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Abstract The center problem, i.e. distinguish between a focus and a center
is a classical problem in the qualitative theory of planar differential equations
which go back to Darboux, Poincaré and Liapunov. Here we solve the center
problem for the class of planar analytic or polynomial differential systems

k k
g'c:—y+X:—y+ZXj, y':x—l—Y:x—i—ZYj, k < oo,

Jj=2 Jj=2

where X; = X,(x,y) and Y; = Y;(z,y) are homogenous polynomials of degree
7 > 1, under the condition

0xX oY
(22 4 y%) (895 + 8y> =p(@X +yY) with peR\{0}.
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Moreover we prove that these centers are weak centers, additionally, we provide
their first integrals.
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1 Introduction and main results

9] 0
Let X = (—y + X)% + (x+ Y)a—y be the real planar analytic or polynomial

vector field associated to the real planar differential system

k k
i:—y—i—X:—y—i—ZXj, y=$+Y:x+Zi/}7 for k<oo (1)
Jj=2 Jj=2

where X; = X,(z,y) and Y; = Yj(z,y) are homogenous polynomials of degree
7. The Poincaré center-focus problem asks about conditions on the coefficients
of X and Y under which all trajectories of system (1) contained in a small open
neighborhood of the origin are closed, of course with exception of the origin.
One of the mechanism to solve the center-focus problem is the following result
due to Poincaré and Liapunov.

Theorem 1 A planar analytic or polynomial differential system (1) has a
center at the origin if and only if it has a first integral of the form

H=Y" Hey) = 5@ +02) + Y Hylw) 2)
j=2 j=3

where H; are homogenous polynomials of degree j.

The first integral H is called the Poincaré-Liapunov first integral.
A center is called a weak center if the Poincaré-Liapunov first integral
satisfies
22 4 92
2

The next theorem is proved in [4].

H:

(14 h.ot.) = Hyd.

Theorem 2 A center of an analytic (polynomial) (2) differential system is a
weak center if and only if (2) can be written as

Y= x(l + A(.’L’,y)) + yQ(may)

Differential system (3) is called A — 2 differential equation. Another well-
know mechanism to solve the center-focus problem is the Reeb criterium.
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Theorem 3 [Reeb’s criterion] (see for instance [8]). The analytic differential
system (1) has a center at the origin if and only if there is a local nonzero

[ee]
analytic inverse integrating factor of the form V. = 1+ Z gij(z,y), called
j=1
in what follows the Reeb inverse integrating factor, in a neighborhood of the
origin, where g; = g;(x,y) is the homogenous polynomial of degree j > 0.

The following result is proved in [7].

Corollary 1 Assuming that differential system (1) has a center at the origin.
Then the Poincaré-Liapunov first integral H can be written as

> 1 > T
H= Y, —yXn) | —— — —, 4
Senrn (- Xe) ©
where Ty, is a homogenous polynomial for k > 1 such that

0o k—1

é:%:l—ZTj T =gk — Y 9Th

14y

for k>1 where Ty = g1, and V is the Reeb inverse integrating factor.
In particular if the vector field X is polynomial of degree m then (4) becomes

i 1 > T
H= Y, —yX) [ — S —F ).
S (- )

Moreover if the center is a weak center then

> 1 > Ty
H=H;) 2401(z,7) <n+1 - ZHHJ ’
k

n=1 =1
where Ag = 1.

A partial integral of the vector field X is a differentiable function G : D —
R where D is an open subset of R? satisfying

0G oG
X(G)=P— — = KG,
(@) oz +Q dy
with K a function of the same class than G.
We say that an analytic (polynomial) vector field X is quasi-Darbouz in-
tegrable if there exist r polynomial partial integrals gi,...,¢g, € Rz, y] and
s non-polynomial C” with > 0 partial integrals where K; = K;(z,y) is a

convenient analytic (polynomial) for j = 1,...,s such that the function

F = eklen)/h@n g gy g (2, y) f17 (2,y) ... f2 (2, y),
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is a first integral, where k = k(z,y), h = h(x,y) are analytic (polynomial)
functions, and Aq,..., A, K1,..., ks, are complex constants.
In [4] the following conjecture was stated.

Conjecture 1. Any analytic (polynomial) vector field with a weak center at
the origin is quasi—Darbouz integrable.

This conjecture is supported in particular by the results given in the proof
of the next Theorem 5 and the following two results. Note that the first result
is a local one.

Theorem 4 Any analytic (polynomial) vector field with a weak center at the
origin is locally quasi—-Darbouz integrable.

Theorem 4 is proved in section 2
The weak conditions provided by Alwash and Lloyd [1] give sufficient con-
ditions for the existence a center. More precisely, they proved:

Proposition 1 The origin of coordinates of the polynomial differential system
T=—-y+X,, y=z+Y,, (5)

where X, and Yy, are homogenous polynomial of degree m is a center if there
exists ;1 € R\ {0} such that

(@) (AU ST} oy Xo) 9o+ V) O

and either m = 2k; orm =2k — 1 and p # 2k; or m =2k — 1, up = 2k and
2T
0Xop—1 = OYo_1
dt = 0.
/0 < ox + o

r=cost,y=sint
The main objective of this paper is to extend and improve the result of Propo-
sition 1 to analytic and polynomial differential systems. Thus our two main
results are the following ones.

Theorem 5 Differential system (1), satisfying the condition

(xQ +y2) (a(_?g;' X) + a(xa‘; Y)

):uuhy+XHw@+Y», (7)

where p € R\ {0}, has a weak center at the origin if and only if:
For the analytic systems one of the following conditions holds

(1) p ¢ N\{1},
(i) p=2,
(iii) p=2k+1€N
(iV) p =2k € N\{2}, and

T (O0Xop_1 Yo
Bak—1 ~—/0 ( O + y >

dt=0.  (8)

xr=cost,y=sint
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For the polynomial systems of degree m one of the following conditions holds

() pg (L3 m+1},

(it) p=2,

(iii) =2k +1€{1,2,...,m+1},

(iv) p=2ke{3,....,m+1} and Bar—1 = 0.

Moreover differential system (1) satisfying (7) and having a weak center at the
origin is quasi-Darboux integrable.

Corollary 2 Differential system (5) under condition (6) has a weak center at
the origin if and only if

() g {2m+ 1),
(i) If p =2,

(iii) If =2k +1€{l,m+1},

(i) If p =2k =m-+1 and Bar—1 = 0.

Theorem 5 and Corollary 2 are proved in section 3.

2 Preliminary results

In the proofs of our results it plays an important role the following propositions
and corollaries.

The Poisson bracket of two functions f and g is defined as

)=~ o

Proposition 2 The next relation holds

27

{Hy, U} dt = W(cos 2, sin 27) — ¥(cos 0, sin 0)

r=cost,y=sint
0

for arbitrary C' function ¥ = W(x,y) defined in U C R2.

Proof Indeed,

27
dt

x=cost,y=sint

27
ov 0w
{Hy, }|x=cost,y=51nt /O (xay yax)

0
2 27
ov ov d
= T— +y) dt:/ — (¥(cost,sint)) dt
A ( O ay r=cost,y=sint 0 dt( ( ))

= ¥(cos 2w, sin 27) — ¥(cos 0, sin 0).

The following corollary is due to Liapunov (see Theorem 1, page 276 of [3])
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Corollary 3 Let U = U(x,y) be a homogenous polynomial of degree m. The
linear partial differential equation

ov ov
—_— _—= H =
a:ay Vs {Hy,V} =T,

has a unique homogenous polynomial solution V' of degree m if m is odd; and if
V' is a homogenous polynomial solution when m is even then any other homoge-
nous polynomial solution is of the form V +c(x?+y2)™/? with ¢ € R. Moreover,

dt = 0.

xr=cost,y=sint

27
for m even these solutions exist if and only Zf/ U(z,y)|
0

Proof (Proof of Theorem /) Indeed, if the analytic vector field has a weak
center at the origin then it admits a Poincaré-Liapunov local analytic first
integral at the origin H = Ha(1 + h.ot) = Ho®(z,y). From Theorem 2 we
get that H, = 2H>82(x,y), i.e. Hs is a partial integral with analytic cofactor
202(x,y). Tt is easy to show that the analytic function @(x,y) is an analytic
partial integral with cofactor —22(x,y). In short the theorem is proved.

In the proof of Theorem 5 and Corollary 2 we need the following two
propositions which also appeared in the Ph.D. [7], and for completeness we
prove them here.

Proposition 3 Let

i = P(x,y), v = Q(z,y) 9)

be an analytic (polynomial) differential system . Then this system can be writ-
ten as

F OF
:P:—i— | = = — . 1
iy By yG, §=Q=5-+aG (10)

where F and G are convenient analytic (polynomial) functions, if and only if
27
oP 0Q
a.. . r=cos =sin dt = 0. 11
[ (G5 e -
holds.

Moreover if (11) holds then differential system (9) can be written as
00 i w(op 0Q
dy “p p\dxr 9dy)’
.00 Ay (0P 0Q
Y=o T T <5$ * 5y>’

where & = pu F + 2H,G, € R\{0}, and A is a convenient function.



Center problem for the A — (2 differential systems

Proof Indeed, if (11) holds then there exist a function G such that
0P 0Q oG 9G 9P  0Q
{HQ,G}f%Jra—y«:»zay y8x78x+8y<:>
— F
0Q=2t) IP+yG) _  pryo--9F o ,c-9F
dy ox dy ox

consequently (10) holds.
Assume that (10) holds then

oP  0Q o*H ol
5z Ty = U O puar T paay

or Oy

OPH  0°H
and by considering that 950z = m we get that

0P 0Q

27
Hence in view of the relation / {Ha2, G} |z=cost, y=sin tdt = 0 we obtain that
0

(11) holds. In short the proposition is proved.
Now we prove formula (12) for differential system (9) under the condition

(11).
If (11) holds then from (10) we get that
oP  0Q
= — 4 = =P .
{Hs, G} 7 + oy {F, Hy} = 2P+ yQ

So
or acg) —p(zP +yQ).

_ 2 2 el i
{nF +2H,G, Hy} = (x +y)<8x + a9y

oP  0Q 0P oP  0Q 0d\
(rr-s (G )+ o) o lev (54 5) - 5) -
Consequently, by introducing the function ® = u F' 4+ 2H>G, we get that
orP 0Q 0P ~
—z|l=—+=]|-=—=-4
o x(0w+8y> dy .

oP 0 P -

nQ—y i - oo =4z,
or Oy

Thus formula (12) is proved. In short the proposition is proved.
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Proposition 4 The analytic differential system (2) satisfying condition (7)
can be written as the A — 2 differential system

. x (0X 0Y
b=yt )+ 2 ( ) = v+ 4) 4 a0,

or oy
0X oY (13)
y—m(1+/1)+u(ax+8y> (14 A) +y2(z,y).

Where A = A(z,y) is a solution of the first order partial differential equation

o o
{HQ,A}*(N*%Q*I%*ya*ya (14)

which in polar coordinates x = rcos, y = rsind becomes

5 (-5 (%)

where A = A(rcosf,rsin6) and 2 = 2(rcosf,rsinh).

Proof Indeed, from (7) it follows that
oxX oY 0X 9Y
X—a2|——+—+— Y—-y|l—+—))=0.
(e (G a) ol (5 5)
Hence

0X 0y 0X oY
NXZ(%JF%)M/L #YZI(aeray)MA,

where A = A(x,y) is a convenient function. Thus we obtain that

X = —yA+ a0, Y =axzA+yL,

where 1 (0X oy
N=—(—+— 15
55 (15)
Thus we easily obtain (13). From these relations we get that
87X = — % + (9 + 8£
or Yoz Tor
Y oA Loy of?
Rl e el
oy dy 0
Consequently the formula (14) it follows. Finally we observe that if
[ P 1 X Y
X = —a——y/l—&—xﬁ, Y = a——&—x/l—i—y(?, with 2= — 8— + a—
y ox pw\odr Oy

where 2 is given by formula (15), and A is a solution of equation (14). Thus
the proposition is proved.
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A center O of system (1) is a uniform isochronous center if the equality
2y — yi = k(2? + y?) holds for a nonzero constant x; or equivalently in polar
coordinates (r,6) such that ¢ = rcosf, y = rsinf, we have that 6 = k.
Clearly that from Theorem 2 it follows that uniform isochronous centers are
weak center.

Ezample 1 For differential system (5) under the condition (6) we get that
differential system (13) and condition (14) becomes

b=yt Apy) + 220,
y:m(l"i_/lmfl)""_y()mfla (16)
{Hay Appa} = (p—m — 1)y, 4,

respectively. Consequently if g —m — 1 # 0, then system (16) can be written
as

Hy, A, , Hy, A,
&= —y(1+/1m_1)+m7{ 2 1}, y:x(1+/1m_1)+y7{ 2 1},
w—m—1 w—m—1

and if y —m — 1 =0, then
T =—y(1+ Ap_1(H2)) + 202p_1, g=a(1+ Ap_1(H2)) +yQ2m_1. (17)
Since the differential system (17) in polar coordinates writes
P =rQpm_1(rcos,rsinf), =1+ A(1/2),

we get that the weak center in this case is a uniform center.

3 Proof of Theorem 5 and Corollary 2

Proof of Theorem 5. Multiplying (7) by (22 4 32)*#=2/2 we get

P ) av oV
v(ay(—y+X)+ay(x+Y)) = ()G, + )G

where V = (22 + y?)*/2, or equivalently

Oyt X N 9 x4Y N _
0w \ (22 +y2)02 ) oy \(@? +y?)r/2 )

Hence there exists a function F' such that

-y+X _ OF z+Y  OF (18)
(@ g2z oy’ (@2 On
Thus . ~
oF OF
_ X = (g2 2\u/2 YL VY — (22 2yu/228 1
y+ @y )G Y =@y ) e (19)
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From this relation we easily obtain
0X oY

Oz + oy - :u(mQ + yQ)(M—Q)/2{ﬁ" Ha}.

Hence in view of Proposition 2 we get that
dt =

[z
0 Ox 6y x=cost,y=sint (20)

1] (13'((:0s(27r)7 sin(27)) — F(cos(0), sin(O))) .

On the other hand, from (19) and in view of Proposition 4 it follows

= r+Y y—X
7 = (@) 2+ ()

21
_ @04 @) F 906D L G Aw) a2,
(22 + y?)r/? (22 + y?)r/? '
0*°F  9*F

From the condition we get that the function A must be satisfies

Oyox - 0xdy
the equation (14).
Clearly from (21) we obtain

(1 + Az, y))(wdx + ydy) n Q(x,y)(y dr — x dy)
(22 + y2)n/? (22 + y2)n/?

dF = (22)

First we study the analytic case. Thus we assume that A(z,y) = Z Aj(z,y)
j=1

o0

and 2(z,y) = Z £2;(z,y), where A;(x,y) and £2;(x,y) are homogeneous poly-
j=1

nomials of degree j. Equation (22) in polar coordinates @ = r cos 6, y = rsinf

becomes
1+ A(rcos&,rsin@)dr ~ £2(rcosf,rsind)

rh—1 rH—2

de,

df =
where f := f(r,0) = F(rcos,rsin@) and
Aj(rcos®,rsind) =ria;(0), 2j(rcos,rsind) =rir;(0), for jeN,

or equivalently

df = | ety ey (0) | dr— | Y T R(0) | do. (23)
j=1 Jj=1
Hence
OF _ 1oy N~ eie Of _ N~ jive-
E:r “+ZTJ ”aj(H), %:—Z"J #Tj(e)v

Jj=1 Jj=1
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From the compatibility conditions an = 82f t that
P Y aro6  ogor | B¢ A
0 .
59 ((0) = o (0) = = (5 +2 — p)75(0), (24)

g , . .
or equivalently 20 (ria;(0)) = —(j +2 — p)ri7;(6), which in cartesian coor-
dinates becomes
{Ha, A} = —( +2 = )2
082; 012,
—(p—n0 — 20
(:U’ ) J T 8.13 Y 8y )
Assuming that p ¢ N\ {1} then in (24) j+2 — p # 0. Consequently from (26)
we obtain that

I i1y
df = | r ”-i—jglrj Paj(0) | dr+ ;‘HTO‘;(H) do

— [e.9] 5 —
r2—p rit2—p

=d

5s)
=

+3°
2—p Hj+2-p’

Therefore
r2—H it

f 2-p mit2-p

Qj (0)7
is a first integral, which in cartesian coordinates becomes

1 = Ai(x,
oy Ay
2-p mit2op

F(x,y) = (22 + y2)(h-2)/2
Therefore
1 2H,
 F(x,y) (2 - 2/(u—=2)’ (25)
1 " Z Aj(z,y)
2-p it 2op

is an analytic first integral defined in a neighborhood of the origin, i.e. it is
a Poincaré-Liapunov first integral. From the expression of this first integral

1
we obtain that the origin is a weak center. Clearly that Hs and Cp— +
- p

E jj_(;’y) are partial integrals with analytic cofactor 22 and (u — 2)02
: —u
Jj=1

respectively.
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Now assume that o € N\{2}. Let j = p—2, then o, _»(#) = «;,_» =constant.
From (26) and in view of (24) we obtain that

df = [ r1=r + Qu=2 Z Pt =ra(0) | dr
j=1

r
J#p—2
o0 .
N+ 3 ) | ao (26)
=1
jiu—2
2 o j2-p
=d o + /TH_Q(Q)dQ + ap—2 log r + ]; maj(g)
Thus
F2-h e AR
f= " + /T,ﬁz(e)de +ayu—2 log r+ ; m%‘(@)v

or equivalently the function f is

rh=2 | 2 —p + ot logr + / T T2 (0)d6 + ; maj(ﬁ)
J#R—2

1 1
= (* + au_zr“’Q logr + / 2,-1(r cosf,rsinh)db

N i A; (r.cos 6, rsin ) ) .
= Jt2—p
JF#n—2
We have that

= Bu-1 arctan% + o,

r:\/ﬂm» f=arctan(y/z)

where ¢ := ¢(z,y) is a polynomial of degree u—1 and 3, is a constant such
that

/ 2, —o(rcos b, rsin 0)dd

27 2
) 1 /0X,.1  0Y, 1
1= 02, t t)dt = - - — T=cos =sin dt
Bu-1 ; —2(cost,sint) /0 . ( p + Dy ) | —cos t, y—sin t
0 if =2k +1,
=1 [P (0Xo—1  OYay :
; /0 < 82; ! + 821; 1) |w:cos t, y=sin tdt if m= 2ka
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13

This first integral in cartesian coordinates becomes

Fla ) — 1 1
(z,y) = (2H) =272 (2 4

A,—2(2H,)

o~ Aj(rcosf,rsinf)
+flogH2 + 231 ),
=

Therefore from (20) we obtain that

F(cos(2),sin(27)) — F(cos(0),sin(0))

+ ¢(x,y) + Bu—1 arctan %

- J+2—p
JFH—2

_ Bu—1 arctan(tan(27))

ou/2—-1

Thus in order to obtain a center at the origin from (20) we need that 5,1 = 0.
From (24) we get that ay,_o is a constant, i.e.

g oy cos® Osin’ 0 = ay,—o = constant,

Jtk=p—2

Hence A,,_» = r"_gau,g thus
Ny—o = QH) 2oy, g = {

Hence

~ 1 2/(n—2)
7= (Fa)
F(z,y)

0 if p £ 2k,

(2H)*Lagy_o if u = 2k.

ﬂu—lzo
B 2H,
- 2/(p=2)"
1 — A; Ay—2(Hz)
- 4 S log (2H3) + ¢(z,
2—p ; it2—4 2 g (2H2) + (2, y)
JFn—2
Thus if p # 2k
Hy
= 2/i-2) @7
1 >, A;
— 4 —— + +o(z,
= ; i T ey
JFH—2
and if yu = 2k then
~ H,
= )
1 > Aj (2H2)k_1
log H.
2ok T Z i+t2-2k 5 log 2+ e(wy)
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When g = 2k > 2 the first integral H is such that lim H = 0 and
(z,y)— (0,0)

it is not analytic. So we have a center, by considering that is a center of a
A — (2 equation we obtain that the origin is a weak center. Evidently that Hs

1 (2Hy)*! - A, .
and + log Ha +(z,y) + ——J___ are partial integrals
w—2 2 ; 7+2—0pu
j#2k—2

with analytic cofactor 262 and (u — 2)f2.
If u # 2k then H is a first integral an analytic at the origin. Thus the

5 . telry
—, Te@y)

1 = A;
origin is a weak center. Clearly that Hy and —— + - J
g Yy 2 =2 ; J+2

JFH—2
are partial integrals with analytic cofactor 2(2 and (u — 2)2.
Finally we consider the case u = 2. Then from (26) and (24) we have that

df(r,0) = | r 1+ 9 ay(0) | dr+ | Y Tali(0) | a6
j=1

=
=d 10g7’+z7;.04j =d logr—f—Z—? )
=17 =1 J

Therefore the first integral F'(z,y) becomes

. 1 A1 A
F(x,y) = ilogQHQ + E 7j = §log 2Hexp | 2 E 73
Jj=1 j=1

The Poincaré-Liapunov first integral in this case is

H=Hsexp |2 i
2

So if ;4 = 2 then the origin is a weak center, and Theorem 5 is proved for the

analytic case.

The condition in order that a polynomial differential system of degree m
satisfying condition (7) has a center at the origin are obtained directly from
conditions proved in the analytic case.

Polynomial differential system of degree m satisfying condition (7) has a
weak center at the origin if and only if (8) holds. We provide the expressions
of the first integrals in the case of polynomial differential systems.

If uw & {3,4,...,m+ 1}, then we get the analytic first integral in the
neighborhood of the origin from (25)

H,

m—1
1 A
- 4 73
Qflu Z]+2,u

j=1

H= 2/(u-2)"
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If w # 2k € {3,4,...,m+ 1}, then from (27) we get that the Poincaré-
Liapunov first integral is

H
H = 2

2/(u-2)’
m—1
1 A;
— +ezy) + —
2—p ; Jt2—p
JFH—2

where ¢(x,y) is a polynomial such that

p(z,y) = (/Qu_z(TCOSQ,TSiDH)dQ

r=Vx24y2, 0arctan(y/z)> Byi—1=0

and if p =2k € {3,4,...,m+ 1}, then

- H,
H= /(k—1)"
m—1
1 AJ‘ (2H2)k_1
— log H.
3o TP@Y 2_:1 Jro_ok T g e
iAok—2

The first integral H is such that lim H =0 and is not analytic. So we
(z,y)—> (0,0)

have a center, by considering that is a center of the A — {2 equation we obtain
that the origin is a weak center.
If ;1 = 2 the Poincaré-Liapunov first integral in this case is

m_lA,
H = Hyexp 224 ,
J

j=1
then the origin is a weak center, and Theorem 5 is proved for polynomial case.
Thus Theorem 5 is proved.

Proof of Corollary 2. 1t is a simple consequence of Theorem 5 for the polyno-
mial case the Poincaré-Liapunov first integral is

1 _ Hy
N 2/(m—1) 2/(m—-1)"
9 (F(m,y)) < 1 + Ap—1 >

m—-—1 m+1—p

1
If w ¢ {2,m + 1}. Clearly that Hy and are partial
m

S R
integrals with polynomial cofactor 2(2,,—1 and (m — 1)§2,,,_1 respectively.
If 4 = m 4 1 # 2k then the Poincaré-Liapunov first integral is

2/(m—1)

1 2H.

( 3 ) B 2
F(x,y)

4 1 1/(m-1)’
m—1=0 _
(m — + w(w,y))
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where ¢(x,y) is a polynomial of degree m — 1 and such that

)

e(x,y) = (/le(TCOSO,rsinG)dQ

r=vaz2+y?, G_arctan(y/m)>

Bm—1=0
2
0Xop— 0Yop—
and ﬁm,lz/ ( k-1 | T2k 1) dt = 0.
0 Ox ay r=cost,y=sint
If p = m + 1 = 2k then the first integral is
. H
A em Ve
2
(—2% + 10gH2+w(w7y)>

The first integral H is such that lim H = 0 and it is not analytic. So
(z,y)— (0,0)

we have a center, by considering that is a center of the A — {2 equation we
obtain that the origin is a weak center.
If p = 2 then we get the following Poincaré-Liapunov first integral

Ay
H—ngxp<2 1).
m—1

In short the corollary is proved.

4 Example

In [5,6] we state the following conjecture

Conjecture 2. The polynomial differential system of degree m

t=—-y(l+k(a1y—asx))+z(az+asy+ 2pm_1) = —y+ X,
g=2z(14+k(ary—ax)) +ylamx+ay+ 2pm_1) =z +Y,

(28)
where (k +m — 2)(a? + a3) # 0, and 2y—1 = 2m_1(x,y) is a homogenous
polynomial of degree m—1, has a weak center at the origin if and only if system
(28) after a linear change of variables (x,y) — (X,Y) is invariant under the
transformations (X,Y,t) — (—=X,Y, —t).

Theorem 6 Conjecture 2 holds for m = 2,3,4,5,6.

The center problem for the case when (k + m — 2)(a? + a3) = 0, we solve in
the next proposition.

Proposition 5 polynomial differential system of degree m (28) satisfies the
condition (6) if (k +m —2)(a? 4+ a3) = 0.
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Proof After some computations we get that

2 X +yY = (2% + y?)(a12 + agy + 2 1),
0X 0Y 021 082 —1
+vy

—t+ — = 20—
o + By (k+3)(a12 + azy) + O dy + 1K:m_2
=(m+1)(a1z + a2y + 2m-1),
hence we get that
0X 0Y
)+ ) = 1) (zX +yY
@) (G4 S ) = m e 1) X ).

which coincide with (6) with ¢ = m + 1. In this case we get that 5,—; =
2T

2,1 (cost, sint)dt.
0

To solution of the center problem for differential system (28) under the con-
dition (k +m — 2)(a? + a2) = 0 is a simple consequence of Theorem 5 with
= m+ 1. The case when a; = az = 0 was study in [2].
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