 + b1H2 + . . .+ b[m+1)/2]H
[(m+1)/2]
2

is an arbitrary polynomial of degree ≤ 2[(m + 1)/2], where [ ] denotes the inte-
ger part function. Inserting F into the differential system (37) and after some
computations we get that

ẋ = P = − 2H2

m+ 1
{G, x}+

(
1 + p′(H2) +

m− 1

m+ 1
G

)
{H2, x},

ẏ = Q = − 2H2

m+ 1
{G, y}+

(
1 + p′(H2) +

m− 1

m+ 1
G

)
{H2, y},

where p′(H2) =
dp

dH2
. In order to have that the linear terms of the previous system

be −y and x respectively, we need that b1 = 0, because G(0, 0) = 0. Therefore

Ḣ2 = xẋ+ y˙y = − 2H2

m+ 1
(x{G, x}+ y{G, y}) = 2H2

m+ 1
{H2, G},

Ġ =
∂G

∂x
ẋ+

∂G

∂y
˙y =

(
1 + p′(H2) +

m− 1

m+ 1
G

)(
∂G

∂x
{H2, x}+

∂G

∂y
{H2, y

)
= {H2, G}

(
1 +

m− 1

m+ 1
G+ p′(H2)

)
.

Consequently we have the following linear ordinary differential of first order

dG

dH2
− (m− 1)G

2H2
=

(m+ 1)(1 + p′(H2))

2H2
.

Thus after the integration we have the existence of a first integral H given by

(38)

H =
H2(

1 +
m− 1

m+ 1
G(x, y) + (m− 1)Γ(x, y) + [(m+ 1)/2]Φ(H2)

)2/(m−1)

= H2(1 +O(x, y)),

hence the origin is a weak center, where

Γ =
2b2

m− 3
H2 +

3b3
m− 5

H2
2 + . . .+

([(m+ 1)/2]− 1)b[(m+1)/2]−1

[(m1+)/2]− 1− (m+ 1)/2
H

[(m+1)/2]−2
2 ,

and

Φ(H2) =


b[(m+1)/2]

[(m1+)/2]− (m+ 1)/2
H

[(m+1)/2]−1
2 if m is even,

b[(m+1)/2]H
(m−1)/2
2 logH2 if m is odd.

We observe that if m is odd then this first integral (38) is non analytic at the
origin.
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Necessity: Now we suppose that the origin of system (7) is a center and we
must prove that (8) holds. Indeed, if the origin is a center then from Theorem
14 it follows that differential system (7) can be written as (see (14)), where the
homogenous polynomials Hk and gl for k = 2, . . . ,m + 1 and l = 1, . . . ,m − 1
satisfy
(39)

{Hm+1, x}+ g1{Hm, x} . . .+ gm−1{H2, x} := Xm = xΩm−1,

{Hm+1, y}+ g1{Hm, y} . . .+ gm−1{H2, y} = Ym = yΩm−1,

{Hm, x}+ g1{Hm−1, x} . . .+ gm−2{H2, x} = 0,

{Hm, y}+ g1{Hm−1, y} . . .+ gm−2{H2, y} = 0,

...
...

...
... ,

{H5, x}+ g1{H4, x}+ g2{H3, x}+ g3{H2, x} = 0,

{H5, y}+ g1{H4, y}+ g2{H3, y}+ g3{H2, y} = 0,

{H4, x}+ g1{H3, x}+ g2{H2, x} = 0,

{H4, y}+ g1{H3, y}+ g2{H2, y} = 0,

{H3, x}+ g1{H2, x} := X2

= −y(m− 2)(a1y − a2x) + x(a1x+ a2y),

{H3, y}+ g1{H2, y} := Y2

= x(m− 2)(a1y − a2x) + y(a1x+ a2y).

From the last two equations we obtain (see (21) and (22))

g1 = (m+ 1)(a1y − a2x), H3 = − 2

m+ 1
H2g1.

After from the third and fourth equations starting from the end of system (39) we
have (see (23) and (25))

g2 =
1

m+ 1
g21 + cH2, H4 =

1

m+ 1
g21H2 −

c

2
H2

2 .

Later from the fifth and sixth equations starting from the end of system (39) we
get

g3 =
4

3(m+ 1)2
g31 −

2c

m+ 1
g1H2, H5 = − 3m+ 5

1(m+ 1)2
g31H2 +

c

10(m+ 1)
g1H

2
2 ,

and so on, where c is an arbitrary constant. Inserting the previous expressions into

the homogenous polynomial
∂Xm

∂x
+

∂Ym

∂y
we get

{Hm, g1}+ {Hm−1, g2} . . .+ {H2, gm−1} = (m+ 1)Ωm−1,

which we obtain from the compatibility conditions of the first two equations of (39).
After some computations it follows that {H2,Φ} = (m+ 1)Ωm−1, for a convenient
polynomial Φ of degree m− 1. Consequently in view of Proposition 11 we get that∫ 2π

0

Ωm−1(cos t, sin t)dt = 0. In short the proposition is proved. �
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Remark 21. Polynomial differential system (7) under the condition (8) can be
written as

ẋ = −y(1 + (m− 2)(a1y − a2x)) + x(a1x+ a2y +Ωm−1)

= −y(1 + (m− 2)(a1y − a2x)) + x{H2, Ψ},

ẏ = x(1 + (m− 2)a1y − a2x)) + y(a1x+ a2y +Ωm−1)

= x(1 + (m− 2)(a1y − a2x)) + y{H2, Ψ},
where {H2, Ψ} = a1x+ a2y +Ωm−1.

5. Proofs of Theorem 7

The proof of Theorem 7 follows from the next propositions.

Proposition 22. A quadratic polynomial differential system

(40)
ẋ = −y(1 + n1x+ n2y) + x(a1x+ a2y),

ẏ = x(1 + n1x+ n2y) + y(a1x+ a2y),

has a weak center at the origin if and only if

(41) a1n1 + a2n2 = 0.

Moreover the quadratic differential system (40) satisfying condition (41), after a
linear change of variables (x, y) −→ (X,Y ) it is invariant under the transformations
(X,Y, t) −→ (−X,Y,−t).

Proof. Sufficiency:. We suppose that (41) holds and we shall show that then the
origin of system (40) is a center. Indeed doing the change of variables given in (32)
with κ2

1 + κ2
2 ̸= 0 to system (??) we obtain the differential system

Ẋ = −Y
(
1 + (κ1n1 + κ2n2)X + (κ1n2 − κ2n1)Y

)
+X

(
(κ1a1 + κ2a2)X + (κ1a2 − κ2a1)Y

)
,

Ẏ = X
(
1 + (κ1n1 + κ2n2)X + (κ1n2 − κ2n1)Y

)
+Y

(
(κ1a1 + κ2a2)X + (κ1a2 − κ2a1)Y

)
.

This system can be written as (34) if and only if

(42) κ2a1 − κ1a2 = 0, κ1n1 + κ2n2 = 0.

Clearly system (42) has a nonzero solution κ1 and κ2 if and only if a1n1+a2n2 =
0. Under condition (42) the quadratic system is

Ẋ = −Y
(
1 + (κ1n2 − κ2n1)Y

)
+ (κ1a1 + κ2a2)X

2,

Ẏ = X
(
1 + (κ1n2 − κ2n1)Y

)
+ (κ1a1 + κ2a2)XY.

This system is invariant under the transformation (X,Y, t) −→ (−X,Y,−t), so in
view of Theorem 16 the origin is a center, which in view of Theorem 2 is a weak
center.
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Necessity: We now suppose that system (40) has a center at the origin. From
Theorem 14 we get that quadratic differential system (40) can be written as

ẋ = {H3, x}+ (1 + g1){H2, x}

= −y(1 + n1x+ n2y) + x(a1x+ a2y) := −y +X2,

ẏ = {H3, y}+ (1 + g1){H2, y}

= x(1 + n1x+ n2y) + y(a1x+ a2y) := x+ Y2.

Thus

{H3, x}+ g1{H2, x} = −y(n1x+ n2y) + x(a1x+ a2y) := X2,

{H3, y}+ g1{H2, y} = x(n1x+ n2y) + y(a1x+ a2y) := Y2.

By determining the homogenous polynomial g1 as the unique solution of the equa-
tion (see (21))

{H2, g1} =
∂ X2

∂x
+

∂ Y2

∂x
= (n2 + 3a1)x+ (3a2 − n1)y,

we get that

(43) g1 = (n1 − 3a2)x+ (n2 + 3a1)y.

In view of homogeneity of H2 and H3 we obtain that (see (22))

H3 =
1

3
(xY2 − yX2 − 2g1H2) = 2H2(a2x− a1y).

On the other hand from conditions (20) since X3 = Y3 = 0 we get that

∂ H4

∂y
= −g1

∂ H3

∂y
− yg2,

∂ H4

∂x
= −g1

∂ H3

∂x
− xg2.

We shall determine g2 as a solution of the first order partial differential equation
(see (23))

{H2, g2}+ {H3, g1} = 0,

where g1 is given in (43). Then in view of Corollary 10 with V = g2 and U =

−{H3, g1}, we get that if

∫ 2π

0

{H3, g1}|x=cos t, y=sin t dt = 4π(a1n1 + a2n2) = 0,

then g2 exists and has the form g2(x, y) = g̃2(x, y) + cH2 where c is a constant.
Thus we prove the necessity of the condition (41). In short the proposition is
proved. �

Proposition 23. A cubic polynomial differential system

(44)

ẋ = −y(1 + µ(a2x− a1y))

+x(a1x+ a2y + a3x
2 + a4y

2 + a5xy),

ẏ = x(1 + µ(a2x− a1y))

+y(a1x+ a2y + a3x
2 + a4y

2 + a5xy),

has a weak center at the origin if and only if

(45) a3 + a4 = 0, a1a2a5 + (a22 − a21)a4 = 0,

Moreover system (44) under condition (45) and (µ+1)(a21 + a22) ̸= 0, after a linear
change of variables (x, y) −→ (X,Y ) it is invariant under the transformations
(X,Y, t) −→ (−X,Y,−t).
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We observe that Proposition 23 when µ = 0 provides Theorem 2.2 of the Collins’
[4].

Proof. Sufficiency: First of all we observe that cubic differential system (44) under
the change of variables (32) becomes
(46)

Ẋ = −Y
(
1 + µ(κ1a2 − κ2a1)X − µ(κ2a2 + κ1a1)Y

)
+

X

(κ2
1 + κ2

2)
2

(
(κ2

1 + κ2
2) ((κ1a1 + κ2a2)X + (κ1a2 − κ2a1)Y )

+(κ2
1a3 + κ2

2a4 + κ1κ2a5)X
2

+(κ2
2a3 + κ2

1a4 − κ1κ2a5)Y
2 + ((κ2

1 − κ2
2)a5 + 2κ1κ2(a4 − a3))XY

)
,

Ẏ = X
(
1 + µ(κ1a1 − κ2a2)X − µ(κ1a2 − κ2a1)Y

)
+

Y

(κ2
1 + κ2

2)
2

(
(κ2

1 + κ2
2) ((κ1a1 + κ2a2)X + (κ1a2 − κ2a1)Y )

+(κ2
1a3 + κ2

2a4 + κ1κ2a5)X
2

+(κ2
2a3 + κ2

1a4 − κ1κ2a5)Y
2 + ((κ2

1 − κ2
2)a5 + 2κ1κ2(a4 − a3))XY

)
,

is invariant under the transformation (X,Y, t) −→ (−X,Y,−t) if and only if using
Proposition 22 we have

(47)

κ2a1 − κ1a2 = 0,

κ2
1a3 + κ2

2a4 + κ1κ2a5 = 0,

+κ2
2a3 + κ2

1a4 − κ1κ2a5− = 0.

From these conditions it follows that κ1 and κ2 such that κ2
1+κ2

2 ̸= 0 if and only if

a1κ2 − a2κ1 = 0 and a3 + a4 = 0, k1k2a5 + (k22 − k21)a4 = 0.

We suppose that (45) holds and show that then the origin of system (44) is a center.
Clearly if a21 + a22 ̸= 0, then after the change x = a1X − a2Y, y = a2X + a1Y,
we get that system (46) coincide with system (34) when κ1 = a1 and κ2 = a2, and
consequently (47) becomes (45). Since system (46) is invariant under the change
(X,Y, t) −→ (−X,Y,−t) i.e. is reversible by Poincaré Theorem its origin is a center,
and by Theorem 2 it is a weak center. Thus the sufficiency of proposition is proved.

Necessity We suppose that the origin of (44) is a center. We must show that
(45) holds. Indeed from Theorem 14 it follows that differential system (44) can be
written as

{H4, x}+ (1 + g1){H3, x}+ (1 + g1 + g2){H2, x}

= −y(1 + µ(a2x− a1y)) + x(a1x+ a2y + a3x
2 + a4y

2 + a5xy),

{H4, y}+ (1 + g1){H3, y}+ (1 + g1 + g2){H2, y}

= x(1 + µ(a2x− a1y)) + y(a1x+ a2y + a3x
2 + a4y

2 + a5xy).
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Consequently taking the homogenous parts of these two previous equalities we
obtain
(48)

{H4, x}+ g1{H3, x}+ g2{H2, x} = −∂H4

∂y
− g1

∂H3

∂y
− g2

∂ H2

∂y

= x(a3x
2 + a4y

2 + a5xy) := xΩ2 = X3,

{H4, y}+ g1{H3, y}+ g2{H2, y} =
∂H4

∂x
+ g1

∂H3

∂x
+ g2

∂ H2

∂x

= y(a3x
2 + a4y

2 + a5xy) := yΩ2 = Y3,

{H3, x}+ g1{H2, x} = −∂H3

∂y
− g1

∂H2

∂y

= −µ y(a2x− a1y) + x(a1x+ a2y),

{H3, y}+ g1{H2, y} =
∂H3

∂x
+ g1

∂H2

∂x

= µx(a2x− a1y) + y(a1x+ a2y).

From the last two equations we have that (see (21) and (22)))

g1 = (µ− 3)(a2x− a1y), and H3 = 2(a2x− a1y)H2 := Υ1H2.

Inserting g1 and H3 into the two first equations and taking into account the Euler

Theorem for homogenous polynomials we get that
∂ X3

∂x
+
∂ Y3

∂x
= 4Ω2 consequently

(see (23) and (24))

{H2, g2}+ {H3, g1} − 4Ω2 = 0,

and this equation has solution if and only if (see Corollary 10)∫ 2π

0

({H3, g1} − 4Ω2)|x=cos t, y=sin t dt = a3 + a4 = 0,

Hence the first two equations of system (48) have a solution if and only if a3+a4 = 0.
The solutions of (48) are

H4 =
(
9a22 − 3a22µ− c)x2 + (4a1a2µ+ 4a4 − 12a1a2)yx

+(6a21 + (2a21 + a22)µ+ 3a22 − 2a2a5 − c)y2
)
H2/2 := Υ2H2,

g2 = α1x
2 + (−6a1a2 + 2a1µ− 4a4)yx

+((a22 − a21)(µ− 3) + 2a5 + α1)y
2,

where c is an arbitrary constant. By inserting a3 + a4 = 0 into (44) we get

(49)
ẋ = −y(1− µ(a1y − a2x)) + x(a1x+ a2y − a4x

2 + a4y
2 + a5xy),

ẏ = x(1− µ(a2x− a1y)) + y(a1x+ a2y − a4x
2 + a4y

2 + a5xy),

By calculating g3 as the unique polynomial homogenous of degree four solution of
the equation {H4, g1} + {H3, g2} + {H2, g3} = 0, (see (26)) and determining H5

from (26) with X4 = Y4 = 0 we get H5 = −4g1H4/5 − 3g2H3/5 − 2g3H2/5. From
equation

{H5, g1}+ {H4, g2}+ {H3, g3}+ {H2, g4} = 0,
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(see (29) with m = 5 ), and in view of Proposition 11 we get that this equation has
a solution for the homogenous polynomial g4 if and only if

0 =

∫ 2π

0

({H5, g1}+ {H4, g2}+ {H3, g3})|x=cos t, y=sin t

= 3π(µ+ 1)2(a4(a
2
2 − a21) + a1a2a5) = 0.

Thus a4(a
2
2 − a21) + a1a2a5 = 0. The case when µ + 1 = 0 and m = 3 has been

studied in Proposition 3.

If a1 = a2 = 0 then system (49) becomes

ẋ = −y + x(−a4x
2 + a4y

2 + a5xy) := −y + xΩ2,

ẏ = x+ y(−a4x
2 + a4y

2 + a5xy) = x+ yΩ2,

which is a polynomial differential system with homogenous nonlinearities. Conse-
quently we have that∫ 2π

0

Ω2|x=cos t,y=sin t dt =

∫ 2π

0

(
−a4x

2 + a4y
2 + a5xy

)∣∣
x=cos t,y=sin t

dt = 0.

Hence and in view of Corollary 4 we obtain that the origin is a weak center. In
short the proposition is proved. �
Proposition 24. A quartic polynomial differential system

(50)

ẋ = −y(1 + µ(a2x− a1y))

+x(a1x+ a2y + a6x
3 + a7y

3 + a8x
2y + a9xy

2),

ẏ = x(1 + µ(a2x− a1y))

+y(a1x+ a2y + a6x
3 + a7y

3 + a8x
2y + a9xy

2),

has a weak center at the origin under the assumption

(a) a21 + a22 ̸= 0 if and only if
(i) a1a2 ̸= 0 and

(51)

a6 +
1

2a32

(
a7(a

3
1 − 3a22a1) + a9(a

3
2 − a21a2)

)
= 0,

a8 +
1

2a22a1

(
a7(3a

3
1 − 3a1a

2
2) + a9(a

3
2 − 3a21a2)

)
= 0.

(ii) a7 = a8 = 0 when a2 = 0 and a1 ̸= 0,
(iii) a6 = a9 = 0 when a1 = 0 and a2 ̸= 0.

(b) If a1 = a2 = 0.
(c) If µ+ 2 = 0.

Moreover if we assume that (µ + 2)(a21 + a22) ̸= 0 then system (50) under the
conditions (i) , (ii) and after a linear change of variables (x, y) −→ (X,Y ) it is
invariant under the transformations (X,Y, t) −→ (−X,Y,−t), and in the case (iii)
it is invariant under the transformations (X,Y, t) −→ (X,−Y,−t),

Proof. Sufficiency: Doing the change of variables (32) system (50) can be written
as differential system (33) with m = 4 and

Λ := µ(a2x− a1y), and Ω := a1x+ a2y + a6x
3 + a7y

3 + a8x
2y + a9xy

2,
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which is invariant under the transformation (X,Y, t) −→ (−X,Y,−t) if and only if

(i) κ1κ2 ̸= 0 and

(52)

κ2a1 − κ1a2 = 0,

a6 +
1

2κ3
2

(
a7(κ

3
1 − 3κ2

2κ1) + a9(κ
3
2 − κ2

1κ2)
)
= 0,

a8 +
1

2κ2
2κ1

(
a7(3κ

3
1 − 3κ1κ

2
2) + a9(κ

3
2 − 3κ2

1κ2)
)
= 0−

(ii) κ1 = 0 a2 ̸= 0, and a1 = a6 = a9 = 0.
(iii) κ2 = 0 a1 ̸= 0 and a2 = a7 = a8 = 0.

We suppose that statement (i), (ii) or (iii) hold and we will show that then the
origin is a center of system (50). Indeed, if a1a2 ̸= 0, then after the change x =
a1X − a2Y, y = a2X + a1Y, we get that system (50) coincide with system (34)
for m = 4 and with κ1 = a1 and κ2 = a2 and consequently by considering that
this system is invariant under the change (X,Y, t) −→ (−X,Y,−t) or (X,Y, t) −→
(X,−Y,−t), i.e. it is reversible.

If a2 = a7 = a8 = 0 and a1 ̸= 0, then differential equations (50) become

ẋ = −y(1− µa1y)) + x2(a1 + a6x
2 + a9y

2),

ẏ = x(1− µa1y)) + yx(a1 + a6x
2 ++a9y

2).

This system is invariant under the change (x, y, t) −→ (−x, y,−t) i.e. it is reversible.

If a1 = a6 = a9 = 0 and a2 ̸= 0, then differential system (50) becomes

ẋ = −y(1 + µa2x)) + xy(a2 + a7y
2 + a8x

2),

ẏ = x(1 + µa2x)) + y2(a2 + a7y
2 + a8x

2).

this system is invariant under the change (x, y, t) −→ (x,−y,−t) i.e. it is reversible.

Thus in view of the Poincaré Theorem (see Theorem 16) we get that in cases (i),
(ii) and (iii) the origin is a center. Furthermore by Theorem 2 this center is a weak
center.

Necessity: We prove the necessity of the statement (a). We suppose that the
origin is a weak center. Indeed, from Theorem 14 it follows that differential system
(50) can be written as
(53)

{H5, x}+ (1 + g1){H4, x}+ (1 + g1 + g2){H3, x}+ (1 + g1 + g2 + g3){H2, x}

= −y(1 + µ(a2x− a1y)) + x(a1x+ a2y + a6x
3 + a7y

3 + a8x
2y + a9xy

2),

{H5, y}+ (1 + g1){H4, y}+ (1 + g1 + g2){H3, y}+ (1 + g1 + g2 + g3){H2, y},

= x(1 + µ(a2x− a1y)) + y(a1x+ a2y + a6x
3 + a7y

3 + a8x
2y + a9xy

2).

In view of Corollary 10 and assisted by an algebraic computer we can obtain the
solutions of (53), i.e. the homogenous polynomials H5, H3, g1, g3 of degree odd are
unique and the homogenous polynomials H4, g2 of degree even are obtained modulo
an arbitrary polynomial of the form c(x2 + y2)k where k = 1, 2. Indeed taking the
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homogenous part of these equations we obtain

{H3, x}+ g1{H2, x} = −y(µ(a2x− a1y)) + x(a1x+ a2y),

{H3, y}+ g1{H2, y} = x(µ(a2x− a1y)) + y(a1x+ a2y).

The solutions of these equations are

g1 = (µ− 3)(a2x− a1y), H3 = 2H2(a2x− a1y).

(54)
{H4, x}+ g1{H3, x}+ g2{H2, x} = 0,

{H4, x}+ g1{H3, x}+ g2{H2, x} = 0,

the compatibility condition of these two last equations becomes of {H3, g1} +
{H2, g2} = 0, and since {H3, g1} = {H2,−(3 − µ)(a2x − a1y)

2} we get that
{H2, g2 − (3 − µ)(a2x − a1y)

2} = 0. Therefore g2 = (3 − µ)(a2x − a1y)2 + c2H2,
where c2 is a constant. Then from system (54) we obtain the solution

H4 =
H2

2
((µ− 3)

(
(a21 − a22)(x

2 − y2) + 4a1a2xy
)
+ c1H

2
2 ,

where c1 is a constant. Inserting these previous solutions g1, H3, g2 and H4 into
the partial differential equations

(55)

{H5, x}+ g1{H4, x}+ g2{H3, x}+ g3{H2, x}

= x(a6x
3 + a7y

3 + a8x
2y + a9xy

2) = xΩ3 := X4,

{H5, y}+ g1{H4, y}+ g2{H3, y}+ g3{H2, y}

= y(a6x
3 + a7y

3 + a8x
2y + a9xy

2) = yΩ3 := Y4

we get that these differential equations have a unique solution. Indeed, in this case
(26) becomes

(56) {H4, g1}+ {H3, g2}+ {H2, g3} = 5Ω3,

because
∂ X4

∂x
+

∂ Y4

∂x
= 5Ω3, here we have taking into account that Ω3 is a homoge-

nous polynomial of degree 3. Consequently there exist a unique solution

g3 =
(
a1(a

2
2 + 2a21/3)µ

2 − a1(10a
2
1/3 + 4a22)µ+ a1(4a

2
1 + 3a23) + 5(a9 + 2a6)/3

)
y3(

−a2(a
2
1 + 2a22/3)µ

2 + a2(10a
2
2/3 + 4a21)µ− (3a21 + 4a22)a2 − 5/3(a8 + 2a7)

)
x3

+
(
a31µ

2 − 2(2a21 + a22)a2µ+ 3a1(a
2
1 + 2a22) + 7a6

)
x2y

+
(
−a32µ

2 + 2(2a22 + a21)a2µ− 3a2(a
2
1 + 2a22)− 5a7

)
xy2

+c(1− µ)(a1x+ a2y)H2

of (56) and substituting g3 into (55) we get

H5 = −2/3H2

( (
−a32µ

2 + a2(2a
2
2 − 3a21)µ+ 3a2(3a

2
1 + a22)− a8 − 2a7

)
x3

−
(
a31µ

2 + a1(2a
2
1 − 3a22)µ+ 3a1(3a

2
2 + a21) + a9 + 2a6

)
y3(

3a1a
2
2µ

2 + 3a1(a
2
1 − 4a22)µ+ 9a1(a

2
2 − a21) + 3a6

)
yx2

−
(
3a2a

2
1µ

2 + 3a2(a
2
1 − 4a22)µ+ 9a2(a

2
2 − a21)− 3a7

)
y2x

cH2
2 (3a1y − 2a2x),

where c is a constant.
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On the other hand from (19) for m = 4 and j = 0 we get that

(57)

∫ 2π

0

({H5, g1}+ {H4, g2}+ {H3, g3})|x=cos t,y=sin t dt

= −3π(µ− 3)

3
(a1(3a7 + a8)− a2(3a6 + a9)) = 0.

Hence we get that

(i) If a1a2 ̸= 0 then by introducing the notations

λ2 = a6 −
1

2a32

(
a7(a

3
1 − 3a22a1) + a9(a

3
2 − a21a2)

)
,

λ3 = a8 −
1

2a22a1

(
a7(3a

3
1 − 3a1a

2
2) + a9(a

3
2 − 3a21a2)

)
,

we get that

−3π(µ− 3)

3
(3a2λ2 − a1λ3) = 0.

(ii) If a1 = 0 and a2 ̸= 0 then 3a7 + a8 = 0.
(iii) If a2 = 0 and a1 ̸= 0 then 3a6 + a9 = 0.

Again from (28) with m = 5 we have the differential equation

{H5, g1}+ {H4, g2}+ {H3, g3}+ {H2, g4} = 0,

From this equation we get the homogenous polynomial of degree four g4 which in
view of Corollary 10 can be obtained with an arbitrary term of the form c(x2+y2)2,
i.e. g4 is equal to(

(−9a41a2 + 11(3a7 + a8)a
2
1 − a22(3(11a7 + a8) + 54(a7 + a8)a

2
2

)
x4 +

1

18a2

(
(a4 − a42)(3a2µ

3 + 6a2µ
2) + a42 − a2a9)µ− (18(3a7 + a8)a

2
1 − 36a2a1a9 + a8)a

2
1

+(3a21a2((a
2
1 − 3a22)µ

3 + 2(a22 − a21)µ
2 + a21(27a

3
2 + 15a7 + 5a8 − 9a21a2)

−2a2(a1a9 + 9a2a7)µ+ 54a2(a2a7 − a1a9)− a22(3(11a7 + a8)
)
x2y2

+
(2
3
a2a

3
1(µ− 2)µ2 + (

a1
3
(7a7 + 10a8) +

5

2
a2a9 − 2a2a

3
1)µ− 12a1a7

)
xy3

+
(2
3
a2a

3
1(µ− 2)µ2 + (a1(

7a7
3

+
4a8
3

− 2a32) +
a2a9
3

)µ

−12a1a7 − 4a1a8 + 4a2a9

)
x3y + c(x2 + y2)2,

if a2 ̸= 0. In analogous form we can obtain the expression of g4 when a1 ̸= 0. Now
we determine the homogenous polynomial H6 from (31) with m = 4 and k = 1 we
obtain

H6 = −5

6
g1H5 −

4

6
g2H4 −

3

6
g3H3 −

2

6
g4H2.

Since the integral of the homogenous polynomial of degree 5∫ 2π

0

({H6, g1}+ {H5, g2}+ {H4, g3}+ {H3, g4})|x=cos t,y=sin t dt ≡ 0,
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then we obtain that there is a unique solution for the homogenous polynomial g5
of degree 5 of the equation

{H6, g1}+ {H5, g2}+ {H4, g3}+ {H3, g4}+ {H2, g5} = 0.

see (30) with m = 4 and k = 2.

Calculating the homogenous polynomial H7 of degree 7 from (31) with m = 4
and k = 2 we get

H7 = −6

7
g1H6 −

5

7
g2H5 −

4

7
g3H4 −

3

7
g4H3 −

2

7
g5H2,

and inserting these polynomials into the integrand of the following homogenous
polynomial of degree 6 we have
(58)∫ 2π

0

({H7, g1}+ {H6, g2}+ {H4, g3}+ {H3, g4})|x=cos t,y=sin t dt = I(a1, a2, µ),

where I is such that

(iii) if a1 = 0 and a2 ̸= 0 then

I(a1, 0, µ) = −π a31(µ− 3)

63

(
(231µ2 + 1230µ+ 1776)a7 + 7(5µ+ 12)(µ+ 2)a9

)
= 0.

(ii) if a2 = 0 and a1 ̸= 0 then

I(0, a2, µ) =
5π a32(µ− 3)

189

(
21(5µ+ 12)(µ+ 2)a6 + (49µ2 + 2µ− 432)a9

)
= 0,

(i) If a1a2 ̸= 0 then

I(a1, a2, µ) =
π (m− 3)

189

( (
21(5µ+ 12)(µ+ 2)(3a21 + 5a22)

)
λ2 + a1

(
(105a21 + 427a22)µ

2

+(426a21 + 2306a22)µ+ 504a21 + 3384a22

)
λ3

)
= 0.

By solving equations (57) and (58) and by considering that the three cases can
be represented as a linear system Aξ = 0, where ξ = (a6, a9)

T in the case (iii),
ξ = (a7, a8)

T in the case (ii) and ξ = (λ2, λ3)
T in the case (i). By considering that

the determinant of the matrix A is |A| = (µ− 3)(µ+ 2)(21µ2 + 128µ+ 212). Then
under the condition (µ− 3)(µ+ 2) ̸= 0 we obtain the necessity of statement (a) of
Proposition 24.

Now we study the case when µ = 3. After some computations we get that∫ 2π

0

({H5, g1}+ {H4, g2}+ {H3, g3})|x=cos t,y=sin t dt

= −15π

2
(a1(3a7 + a8)− a2(3a6 + a9)) = 0.

First we shall study the case when a1 = 0, and a2 ̸= 0. From (57) we get that
3a6 + a9 = 0. From (58) we obtain that the integral is identically zero because
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µ = 3 . On the other hand from the relation∫ 2π

0

(
{H9, g1}+ {H8, g2}+ {H7, g3}+ {H6, g4}+ {H5, g5}

+{H4, g6}+ {H3, g7}+
)∣∣∣

x=cos t,y=sin t
dt = I(a1, a2) = 0,

where I is a convenient function in a1 and a2. If (iii) a1 = 0 and a2 ̸= 0 then

I(0, a2) = (105a32a7 − 105a32a8 − 864a22c)a6 + (995a32a7 + 285a22a8 − 288a22c)a9 = 0.

By considering that a9 = −3a6 we obtain that (3a7+a8)a6 = 0. Thus if 3a7+a8 ̸= 0
then µ−3 = a1 = a6 = a9 = 0. We observe that if a1 = 0 then λ2 = a6 and λ3 = a9.
In analogous form we can study the case when a2 = 0 and a1 ̸= 0.

If 3a7 + a8 = 3a6 + a9 = 0 then we obtain differential system

˙x = −y(1 + µ(a2x− a1y) + x
(
a1x+ a2y + a6x(x

2 − 3y2) + a7y(y
2 − 3x2)

)
,

˙y = x(1 + µ(a2x− a1y) + y
(
a1x+ a2y + a6x(x

2 − 3y2) + a7y(y
2 − 3x2)

)
,

From (29) we have that this system has a weak center at the origin if and only if

a2(3a
2
1 − a22)a6 + a1(a

2
1 − 3a22)a7 = 0.

Hence if a1 = 0 then a6 = a9 = 0, and if a2 = 0 then a7 = a8 = 0. In short we prove
that the origin is a weak center of (50) in the case when µ = 3. Thus we obtain
the necessity of the condition in statement (a). The necessity and sufficiency of
statement (c), i.e. when µ + 2 = 0 follows from Proposition 3. Finally we study
the necessity and sufficiency of statement (b). Thus when a1 = a2 = 0 we obtain
that differential system (50) becomes

ẋ = −y + x(a6x
3 + a7y

3 + a8xy + a9xy
2) := −y + xΩ3,

ẏ = x+ y(a6x
3 + a7y

3 + a8xy + a9xy
2) := x+ yΩ3,

which is a polynomial differential system of degree four with homogenous nonlin-

earities. Consequently

∫ 2π

0

Ω3|x=cos t,y=sin t dt = 0, then in view of Proposition 4

we get that the origin is a weak center. In short the proposition is proved. �
Proposition 25. A polynomial differential system of degree five

(59)

ẋ = −y(1 + µ(a2x− a1y))

+x(a1x+ a2y + a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4),

ẏ = x(1 + µ(a2x− a1y))

+y(a1x+ a2y ++a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4),

has a weak center at the origin if and only if

(a)

(60)

a12 + 3(a10 + a14) = 0,

2a31a
3
2a13 −

(
a61 + 7(a21a

4
2 − a42a

2
1

)
a10 −

(
a51a2 − 4a31a

3
2 + a1a

5
2

)
a11 = 0,

2a21a
2
2a14 −

(
a41 − 4a21a

2
2 + a42

)
a10 − (a31a2 − a1a

3
2)a11 = 0.

Moreover
(i) If a1 = 0 and a2 ̸= 0 then a12 = a10 = a14 = 0.
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(ii) If a2 = 0 and a1 ̸= 0 then a12 = a10 = a14 = 0.
(iii) If a1a2 ̸= 0 then by introducing the notations

λ1 = a13 −
1

2a31a
3
2

( (
a61 + 7(a21a

4
2 − a41a

2
2 − a62

)
a10 −

(
a51a2 − 4a31a

3
2 + a1a

5
2

)
a11

)
,

λ2 = a14 −
1

2a31a
3
2

( (
a41 − 4a21a

2
2 + a42

)
a10 − (a31a2 − a1a

3
2)a11

)
,

we get that λ1 = λ2 = 0.
(b) a1 = a1 = 0, and a12 + 3(a10 + a14) = 0.
(c) µ+ 3 = 0.

Moreover system (59) under the conditions (60) and (µ+3)(a21+a22) ̸= 0 and after a
linear change of variables (x, y) −→ (X,Y ) it is invariant under the transformations
(X,Y, t) −→ (−X,Y,−t), or (X,Y, t) −→ (X,−Y,−t).

Proof. Sufficiency: First we write system (59) after the linear change (32). Later
we observe that the polynomial differential system obtained is invariant under the
transformation (X,Y, t) −→ (−X,Y,−t) if and only if

κ1a2 − κ2a1 = 0,

2κ2
1κ

2
2a12 + (3κ4

1 − 6κ2
2κ

2
1 + 3κ4

2)a10 + (3κ3
1κ2 − 3κ3

2κ1)a11 = 0,

2κ3
1κ

3
2a13 − (κ6

1 − 7κ4
1κ

2
2 + 7κ2

1κ
4
2 − κ6

2)a10 − (κ5
1κ2 − 4κ3

2κ
3
1 + κ1κ

5
2)a11 = 0,

2κ2
1κ

2
2a14 − (κ4

1 − 4κ2
1κ

2
2 + κ4

2)a10 + (κ1κ
3
2 − κ3

1κ2)a11 = 0,

From the last three conditions it follows that a12 + 3(a10 + a14) = 0.

We suppose that (60) holds and then the origin is a center of system (59), and
by Theorem 2 is a weak center. We suppose that a21+a22 ̸= 0. Then after the change
x = a1X − a2Y, y = a2X + a1Y, we get that system (59) coincides with system
(34) with κ1 = a1 and κ2 = a2, and consequently system (59) is invariant under
the change (X,Y, t) −→ (−X,Y,−t). Thus in view of the Poincaré Theorem we get
that the origin is a center. Again by Theorem 2 this center is weak.

We observe that under the assumptions of statement (iii) differential system (59)
becomes

ẋ = y(1+µa2x)+xy(a2+a11x
3+a13xy

2), ẏ = x(1+µa2x)+y2(a2+a11x
3+a13xy

2).

This system is invariant under the transformation (x, y, t) −→ (x,−y,−t). Under
hypothesis of statement (ii) differential system (59) becomes

ẋ = −y(1−µa1y)+x2(a1+a11x
2y+a13y

3), ẏ = x(1−µa1y)+yx(a2+a11x
2y+a13y

2).

This system is invariant under the transformation (x, y, t) −→ (−x, y,−t). Under
the assumptions of statement (i) the conditions λ1 = λ2 = 0 follows immediately.

Necessity Now we suppose that the origin is a center of (59) and we prove that
(60) holds. Indeed, from Theorem 14 it follows that differential system (59) can be
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written as

{H6, x}+ (1 + g1){H5, x}+ (1 + g1 + g2){H4, x}+ (1 + g1 + g2 + g3){H3, x}

+(1 + g1 + g2 + g3 + g4){H2, x}

= −y(1 + µ(a2x− a1y)) + x(a1x+ a2y + a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4),

{H6, y}+ (1 + g1){H5, y}+ (1 + g1 + g2){H4, y}+ (1 + g1 + g2 + g3){H3, y}

+(1 + g1 + g2 + g3 + g4){H2, y}

= x(1 + µ(a2x− a1y)) + y(a1x+ a2y ++a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4),

which is equivalent to

{H3, x}+ g1{H2, x} = −yµ(a2x− a1y) + x(a1x+ a2y),

{H3, y}+ g1{H2, y} = −yµ(a2x− a1y) + y(a1x+ a2y).

These equations have the unique solutions g1 and H3. Inserting these homogenous
polynomials into the equations

{H4, x}+ g1{H3, x}+ g2{H2, x} = 0,

{H4, y}+ g1{H3, y}+ g2{H2, y} = 0,

we get H4 and g2 with arbitrary terms of the form ck(x
2 + y2)k with ck a constant

for k = 1, 2. Inserting g1, H3, g2 and H4 into the equations

{H5, x}+ g1{H4, x}+ g2{H3, x}+ g3{H2, x} = 0,

{H5, y}+ g1{H4, y}+ g2{H3, y}+ g3{H2, y} = 0,

we have a unique solutions g3 and H5. Inserting gj and Hj+2 for j = 1, 2, 3 into the
equations

{H6, x}+ g1{H5, x}+ g2{H4, x}+ g3{H3, x}+ g4{H2, x}

= x(a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4) = xΩ4,

{H6, y}+ g1{H5, y}+ g2{H4, y}+ g3{H3, y}+ g4{H2, y}

= y(a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4) = yΩ4,

we get that this partial differential system has solution if and only if and only if
a12 + 3(a10 + a14) = 0. Indeed from the computability condition

{H5, g1}+ {H4, g2}+ {H3, g3}+ {H2, g4} = 6Ω4,

we obtain that if∫ 2π

0

({H5, g1}+ {H4, g2}+ {H3, g3} − 6Ω4)|x=cos t,y=sin t dt

= a12 + 3(a10 + a14 = 0.

Then there exist solutions g4 and H6 which we obtain with arbitrary terms of the
form dk(x

2 + y2)k with dk a constant for k = 1, 2.
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Inserting the homogenous polynomials gj and Hj+2 of degree j and j+2 respec-
tively, for j = 1, 2, 3, 4 into (30) for m = 5 and k = 2 we get∫ 2π

0

({H7, g1}+ {H6, g2}+ {H5, g3}+ {H4, g4}+ {H3, g5})|x=cos t,y=sin t dt

= I1(a1, a2) = 0.

where I1(a1, a2) is such that

I1(a1, 0) = 2π a21 (µ+ 3)(µ+ 2) (a10 − a14) = 0,

I1(0, a2) = 2π a22 (µ+ 3)(µ+ 2) (a10 − a14) = 0,

I1(a1, a2)|a1a2 ̸=0 = 2π (µ+ 3)(µ+ 2)
(
(a21 − a22)λ1 + a1a2λ2

)
= 0.

and ∫ 2π

0

(
{H9, g1}+ {H8, g2}+ {H7, g3}+ {H6, g4}+ {H5, g5}

+{H4, g6}+ {H3, g7}
)∣∣∣

x=cos t,y=sin t
dt = I2(a1, a2) = 0,

where = I2(a1, a2) is a constant such that

I2(a1, 0)|a10=a14
= −π a41

864

(
2120µ3 + 7161µ2 + 5202µ+ 7857

)
a14 = 0,

I2(0, a2)|a10=a14
= −π a42

864

(
2120µ3 + 7161µ2 + 5202µ+ 7857

)
a14 = 0 = 0,

I2(a1, a2)|a1a2 ̸=0 = ν1λ1 + ν2λ2 = 0.

where ν1 and ν2 are convenient constants such that the system

2π (µ+ 3)(µ+ 2)
(
(a21 − a22)λ1 + a1a2λ2

)
:= σ1λ1 + σ2λ2 = 0, ν1λ1 + ν2λ2 = 0,

is such that ∆ := σ1ν2 − σ2ν1 = (µ + 3)(µ + 2)p(µ, a1, a2) with p(µ, a1, a2) a
convenient polynomial of degree 3 in the variable µ and p(0, a1, a2) ̸= 0.

Consequently if µ is such that ∆ ̸= 0 we obtain that λ1 = λ2 = 0 The case when
(µ+2)p(µ, a1, a2) = 0 could be studied in a similar way to the proof of Proposition
24. The proof of statement (c), i.e. when µ = −3 is studied in Proposition 3. Now
we prove statement (b). Thus a1 = a2 = 0 and the differential system (59) under
the condition a12 + 3(a10 + a14) = 0 becomes

ẋ = −y + x(a10x
4 + a11x

3y − 3(a10 + a14)x
2y2 + a13xy

3 + a14y
4),

ẏ = x+ y(a10x
4 + a11x

3y − 3(a10 + a14)x
2y2 + a13xy

3 + a14y
4)

Hence we get that Ω4 = a10x
4 + a11x

3y − 3(a10 + a14)x
2y2 + a13xy

3 + a14y
4 and

satisfies the condition

∫ 2π

0

Ω4|x=cos t,y=sin t dt = 0, because a12 + 3(a10 + a14) =

0. Then in view of Corollary 4 we get that the origin is a weak center. Thus
the necessity of the statement (b) is proved, and consequently the proposition is
proved. �
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Proposition 26. The polynomial differential system of degree six
(61)
ẋ = −y(1 + µ(a2x− a1y))

+x(a1x+ a2y + a15x
5 + a16y

5 + a17x
4y + a18x

3y2 + a19x
2y3 + a20xy

4),

ẏ = x(1 + µ(a2x− a1y))

+y
(
a1x+ a2y + a15x

5 + a16y
5 + a17x

4y + a18x
3y2 + a19x

2y3 + a20xy
4
)
,

has a weak center at the origin if and only if

(a) the following conditions hold:

8a21a
5
2a15 +

(
2a51a

2
2 − 4a31a

4
2 + 2a1a

6
2

)
a19 −

(
3a71 − 15a51a

2
2 + 25a31a

4
2 − 5a1a

6
2

)
a16

+
(
a72 + 11a41a

3
2 − 9a21a

5
2 − 3a61a2

)
a20 = 0,

8a31a
4
2a17 − (15a71 − 55a51a

2
2 + 45a31a

4
2 − 5a1a

6
2)a16 − (10a51a

2
2 − 12a31a

4
2 + 2a1a

6
2)a19

−(−15a61a2 + 35a41a
3
2 − 13a21a

5
2 + a72)a20 = 0,

2a21a
3
2a18 − (5a51 − 10a31a

2
2 + 5a1a

4
2)a16 − (4a31a

2
2 − 2a1a

4
2)a19 − (6a21a

3
2 − 5a41a2 − a52)a20 = 0.

Moreover
(i) if a1 = 0 and a2 ̸= 0 then a15 = a17 = 0,
(ii) if a2 = 0 and a1 ̸= 0 then a16 = a18 = 0,
(iii) if a1a2 ̸= 0 then

(62)

λ1 = a15 +
1

8a21a
5
2

( (
2a51a

2
2 − 4a31a

4
2 + 2a1a

6
2

)
a19 −

(
3a71 − 15a51a

2
2 + 25a31a

4
2 − 5a1a

6
2

)
a16

+
(
a72 + 11a41a

3
2 − 9a21a

5
2 − 3a61a2

)
a20

)
= 0,

λ2 = a17 −
1

8a31a
4
2

(
(15a71 − 55a51a

2
2 + 45a31a

4
2 − 5a1a

6
2)a16 + (10a51a

2
2 − 12a31a

4
2 + 2a1a

6
2)a19

+(−15a61a2 + 35a41a
3
2 − 13a21a

5
2 + a72)a20

)
= 0,

λ3 = a18 +
1

2a21a
3
2

(
− (5a51 − 10a31a

2
2 + 5a1a

4
2)a16

−(4a31a
2
2 − 2a1a

4
2)a19 − (6a21a

3
2 − 5a41a2 − a52)a20

)
= 0.

(b) a1 = a2 = 0.
(c) µ+ 4 = 0.

Moreover, assume that (µ+ 4)(a21 + a22) ̸= 0 then system (61) under the conditions
(i), (ii),(iii) and after a linear change of variables (x, y) −→ (X,Y ) it is invariant
under the transformations (X,Y, t) −→ (−X,Y,−t), or (X,Y, t) −→ (X,−Y,−t).

Proof. Sufficiency: First we observe that the polynomial differential system (61)
under the conditions (i) becomes

ẋ = −y(1− µa2x) + xy(a2 + a16y
4 + a17x

4 + a19x
2y2),

ẏ = x(1− µa2x) + y2(a2 + a16y
4 + a17x

4 + a19x
2y2),
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which is invariant under the transformation (x, y, t) −→ (x,−y,−t), and the poly-
nomial differential system (61) under the conditions (ii) becomes

ẋ = −y(1 + µa1y) + x2(a1x+ a15x
4 + a18x

2y2 + a20y
4),

ẏ = x(1 + µa1y) + xy(a1x+ a15x
4 + a18x

2y2 + a20y
4),

which is invariant under the transformation (x, y, t) −→ (−x, y,−t)

Under the linear change of variables (32) the differential system (61) is invariant
under the transformation (X,Y, t) −→ (−X,Y,−t) if and only if

(
2κ5

1κ
2
2 − 4κ3

1κ
4
2 + 2κ1κ

6
2

)
a19 −

(
3κ7

1 − 155κ1κ
2
2 + 25κ3

1κ
4
2 − 5κ1κ

6
2

)
a16

+
(
κ7
2 + 11κ4

1κ
3
2 − 9κ2

1κ
5
2 − 3κ6

1κ2

)
a20 + 8κ2

1κ
5
2a15 = 0,

(15κ7
1 − 55κ5

1κ
2
2 + 45κ3

1κ
4
2 − 5κ1κ

6
2)a16 + (10κ5

1κ
2
2 − 12κ3

1κ
4
2 + 2κ1κ

6
2)a19

+(−15a61a2 + 35a41a
3
2 − 13a21a

5
2 + a72)a20 − 8a31a

4
2a17 = 0,

2κ2
1κ

3
2a18 − (5κ5

1 − 10κ3
1κ

2
2 + 5κ1κ

4
2)a16

−(4κ3
1κ

2
2 − 2κ1κ

4
2)a19 − (6κ2

1κ
3
2 − 5κ4

1κ2 − κ5
2)a20 = 0.

We shall study only the case (iii), i.e. when a1a2 ̸= 0. We suppose that (62)
holds and show that then the origin is a center of system (61). For the case when
a21 + a22 ̸= 0, after the change x = a1X − a2Y, y = a2X + a1Y, we get that this
system coincides with system (35) and with κ1 = a1 and κ2 = a2. Consequently
system (35) is invariant under the change (X,Y, t) −→ (−X,Y,−t). Thus in view
of the Poincaré Theorem we get that the origin is a center, and by Theorem 2 this
center is a weak center.

Necessity, Now we suppose that the origin is a center of (61) and we shall prove
that (62) holds. Indeed, from Theorem 14 it follows that differential system (61)
can be written as

{H7, x}+ (1 + g1){H6, x}+ (1 + g1 + g2){H5, x}+ (1 + g1 + g2 + g3){H4, x}

+(1 + g1 + g2 + g3 + g4){H3, x}+ (1 + g1 + g2 + g3 + g4 + g5){H2, x}

= −y(1 + µ(a2x− a1y)) + x
(
a1x+ a2y + a15x

5 + a16y
5 + a17x

4y + a18x
3y2

+a19x
2y3 + a20xy

4
)
,

{H7, y}+ (1 + g1){H6, y}+ (1 + g1 + g2){H5, y}+ (1 + g1 + g2 + g3){H4, y}

+(1 + g1 + g2 + g3 + g4){H3, y}+ (1 + g1 + g2 + g3 + g4 + g5){H2, y}

= x(1 + µ(a2x− a1y)) + y
(
a1x+ a2y + a15x

5 + a16y
5 + a17x

4y + a18x
3y2

+a19x
2y3 + a20xy

4
)
.
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This partial differential system has solution for arbitrary a1, a2, a15, a16, a17, a18, a19, a20..
After some computations we get that
(63)∫ 2π

0

(
{H7, g1}+ {H6, g2}+ {H5, g3}+ {H4, g4}+ {H3, g5}

)∣∣∣
x=cos t, y=sin t

dt

= −π(µ+ 4) (a1λ2(a1, a2)− 5a2λ1(a1, a2)− a2λ3(a1, a2)))

:= ν11λ1 + ν12λ2 + ν13λ3 = 0,

where λj = λj(a1, a2, µ) for j = 1, 2, 3 are constant defined in (62). By continuing
the integration of (see equation (30) with m = 6 and k = 3) we get that

(64)

∫ 2π

0

(
{H9, g1}+ {H8, g2}+ {H7, g3}+ {H6, g4}+ {H5, g5}+ {H4, g6}

+ {H3, g7}
)∣∣∣

x=cos t, y=sin t
dt := ν21λ1 + ν22λ2 + ν23λ3 = 0,

where

ν21 :=
25a2π

6912

(
(−1062a21 − 558a22)µ

3 + (−8961a21 − 7501a22)µ
2

+1344c− 8460a21 − 8796a22

)
,

ν22 := −5a1π

2304

(
(2070a22 − 354a21)µ

3 + (13897a22 − 2987a21)µ
2

+(448c− 4308a22 − 2820a21) + (16677a21 − 83367a22 − 1344c
)
,

ν23 :=
5a2
6912

(
4014a21 − 2250a22)µ

3 + (27933a21 − 19799a22)µ
2

+(−11556a21 − 7764a22 + 1344c) + 99889a22 − 155763a21 − 4032c
)
,

where c is an arbitrary constant. Again from equation (30) with m = 6 and k = 5
we get
(65)∫ 2π

0

(
{H11, g1}+ {H10, g2}+ {H9, g3}+ {H8, g4}+ {H7, g5}+ {H6, g6}

+{H5, g7}+ {H4, g8}{H3, g9}
)∣∣∣

x=cos t, y=sin t
dt := ν31λ1 + ν32λ2 + ν33λ3 = 0,

where ν3j for j = 1, 2, 3, are convenient constants. From (63), (64) and (65) we
obtain the linear system with respect to λ1, λ2, λ3 : Aλ = 0, where A = A(µ) is
the coefficient matrix with determinant |A| equal to∣∣∣∣∣∣

ν11 ν12 ν13
ν21 ν22 ν23
ν31 ν32 ν33

∣∣∣∣∣∣ = −π3(a22a1)
3(µ+ 4)

456192

(
12276µ5 + 145467µ4 + 502471µ3

+480577µ2 − 3775995µ− 2701980
) (

846µ3 + 6149µ2 − 576µ− 34299
)
̸= 0.

Consequently if |A| ̸= 0 then the unique solution of these linear system is the
trivial solution λ1 = λ2 = λ3 = 0. The case when |A| = 0 could be studied in a
similar way of Proposition 24. Thus the necessity of statement (a) is proved. To
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prove statement (c), i.e. when µ = −4 we apply Proposition 3. Finally we prove
statement (b), i.e when a1 = a2 = 0. Under these conditions system (61) becomes
(66)
ẋ = −y + x(a15x

5 + a16y
5 + a17x

4y + a18x
3y2 + a19x

2y3 + a20x
1y4) := −y + xΩ5,

ẏ = x+ y(a15x
5 + a16y

5 + a17x
4y + a18x

3y2 + a19x
2y3 + a20x

1y4 := x+ yΩ5,

which is a polynomial differential system of degree six with homogenous nonlinear-

ities. Since

∫ 2π

0

Ω5|x=cos t,y=sin t dt = 0, in view of Proposition 4 we obtain that

the origin is a weak center of (66). Thus the necessity of the proposition is proved
and consequently the proposition is proved. �

6. Proof of Theorem 9

The proof of Theorem 9 follows from the next propositions.

Proposition 27. A quadratic polynomial differential system

(67)
ẋ = −y(1 + a1x+ a2y) + x(a3x+ a4y),

ẏ = x(1 + a1x+ a2y) + y(a3x+ a4y),

has a weak center at the origin if and only if

(68) a1a3 + a2a4 = 0.

Moreover system (67) under condition (68) and (a21 + a22) ̸= 0 and after a linear
change of variables (x, y) −→ (X,Y ) it is invariant under the transformations
(X,Y, t) −→ (−X,Y,−t) or transformations (X,Y, t) −→ (X,−Y,−t).

Proof. It is analogous to the proof of Proposition 22 with n1 = a1, n2 = a2 and
a1 = a3, a2 = a4. �

Proposition 28. A cubic polynomial differential system

(69)
ẋ = −y(1 + a1x+ a2y) + x(a3x

2 + a4y
2 + a5xy),

ẏ = x(1 + a1x+ a2y) + y(a3x
2 + a4y

2 + a5xy),

has a weak center at the origin if and only if

(70) a3 + a4 = 0, a1a2a5 + (a22 − a21)a4 = 0,

Moreover system (69), under condition (70) and a21 + a22 ̸= 0, after a linear change
of variables (x, y) −→ (X,Y ) it is invariant under the transformation (X,Y, t) −→
(−X,Y,−t).

Proof. It is analogous to the proof of Proposition 23. �

Proposition 29. A polynomial differential system of degree four

(71)
ẋ = −y(1 + a1x+ a2y) + x(a6x

3 + a7y
3 + a8x

2y + a9xy
2),

ẏ = x(1 + a1x+ a2y) + y(a6x
3 + a7y

3 + a8x
2y + a9xy

2),

has a weak center at the origin under the assumption

(a) a21 + a22 ̸= 0 if and only if
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(i) a1a2 ̸= 0 and

a6 +
1

2a32

(
a7(a

3
1 − 3a22a1) + a9(a

3
2 − a21a2)

)
= 0,

a8 +
1

2a22a1

(
a7(3a

3
1 − 3a1a

2
2) + a9(a

3
2 − 3a21a2)

)
= 0.

(ii) a7 = a8 = 0 when a2 = 0 and a1 ̸= 0.
(iii) a6 = a9 = 0 when a1 = 0 and a2 ̸= 0.

(b) If a1 = a2 = 0.

System (71) under the conditions (i) , (ii) and after a linear change of variables
(x, y) −→ (X,Y ) it is invariant under the transformations (X,Y, t) −→ (−X,Y,−t),
and in the case (iii) it is invariant under the transformations (X,Y, t) −→ (X,−Y,−t),

Proof. It is analogous to the proof of Proposition 24. �

Proposition 30. A polynomial differential system of degree five
(72)
ẋ = −y(1 + a1x+ a2y) + x(a15x

5 + a16y
5 + a17x

4y + a18x
3y2 + a19x

2y3 + a20xy
4),

ẏ = x(1 + a1x+ a2y) + y(a15x
5 + a16y

5 + a17x
4y + a18x

3y2 + a19x
2y3 + a20xy

4,

has a weak center at the origin under the assumption

(a) a21 + a22 ̸= 0 if and only if
(i) a1a2 ̸= 0 and

(73)

0 = a15 +
1

8a21a
5
2

( (
2a51a

2
2 − 4a31a

4
2 + 2a1a

6
2

)
a19 −

(
3a71 − 15a51a

2
2 + 25a31a

4
2 − 5a1a

6
2

)
a16

+
(
a72 + 11a41a

3
2 − 9a21a

5
2 − 3a61a2

)
a20

)
,

0 = a17 −
1

8a31a
4
2

(
(15a71 − 55a51a

2
2 + 45a31a

4
2 − 5a1a

6
2)a16 + (10a51a

2
2 − 12a31a

4
2 + 2a1a

6
2)a19

+(−15a61a2 + 35a41a
3
2 − 13a21a

5
2 + a72)a20

)
,

0 = a18 +
1

2a21a
3
2

(
− (5a51 − 10a31a

2
2 + 5a1a

4
2)a16

−(4a31a
2
2 − 2a1a

4
2)a19 − (6a21a

3
2 − 5a41a2 − a52)a20

)
.

(ii) a1 = a16 = a17 = a19 = 0 when a2 ̸= 0.
(iii) a2 = a15 = a18 = a20 = 0 when a1 ̸= 0.

(b) If a1 = a2 = 0.

Moreover, assume that a21 + a22 ̸= 0 then system (72) under the conditions (i), (ii),
and after a linear change of variables (x, y) −→ (X,Y ) it is invariant under the
transformations (X,Y, t) −→ (−X,Y,−t). If (iii) holds then it is invariant under
the transformations (X,Y, t) −→ (X,−Y,−t).

Proof. It is analogous to the proof of Proposition 25. �
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We observe that the main difficulty to prove these results for m > 5 become
from the necessary huge computations.
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