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THE 16TH HILBERT PROBLEM RESTRICTED TO CIRCULAR

ALGEBRAIC LIMIT CYCLES

JAUME LLIBRE1, RAFAEL RAMÍREZ2, VALENTÍN RAMÍREZ3 AND NATALIA
SADOVSKAIA3

Abstract. We prove the following two results.

First every planar polynomial vector field of degree S with S invariant
circles is Darboux integrable without limit cycles.

Second a planar polynomial vector field of degree S, admits at most S − 1

invariant circles which are algebraic limit cycles.
In particular we solve the 16th Hilbert problem restricted to algebraic limit

cycles given by circles, because a planar polynomial vector field of degree S
has at most S − 1 algebraic limit cycles given by circles, and this number is

reached.

1. Introduction and statement of the main results

Let R[x, y] be the ring of all real polynomials in the variables x and y. Assume
that P, Q ∈ R[x, y] such that P and Q are coprime in R[x, y]. Consider the set Σ
of all planar real polynomial vector fields

X = P
∂

∂x
+Q

∂

∂x
,

associated to the differential polynomial systems

ẋ = P (x, y), ẏ = Q(x, y).

of degree m = max {degP, degQ}, here the dot denotes derivative respect to the
time t.

Let U be an open and dense set in R2. We say that a non-constant C1 function
H : U → R is a first integral of the polynomial vector field X on U , if H(x(t), y(t))
is constant for all values of t for which the solution (x(t), y(t)) of X is defined on
U . Clearly H is a first integral of X on U if and only if XH = 0 on U .

Let g = g(x, y) ∈ R[x, y]. Then Let g = 0 is an invariant algebraic curve of X if

X g = P
∂g

∂x
+Q

∂g

∂y
= Kg,

where K = K(x, y) is a polynomial of degree at most m − 1, which is called the
cofactor of g = 0. If the polynomial g is irreducible in R[x, y], then we say that the
invariant algebraic curve g = 0 is irreducible and that its degree is the degree of the
polynomial g.

We recall that a limit cycle of a polynomial vector field X is an isolated periodic
orbit in the set of all periodic orbits of X . An algebraic limit cycle of degree n of
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X is an oval of an irreducible invariant algebraic curve g = 0 of degree n, which is
a limit cycle of X .

Hilbert in [3] asked: Is there an upper bound for the maximum number of limit
cycles of any polynomial vector field with a given degree? This is a version of the
second half part of the Hilbert’s 16–th problem. This problem remains open, see for
more information [4, 5].

A simpler version of the second part of the 16–th Hilbert’s problem restricted
to algebraic limit cycles can be stated as follows: Consider the set Σ′

m of all real
polynomial vector fields X of degree m having real invariant algebraic curves. Is
there an upper bound on the maximum number of algebraic limit cycles of any
polynomial vector field of Σ′

m? (see [6, 7]).

There is the following conjecture (see [7]) about the maximum number of alge-
braic limit cycles of polynomial vector fields with a given degree.

Conjecture 1. The maximum number of algebraic limit cycles that a polynomial
vector field of degree m ≥ 2 can have is 1 + (m− 1)(m− 2)/2.

Conjecture 1 has been proved when the invariant algebraic curves of the poly-
nomial vector fields satisfy some generic properties see [7], see also [6, 8, 12].

Let fi, gj , hj ∈ R[x, y] for i = 1, . . . , p and j = 1, . . . , q. Then the (multi–valued)
function

|f1|λ1 · · · |fp|λpeµ1g1/h1 · · · eµqgq/hq

with λi, µj ∈ C is called a (generalized) Darboux function.

A configuration of circles is a finite collection of disjoint circles. We say that a
configuration of circles is realizable as algebraic limit cycles if there exists a poly-
nomial vector field such that all its circles of the given configuration are algebraic
limit cycles of the vector field.

A nest of r circles is formed by a finite numbers C1, . . . , Cr of circles such that its
configuration is homomorphic to the configuration x2+y2−j2 = 0, for j = 1, . . . , r.

Let g1 and g2 be functions defined in an open subset U ⊆ R2. We define the
Jacobian matrix of g1 and g2 as

J =


∂g1
∂x

∂g1
∂y

∂g2
∂x

∂g2
∂y

 .

The Jacobian of J, i.e. the determinant of J is denoted here by

|J | := {g1, g2}.

Our main results are the following.

Theorem 2. We consider the polynomial differential system

(1)

ẋ = −λS+1

S∏
m=1

gm +
S∑

j=1

λj

 S∏
m=1
m ̸=j

gm

 {gj , x} = P (x, y),

ẏ = λS+2

S∏
m=1

gm +

S∑
j=1

λj

 S∏
m=1
m ̸=j

gm

 {gj , y} = Q(x, y).
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where λj for j = 1, . . . , S + 2 are arbitrary polynomials. This system has gj = 0 as
invariant algebraic curves for j = 1, . . . , S. We assume that {g1, g2} ̸≡ 0. Then the

generalized Darboux function F = eτ
S∏

j=1

|gj |λj is a first integral of the polynomial

differential system (1) if and only if λS+1 =
∂τ

∂y
, λS+2 =

∂τ

∂x
, where τ = τ(x, y)

is an arbitrary polynomial and λ1, . . . , λS are constants.

Theorem 2 is proved in section 3.

Theorem 3. A polynomial vector field X of degree S with S invariant circles is
Darboux integrable, and the invariant circles are not limit cycles.

Theorem 3 is proved in section 4

Theorem 4. For a polynomial vector field X of degree S the maximum number of
algebraic limit cycles given by circles is at most S − 1. Moreover this upper bound
is reached.

Theorems 4 is proved in section 5. We note that Theorem 4 shows that polyno-
mial vector fields of degree S can have at most S − 1 circles as limit cycles.

Theorem 3 and 4 provide the solution of the 16th Hilbert problem restricted to
algebraic limit cycles given by circles.

Some basic results that we shall need for proving Theorems 2, 3 and 4 are stated
in section 2.

2. Preliminary results

The next result is the Proposition 2.1 of [10], see also the Corollary 1.3.4 of [9].
Here we provide a proof of it because some arguments of the proof will be used
later on.

Theorem 5. Let gj = gj(x, y) for j = 1, 2, . . . , S with S ≥ 2 polynomials such
that at least two of them (that without loss of generality we can assume that they
are g1 and g2) satisfy {g1, g2} ̸≡ 0. Then a polynomial differential system having
the curves gj = 0 as invariant algebraic curves with cofactors Kj = {g1, g2}µj for
j = 1, . . . , S respectively, and satisfying

(2) µjgj{g1, g2} = µ1g1{gj , g2}+ µ2g2{g1, gj},

for j = 3, . . . , S, can be written as

(3)
ẋ = µ1g1{x, g2}+ µ2g2{g1, x} = P (x, y),

ẏ = µ1g1{y, g2}+ µ2g2{g1, y} = Q(x, y).

where µj for j = 1, . . . , S are arbitrary rational functions such that P and Q are
polynomials.
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Proof. If the polynomial planar vector field associated to system (3) admits the
curves gj = 0 for j = 1, . . . , S as invariant algebraic curves then

∂g1
∂x

P +
∂g1
∂y

Q = g1K1,

∂g2
∂x

P +
∂g2
∂y

Q = g2K2,

∂gj
∂x

P +
∂gj
∂y

Q = gjKj ⇐⇒ {gj , y}P + {x, gj}Q = gjKj ,

for j = 3, . . . , S. By solving the two first equations with respect to P and Q and by
considering that the matrix coefficient is the matrix J with determinant {g1, g2},
we obtain

(4)

P =
K1g1

{g1, g2}
{x, g2}+

K2g2
{g1, g2}

{g1, x},

Q =
K1g1

{g1, g2}
{y, g2}+

K2g2
{g1, g2}

{g1, y}.

By inserting P and Q in the last S − 2 equations we deduce

K1g1 ({x, g2}{gj , y}+ {y, g2}{x, gj}) +K2g2 ({g1, x}{gj , y}+ {g1, y}{x, gj})

= {g1, g2}gjKj .

In view of the identity

(5) {f, p}{g, q}+ {f, q}{p, g} = {f, g}{p, q},

for arbitrary C1 functions f, g, q, p. we finally obtain

K1g1{gj , g2}+K2g2{g1, gj} = {g1, g2}gjKj .

After the change Kj = {g1, g2}µj we finally obtain the proof of the theorem. �

Proposition 6. Let gj = gj(x, y) for j = 1, 2, . . . , S with S ≥ 2 polynomials such
that at least two of them (that without loss of generality we can assume that they
are g1 and g2) satisfy {g1, g2} ̸≡ 0. Then the differential system (3) satisfying (2)
and the differential system (1) are equivalent.

Proof. For n = 1, . . . , S we define Kn = {g1, g2}µn as follows

(6) Kngn =

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm

 {gj , gn},

where gS+1 = y and gS+2 = x and λ1, . . . , λS+2 are arbitrary rational functions
such that Kn be a polynomial.

Substituting Kjgj , K1g1 and K2g2 from (6) into (2) we obtain that equalities
(2) become

S+2∑
l=1

λl

 S∏
m=1
m ̸=l

gm

 ({gl, gj}{g1, g2}+ {g1, gl}{gj , g2}+ {g2, gl}{g1, gj}) = 0.

This equality holds in view of identity (5).
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Assume that we have system (4) satisfying (2) with Kn = {g1, g2}µn given in
(6). Then, substituting the Kn in (4) which is equivalent to (3) we have

P =

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm

 {g1, gj}

{g1, g2}
{x, g2}+

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm

 {g2, gj}

{g1, g2}
{g1, x}

=

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm


{g1, g2}

({g1, gj}{x, g2}+ {g2, gj}{g1, x}) ,

Q =

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm

 {g1, gj}

{g1, g2}
{y, g2}+

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm

 {g2, gj}

{g1, g2}
{g1, y}

=

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm


{g1, g2}

({g1, gj}{y, g2}+ {g2, gj}{g1, y}) .

and using the relation (5) we have

P =

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm


{g1, g2}

{g1, g2}{gj , x} =
S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm

{gj , x}

= −λS+1

S∏
n=1

gn +
S∑

j=1

λj

 S∏
m=1
m ̸=j

gm

{gj , x},

Q =

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm


{g1, g2}

{g1, g2}{gj , y} =

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm

{gj , y}

= λS+2

S∏
n=1

gn +

S∑
j=1

λj

 S∏
m=1
m ̸=j

gm

{gj , y}.

Thus by considering that {x, y} = 1, {x, x} = 0 and {y, y} = 0, then the differential
system (3) coincide with system (1).
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Now we consider system (1) written in the form

ẋ =

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm

{gj , x}, ẏ =

S+2∑
j=1

λj

 S∏
m=1
m ̸=j

gm

{gj , y},

where gS+1 = y and gs+2 = x. Thus we easily obtain the relations (6).

We consider the equalities

−λS+1

S∏
m=1

gm +

S∑
j=1

λj

 S∏
m=1
m ̸=j

gm

 {gj , x} =
K1g1

{g1, g2}
{x, g2}+

K2g2
{g1, g2}

{g1, x},

λS+2

S∏
m=1

gm +
S∑

j=1

λj

 S∏
m=1
m ̸=j

gm

 {gj , y} =
K1g1

{g1, g2}
{y, g2}+

K2g2
{g1, g2}

{g1, y},

or equivalently

λ1{log |g1|, x}+ λ2{log |g2|, x} = λS+1 −
S∑

j=3

λj{log |gj |, x}

+
1

g

(
K1g1

{g1, g2}
{x, g2}+

K2g2
{g1, g2}

{g1, x}
)
,

λ1{log |g1|, y}+ λ2{log |g2|, y} = −λS+2 −
S∑

j=3

λj{log |gj |, y}

+
1

g

(
K1g1

{g1, g2}
{x, g2}+

K2g2
{g1, g2}

{g1, y}
)
,

where g =

S∏
m=1

gm. Thinking this last system as a linear system in the variables λ1

and λ2 it can be solved because its determinant is {g1, g2}/g1g2. So the differential
system (3) can be obtained from (1). Moreover, since the cofactor of the curve
gn = 0 for n = 1, . . . , S in (1) is the Kn defined in (6), the condition (2) holds.
Hence the theorem is proved. �

We observe that (1) is a particular case of the equations given in Theorem 1.6.1
of [6].

We remark that if the statement of Proposition 6 we have {g1, g2} ≡ 0, then the
differential systems(1) and (3) are not equivalent. Indeed if the given circles are
concentric, i.e.

gj = x2 + y2 − r2j = 0, j = 1, . . . , S,

with 0 < r1 < r2 < . . . < rS , then {g1, g2} ≡ 0, and system (1) takes the form

ẋ = −λS+1g − yν, ẏ = λS+2g + xν,
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where g =
S∏

m=1

gm and ν =
S∏

m=1

gm

S∑
j=1

λj

 S∏
m=1
m ̸=j

gm

, and system (3) cannot be

defined.

3. Proof of Theorem 2

Proof of Theorem 2. Assume that the λj ’s for j = 1, . . . , S of the differential system

(1) are constant and λS+1 =
∂τ

∂y
= τy and λS+2 =

∂τ

∂x
= τx, being τ = τ(x, y) a

polynomial. Then system (1) admits the representation

ẋ = g

−∂τ

∂y
+

S∑
j=1

λj{log |gj |, x}

 =
g

F

−∂τ

∂y
F + F

S∑
j=1

λj{log |gj |, x}


=

g

F

−∂τ

∂y
F +

S∑
j=1

λj{F, x}

 = g{log F, x},

ẏ = g

∂τ

∂x
+

S∑
j=1

λj{log |gj |, y}

 =
g

F

∂τ

∂x
F + F

S∑
j=1

λj{log |gj |, y}


=

g

F

∂τ

∂x
F +

S∑
j=1

λj{F, y}

 = g{log F, y},

where F = eτ
S∏

m=1

|gm|λm , g =
S∏

m=1

gm. and we have used

(7)

Fx = τxF + eτ

 S∑
j=1

λjg
λj−1
j {gj , y}

S∏
m=1
m ̸=j

|gm|λm


= F

τx +
S∑

j=1

λj{log |gj |, y}

 ,

Fy = τyF − eτ

 S∑
j=1

λjg
λj−1
j {gj , x}

S∏
m=1
m ̸=j

|gm|νm


= −F

−τy +
S∑

j=1

λj{log |gj |, x}

 ,
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and

(8)

P (x, y) = −λS+1

S∏
m=1

gm +
S∑

j=1

λj

 S∏
m=1
m ̸=j

gm

 {gj , x}

= g

−λS+1 +
S∑

j=1

λj{log |gj |, x}

 ,

Q(x, y) = λS+2

S∏
m=1

gm +

S∑
j=1

λj

 S∏
m=1
m ̸=j

gm

 {gj , y}

= g

λS+2 +

S∑
j=1

λj{log |gj |, y}

 .

Consequently the function F is a first integral.

Let F = eτ
S∏

m=1

|gm|νm where νm for m = 1, . . . , S are constants. Then F is a

first integral of the vector field (1). By applying (7) and (8) we have that

Ḟ = FxP + FyQ

= F

τx +

S∑
j=1

νj{log |g|j , y}


g

−λS+1 +
S∑

j=1

λj{log |g|j , y}

+

F

τy −
S∑

j=1

νj{log |g|j , x}


g

λS+2 +
S∑

j=1

λj{log |g|j , x}

+

≡ 0.

This relation holds if λj = νj and λS+1 = τy and λS+2 = τx. This completes the
proof of the theorem. �

Corollary 7. The vector field

(9) ẋ =
S∑

j=1

λj

 S∏
m=1
m ̸=j

gm

 {gj , x}, ẏ =
S∑

j=1

λj

 S∏
m=1
m ̸=j

gm

 {gj , y},

is Darboux integrable if and only if λ1, . . . , λS are constants.

Proof. It follows easily from Theorem 2. �



THE 16TH HILBERT PROBLEM FOR ALGEBRAIC LIMIT CYCLES 9

4. Proof of Theorem 3

The proof of Theorem 3 follows from the following results.

By Proposition 6 and Theorem 5 we know that any polynomial differential system
having the circles

(10) gj(x, y) ≡ (x− aj)
2 + (y − bj)

2 − r2j = 0, j = 1, 2, . . . , S

as invariant algebraic curves can be written as system (1), i.e.

(11)

ẋ = −λS+1

S∏
m=1

gm − 2
S∑

j=1

λj(y − bj)

 S∏
m=1
m ̸=j

gm

 = P (x, y),

ẏ = λS+2

S∏
m=1

gm + 2
S∑

j=1

λj(x− aj)

 S∏
m=1
m ̸=j

gm

 = Q(x, y),

where λ1, . . . , λS+2 are arbitrary polynomials. We assume that system (37) has
degree S, because this is an assumption of Theorem 3.

From now on we shall assume without loss of generality that a1 = b1 = b2 = 0.

Proposition 8. The cofactors of the circles (10) for the system (37) are

(12) Kj = 4a2y
(
κ
(j)
0 + κ

(j)
1 + . . .+ κ

(j)
S−3 + κS−2

)
,

where κ
(j)
n are homogenous polynomial of degree n, and κS−2 is an homogenous

polynomial of degree S − 2. Note that the homogenous polynomial of degree S − 2
are the same for all j = 1, . . . , S.

Proof. From the proof of Theorem 5 and from the equivalence between the systems
(3) and (1) given in Proposition 6, we have that the cofactor Kj of the invariant
circle gj = 0 for j = 1, . . . , S are of the form Kj = {g1, g2}µj being µj a rational
function . Since {g1, g2} = 4a2y and Kj must be a polynomial of degree at most
S − 1, we have that µj is a polynomial of degree S − 2. Then we shall determine
the cofactors Kj for j = 1, . . . , S as follows

(13) Kj = 4a2y

S−2∑
n=0

κ(j)
n = y

S−2∑
n+l=0

κ
(j)
n,lx

nyl,

where κ
(j)
n = κ

(j)
n (x, y) are homogenous polynomial of degree n. From the conditions

(2) it follows that

(14)
y (Kjgja2 +K1g1(aj − a2)−K2g2aj)

+bjx(K2g2 −K1g1) + bjK1g1a2 = 0,

for j = 3, . . . , S. Inserting (13) in these equations we obtain that

(x2 + y2)
(
y
(
a2κ

(j)
S−2 + (aj − a2)κ

(1)
S−2 − ajκ

(2)
S−2

)
+ bjx(κ

(1)
S−2 − κ

(2)
S−2)

)
+ . . . = 0,
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On the other hand, from (2) it follows that

(15)

ẋ =
1

4a2
(K1g1 −K2g2)

= y
(
(x2 + y2)(κ

(1)
S−2 − κ

(2)
S−2) + . . .

)
= P,

ẏ = − 1

4a2y
(x(K1g1 −K2g2) + a2K1g1)

= −x
(
(x2 + y2)(κ

(1)
S−2 − κ

(2)
S−2) + . . .

)
+a2

(
(x2 + y2)κ

(1)
S−2 + . . .

)
= Q.

Hence by considering thatm = max(degP, degQ) = S, we obtain that κ
(1)
S−2 = κ

(2)
S−2.

From (25) we finally deduce that

κ
(1)
S−2 = κ

(2)
S−2 = . . . = κ

(S)
S−2 = κS−2.

Consequently (12) is proved. �

Proposition 9. If the S concentric circles

gj = x2 + y2 − r2j = 0 for j = 1, . . . , S,

with r1 < r2 < . . . < rS are invariant circles of the polynomial system of degree S
then this system admits the first integral F = x2+y2. Consequently this system has
no limit cycles.

Proof. Indeed the polynomial planar vector field with S invariant concentric circles
has the form (see formula (1))

ẋ = −λS+1

S∏
m=1

gm − 2y
S∑

j=1

λj

 S∏
m=1
m ̸=j

gm

 = −yν − λS+1

S∏
m=1

gm,

ẏ = λS+2

S∏
m=1

gm + 2x
S∑

j=1

λj

 S∏
m=1
m ̸=j

gm

 = xν + λS+2

S∏
m=1

gm.

Clearly if this polynomial system has degree S then λS+1 = λS+2 = 0 and λj for j =
1, . . . , S are such that the polynomial ν has degree at most S−1. Consequently the
most general polynomial planar vector field of degree S with S invariant concentric
circles takes the form

ẋ = −yν, ẏ = xν.

This system admits the first integral x2 + y2. �

Proposition 10. The quadratic vector fields with two invariant circles are rational
integrable.

Proof. For the case when m = 2 we always can consider that the given invariant
circles are

g1 = x2 + y2 − r21 = 0, g2 = (x− a2)
2 + y2 − r22 = 0, a2 ̸= 0.
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In view of Proposition 8 we obtain that the cofactors of the given circles are K1 =
K2 = 4a2qy. Then from (3) the quadratic vector field is

ẋ = −qy
(
2a2x+ r22 − r21 − a22

)
,

ẏ = 2q
(
a2(y

2 − x2) + (a22 + r21 − r22)x− a2r
2
1

)
,

Consequently this quadratic system has the rational first integral F = g1/g2. �

Proposition 11. The cubic vector fields with the three invariant circles

(16)

g1 = (x− a1)
2 + y2 − r21 = 0,

g2 = (x− a2)
2 + y2 − r22 = 0,

g3 = (x− a3)
2 + (y − b3)

2 − r23 = 0,
{g1, g2} = 4(a2 − a1)y, a1 ̸= a2,

is the zero vector field if b3 ̸= 0, and Darboux integrable if b3 = 0 with the first

integral F =
3∏

j=1

|gj |λj , where

(17) λ1 = λ0(a2 − a3), λ2 = λ0(a3 − a1), λ3 = λ0(a1 − a2),

and λ0 is a constant.

Proof. Indeed the cofactor of the circles are polynomials of degree 2 which we
determine as follows

Kj = 4a2y (Cj +Ax+By) ,

for j = 1, 2, 3. Here we use Proposition 8. Thus the equation

K1g1{g2, g3}+K2g2{g3, g1}+K3g3{g1, g2} = 0,

is a polynomial of degree 5. This polynomial is a zero polynomial if and only if
the constants C1, C2, C3, A and B are such that

(18)

b3
(
A1(a

2
2 − a23 + r21) + a2(C1 − 2C2)

)
= 0,

b3r
2
1a2C1 = 0,

b3
(
C2(r

2
2 − a22)− C1r

2
1 +Ar21a2

)
= 0,

b3 (C1 − C2 + a2A) = 0,

a2C3 + a3C1 − a3C2 − a2b3B = 0

B
(
a2b

2
3 − a3r

2
1 − a2r

2
3 + a2r

2
1 + a2a

2
3 + a3r

2
2 − a22a3

)
+b3 (a2C1 − a2C3) = 0,

A
(
a2r

2
1 + a2b

2
3 − a2r

2
3 + a3r

2
2 − a3r

2
1 − a22a3 + a2a

2
3

)
+a2a3 (C3 − C2) = 0,

b3B
(
a22 + r21 − r22

)
= 0,

r21C1 (a2 − a3) + a3C2

(
r22 − a22

)
− a2b3Br21

+C3a2
(
b23 − r23 + a23

)
= 0,

Thus we have a system of 9 equations linear with respect to the 5 variables C1, C2, C3, A
and B. After some computations we obtain:
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(i) If b3 ̸= 0 then the unique solutions are

A = B = C1 = C2 = C3 = 0,

thus the cofactors are all zero and consequently the vector field is a zero
vector field.

(ii) If b3 = 0 and (a3 − a2)a3 ̸= 0, then the linear system is formed by 4
equations admits a non trivial solutions

C1 = λ0a2a3
(
r23 − r22 + a22 − a23

)
,

C2 = λ0(a2 − a3)a2
(
r21 − r23 + a23

)
,

C3 = λ0(a2 − a3)a3
(
r21 − r23 + a22

)
,

A = λ0a2a3(a2 − a3), B = 0,

where λ0 is a constant. Then the cofactors are

(19)

K1 = yλ0

(
a2a3(a2 − a3)x+ a2a3

(
r23 − r22 + a22 − a23

))
,

K2 = yλ0

(
a2a3(a2 − a3)x+ (a2 − a3)a2

(
r21 − r23 + a23

))
,

K3 = yλ0

(
a2a3(a2 − a3)x+ (a2 − a3)a3

(
r21 − r22 + a22

))
.

Thus there exists constants λ1, λ2 and λ3 such that

K1λ1 +K2λ2 +K3λ3 = 0.

These constants are given by the formula (17). Consequently we have the
first integral

F = |g1|a2−a3 |g2|a3−a1 |g3|a1−a2 .

This first integral prevents that the invariant circles are limit cycles.

It is easy to observe that the cofactors (19) can be written as

Kn =

3∑
j=1

λj{gj , gn}

 3∏
n=1
n ̸=j

gm


=

3∏
m=1

gm

∣∣∣∣∣∣
{log |g1|, log |gn|} {log |g2|, log |gn|} {log |g3|, log |gn|}

1 1 1
a1 a2 a3

∣∣∣∣∣∣ ,
where λ1, λ2 and λ3 are given by formula (17).

(iii) If b3 = 0 and a3 = 0, then the system (18) admits the solutions

C1 = C3 = A = B = 0,

and C2 is an arbitrary constant.

In this case K1 = K3 = 0 and K2 = 4a2yC2. Thus differential system (15) takes
the form

ẋ = −C2g2y, ẏ = C2g2x.

Hence g2 = 0 is a singular circle. By considering that this system admits the
analytic first integral x2 + y2, then this system has no limit cycles. �
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Remark 12. The differential system (9) with three invariant circles is a polynomial
vector field of degree 3 if and only if the constants λ1, λ2 and λ3 satisfies the linear
system

λ1 + λ2 + λ3 = 0,
a1λ1 + a2λ2 + a3λ3 = 0,

b3λ3 = 0.

Thus if b3 ̸= 0 then λ1 = λ2 = λ3 = 0. If b3 = 0 then by considering that a1−a2 ̸= 0,
then λj for j = 1, 2, 3 are given by the formula (17).

Note that the solutions of the λ’s are the same than in the proof of Proposition
11, and consequently the cubic vector fields coincide.

Proposition 13. The polynomial vector field of degree four with four different
invariant circles

(20)

g1 = (x− a1)
2 + y2 − r21 = 0,

g2 = (x− a2)
2 + y2 − r22 = 0,

g3 = (x− a3)
2 + y2 − r23 = 0,

g4 = (x− a4)
2 + (y − b4)

2 − r24 = 0,
{g1, g2} = 4(a2 − a1)y, a1 ̸= a2,

is the zero vector field if

b4 ̸= 0, or H :=

∣∣∣∣∣∣∣∣
r21 r22 r23 r24
1 1 1 1
a1 a2 a3 a4
a21 a22 a23 a24

∣∣∣∣∣∣∣∣ ̸= 0,

or Darboux integrable if b4 = 0 and H = 0 with the first integral F =
3∏

j=1

|gj |λj ,

where λ1, λ2, λ3, λ4

(i) are either

(21)

λ1 = λ0

∣∣∣∣∣∣
1 1 1
a2 a3 a4
a22 a23 a24

∣∣∣∣∣∣ , λ2 = −λ0

∣∣∣∣∣∣
1 1 1
a1 a3 a4
a21 a23 a24

∣∣∣∣∣∣ ,
λ3 = −λ0

∣∣∣∣∣∣
1 1 1
a1 a2 a4
a21 a22 a24

∣∣∣∣∣∣ , λ4 = λ0

∣∣∣∣∣∣
1 1 1
a1 a2 a3
a21 a22 a23

∣∣∣∣∣∣ .
with

r2j = α+ β aj + γ a2j for j = 1, 2, 3, 4,

(ii) or

λ1 = −λ3 = Aλ0(r
2
2 − r24), for λ2 = −λ4 = Aλ0(r

2
3 − r21),

where λ0 is an arbitrary constant, a1 = a3, and a2 = a4.

Proof. We determine the solutions of the equations

(22)
K3g3{g1, g2}+K1g1{g2, g3}+K2g2{g3, g1} = 0,

K4g4{g1, g2}+K1g1{g2, g4}+K2g2{g4, g1} = 0,

where

Kj = 4a2y
(
Cj +Ajx+Bjy + Lx2 +Mxy +Ny2

)
, j = 1, 2, 3, 4.
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Here we have used Proposition 8. These equations are polynomials of degree 5. By
solving these equations we obtain a linear system with respect toAj , Bj , Cj , L, M N
for j = 1, 2, 3, 4.

(23)

b4 (a2L+A1 −A2) = 0, b4a2r
2
1C1 = 0,

b4
(
A1a2r

2
1 − r21C1 + C2(r

2
2 − a22)

)
= 0,

b4
(
r21A1 +A2(a

2
2 − r22) + a2C1 − a2r

2
1L)

)
= 0,

b4
(
L
(
r21 + a22 − r22

)
+ a2A1 − 2a2A2 + C2 − C1

)
= 0,

...
...

...

There are 25 equations. By using the algebraic manipulator we obtain that if b4 ̸= 0
orH ̸= 0, then we get that the unique solution of the linear system (23) with respect
to the 15 unknowns Aj , Bj , Cj , L, M N for j = 1, 2, 3, 4, are the trivial solutions

Aj = Bj = Cj = L = M = N = 0, for j = 1, 2, 3, 4.

Thus K1 = K2 = K3 = K4 = 0. Consequently the vector field is the zero vector
field. Hence the proposition is proved if b4 ̸= 0 or H ̸= 0.

If b4 = 0 and H = 0, then system (23) is formed for 20 equations which admits
non-trivial solutions. Indeed if H = 0 then r2j = α+ βaj + γa2j for j = 1, 2, 3, 4,
or rank(Λ) = 2, where

Λ =

 1 1 1 1
a1 a2 a3 a4
a21 a22 a23 a24

 .

In the first case under the assumption that rank(Λ) ̸= 2 we obtain that the cofactors
are

K1 =
yN

γ̃

(
(γ̃ + 4)x2 + γ̃y2 + 2x (γ̃(a2 + a3 + a4) + 2β)

+βγ̃(a2 + a3 + a4) + γ̃2(a2a3 + a2a4 + a3a4) + β2
)

= y
(
Ψ2(x, y) + Ψ1(x, y)a1 +Ψ0a

2
1

)
,

K2 =
yN

γ̃

(
((γ̃ + 4)x2 + γ̃y2 + 2x (γ̃(a1 + a3 + a4) + 2β)

+βγ̃(a1 + a3 + a4) + γ̃2(a1a3 + a1a4 + a3a4) + β2
)

= y
(
Ψ2(x, y) + Ψ1(x, y)a1 +Ψ0a

2
2

)
,

K3 =
yN

γ̃

(
(γ̃ + 4)x2 + γ̃y2 + 2x (γ̃(a1 + a2 + a4) + 2β)

+βγ̃(a1 + a2 + a4) + γ̃2(a1a2 + a1a4 + a2a4) + β2
)

= y
(
Ψ2(x, y) + Ψ1(x, y)a3 +Ψ0a

2
3

)
,

K4 =
yN

γ̃

(
(γ̃ + 4)x2 + γ̃y2 + 2x (γ(a1 + a2 + a3) + 2β)

+βγ̃(a1 + a3 + a4) + γ̃2(a1a3 + a1a2 + a3a2) + β2
)

= y
(
Ψ2(x, y) + Ψ1(x, y)a4 +Ψ0a

2
4

)
,
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where γ̃ = γ − 1, Ψ2, Ψ1 and Ψ0 are convenient polynomials. It is easy to show
that the equation λ1K1 + λ2K2 + λ3K3 + λ4K4 = 0, holds if and only if

4∑
j=1

λj = 0,
4∑

j=1

ajλj = 0,
4∑

j=1

a2jλj = 0,

thus λj for j = 1, 2, 3, 4 are determined by the formula (21). Consequently by

Theorem 2 there exists the first integral F =

4∏
j=1

|gj |λj . Therefore the proposition

is proved when b4 = 0 and H = 0 under the conditions r2j = α + βaj + γa2j for
j = 1, 2, 3, 4.

We observe that when γ̃ = 0, we obtain K1 = K2 = K3 = K4. Consequently
from (3) it follows that the curve K1 = 0 is a set of the critical points of the vector
field.

In the second case (i.e. rank(Λ) = 2) without loss the generality we suppose
that a1 = a3 = 0 and a2 = a4, we have that the solutions of system (22) (i.e.
(a2 − a1)(K3g3 −K1g1) = 0, (a2 − a1)(K4g4 −K2g2) = 0) are

A1 = A3 = B1 = B2 = B3 = B4 = M1 = 0,
C1 = A4r

2
3, C2 = −A4(a

2
4 − r24),

C3 = A4r
2
1, C4 = −A4(a

2
2 − r22),

L1 = N1 = L = −A4, A2 = A4.

Therefore the cofactors are

K1 = 4a2y
(
C1 + L(x2 + y2)

)
= −4a2yA4g3,

K3 = 4a2y
(
C3 + L(x2 + y2)

)
= −4a2yA4g1,

K2 = 4a2y
(
C2 + 2a4A4x+ L(x2 + y2)

)
= −4a2A4yg4,

K4 = 4a2y
(
C4 + 2a4A4x+ L(x2 + y2)

)
= −4a2A4yg2.

We consider the equation λ1K1 + λ2K2 + λ3K3 + λ4K4 = 0, and we obtain

λ1C1 + λ2C2 + λ3C3 + λ4C4 = 0, λ1 + λ2 + λ3 + λ4 = 0, A(λ2 + λ4) = 0

Hence

(24)
λ1 = λ0(C2 − C4) = −λ3 = Aλ0(r

2
2 − r24),

λ2 = λ0(C3 − C1) = −λ4 = Aλ0(r
2
3 − r21),

where λ0 is an arbitrary constants. Again, by Theorem 2 there exist the first

integral F =

4∏
j=1

|gj |λj . Hence the proposition is proved when b4 = H = 0 under

the condition rank(Λ) = 2. In short the quartic system with four invariant circles
is Darboux integrable. Thus the proposition is proved. �
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From the proof of Theorem 2 we get that the cofactors Kn of the circles gn = 0
when r2j = α+ βaj + γa2j for j = 1, 2, 3, 4. are

Kn =
4∑

j=1

λj{gj , gn}
4∏

m=1
m ̸=j

gm = λ0g·

∣∣∣∣∣∣∣∣
{log |g1|, log |gn|} {log |g2|, log |gn|} {log |g3|, log |gn|} {log |g4|, log |gn|}

1 1 1 1
a1 a2 a3 a4
a21 a22 a23 a24

∣∣∣∣∣∣∣∣
for n = 1, 2, 3, 4, where g =

S∏
m=1

gm, λ1, λ2, λ3 and λ4 are given by the formula

(21) and (24).

If rank(Λ) = 2 ( assuming that a1 = a3 and a2 = a4), then the cofactors Kn are

Kn =
4∑

j=1

λj{gj , gn}
4∏

m=1
m ̸=j

gm = λ0g·

∣∣∣∣∣∣∣∣
{log |g1|, log |gn|} {log |g2|, log |gn|} {log |g3|, log |gn|} {log |g4|, log |gn|}

1 1 1 1
a1 a2 a1 a2
r21 r22 r23 r24

∣∣∣∣∣∣∣∣
for n = 1, 2, 3, 4, From here we observe that K1g1 = K3g3 and K2g2 = K4g4.

The case when r2j = α + βaj + γa2j for j = 1, 2, 3, 4, and rank(Λ) = 2, implies
that g1 = g3 and g2 = g4.

Remark 14. The polynomial vector field (9) with the four invariant circles (20)
is a polynomial vector field of degree four if and only if the constants λ1, λ2, λ3 and
λ4 are such that

(25)

4∑
j=1

anj λj = 0, for n = 0, 1, 2,

b3λ3 + b4λ4 = 0,

a3b3λ3 + a4b4λ4 = 0,

b3b4(λ3 + λ4) = 0,

4∑
j=1

r2jλj − b23λ3 − b24λ4 = 0.
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Thus if b23 + b24 ̸= 0, then λ1 = λ2 = λ3 = λ4 = 0. Thus the vector field is the zero
vector field. If b3 = b4 = 0 then system (25) becomes

(26)

4∑
j=1

anj λj = 0, for n = 0, 1, 2,

4∑
j=1

r2jλj = 0.

This system admits nontrivial solutions if and only if the matrix

Ω =


r21 r22 r23 r24
1 1 1 1
a1 a2 a3 a4
a21 a22 a23 a24


has rank smaller than 4. By considering that a1 ̸= a2 then rank(Ω) = 3 if one of
the following three conditions hold:

either r2j = α+ βaj + γa2j for j = 1, 2, 3, 4,

or a1 = a3, a2 = a4,

or a1 = a4, a2 = a3. In the first case we obtain that the constants λ’s are given
in (21).

In the second case it is easy to show that the solutions of the linear system (26)
are λ1 = −λ3 = λ0(r

2
2 − r24), λ2 = −λ4 = λ0(r

2
3 − r21), hence we have the first

integral F =
4∏

j=1

|gj |λj .

The third case follows in a similar way to the second case.

Note that the solutions of the λ’s are the same than in the proof of Proposition
13, therefore the quartic vector fields coincide.

Now we shall extend the results of Proposition 11 and 13 to the configuration of
S circles with S ≥ 4.

Proposition 15. We consider the configuration of S ≥ 4 circles of the form

(27) gj = (x− aj)
2 + y2 − r2j = 0, for j = 1, . . . , S,

with {g1, g2} = 4(a2 − a1)y, a2 − a1 ̸= 0, and the matrix

Λ̃ =



1 1 . . . . . . 1
a1 a2 . . . . . . aS
a21 a22 . . . . . . a2S
...

... . . . . . .
...

aS−2
1 aS−2

2 . . . . . . aS−2
S

r21 r22 . . . . . . r2S
a1r

2
1 a2r

2
2 . . . . . . aSr

2
S

...
... . . . . . .

...
al1r

2k
1 al2r

2k
2 . . . . . . alSr

2k
S


,
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where after the row aS−2
1 , . . . , aS−2

S come all the rows of the form al1r
2k
1 , al2r

2k
2 , . . . , alSr

2k
S

with l + 2k = 2, 3, . . . , S − 2, thus for l + 2k = 2 we have the row r21, . . . , r
2
S , for

l + 2k = 3 we have the row a1r
2
1, . . . , aSr

2
S , for l + 2k = 3 we have two rows,....

The vector field (3) under the conditions (2) is Darboux integrable and it is not

a zero vector field if and only if the matrix Λ̃ satisfies rank(Λ̃) < S.

Proof. We suppose that a planar polynomial vector field with the S invariant circles
(27) is Darboux integrable and it is not the zero vector field, then by Theorem 2
this polynomial differential system (1) becomes system (9). For the circles (27)
system (9) can be written as

(28)

ẋ = −y(x2 + y2)S−1

S∑
j=1

λj − (x2 + y2)S−2R1(x, y) + . . . = P (x, y),

ẏ = x(x2 + y2)S−1

S∑
j=1

λj − (x2 + y2)S−2R2(x, y) + . . . = Q(x, y),

where

(29)

R1 = y
S∑

j=1

(
−2xaj + a2j − r2j

) S∑
m=1

λm + y
S∑

j=1

λj

(
2xaj − a2j + r2j

)
,

R2 =

S∑
j=1

(
−2xaj + a2j − r2j

) S∑
m=1

(y − am)λm

S∑
j=1

(y − aj)λj

(
2xaj − a2j + r2j

)
− (x2 + y2)

S∑
j=1

ajλj .

Since we want that max (degP (x, y), degQ(x, y)) = S we obtain the following linear
system in the unknowns λ1, . . . , λS

(30)
S∑

j=1

τ
(n)
j (a1, . . . , aS , r

2
1, . . . , r

2
S)λj = 0,

where τ
(n)
j (a1, . . . , aS , r

2
1, . . . , r

2
S) are homogenous polynomials of degree n on the

variables a1, . . . , aS , r
2
1, . . . , r

2
S where j = 1, . . . , S and n = 0, . . . , S1 < (3S+2)(S−

1)/2. Some of the equations (30) are

S∑
j=1

λj = 0,

S∑
j=1

ajλj = 0,

S∑
j=1

a2jλj = 0,

S∑
j=1

r2jλj = 0,

S∑
j=1

ajr
2
jλj = 0,
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obtained directly from (29) and (30). After some computations we can show that
(30) can be written as follows

S∑
j=1

anj λj = 0, for n = 0, . . . , S − 2,

S∑
j=1

aljr
2k
j λj = 0, for l + 2k = 2, . . . , S − 2, k > 0,

or equivalently

Λλ = 0, λ = (λ1, . . . , λS)
T
.

Thus if rank(Λ̃) = S, then λj = 0 for j = 1, . . . , S. Since by assumption system (28)

is a non-zero vector field, we must have that rank(Λ̃) < S.

We prove the reciprocal. From (14) with bj = 0 we deduce the equations

(31) Kjgj(a2 − a1) +K1g1(a1 − aj) +K1g1(aj − a2) = 0,

for j = 3, . . . , S.
First we study the case when

(32)
∏

1≤j<k≤S

(aj − ak) ̸= 0,

and the radii of the circles satisfy

(33) r2j = α+ βaj + γa2j , for j = 1, . . . , S.

The solutions of equations (31) are

(34)

Kj = g
S∑

n=1

λn{log |gn|, log |gj |} =

g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{log |g1|, log |gj |} . . . 0 . . . {log |gS |, log |gj |}
1 . . . 1 . . . 1
a1 . . . aj . . . aS
a21 . . . a2j . . . a2S
... . . .

... . . .
...

aS−3
1 . . . aS−3

j . . . aS−3
S

aS−2
1 . . . aS−2

j . . . aS−2
S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

where g =
S∏

n=1

gn.

It is easy to show that these cofactors are polynomial of degree S − 1 and that
they can be written as in (12).

In view of the fact that the matrix with elements ({log |gn|, log |gj |}) is skewsym-

metric, then the equation
S∑

j=1

λjKj = 0, holds, thus the first integral F =
S∏

j=1

|gj |λj

exists.
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Analogously we can study the case when some of the circles have the same center
with different radii. Assume that

a1 = a3 = . . . = ak1 ,

a2 = ak1+1 = . . . = ak2 ,

...
...,

akj+1 = akj+2 = . . . = aS .

It is possible to show that cofactors of these circles which are solutions of (31) are
such that

Kngn = K1g1 for n = 3, . . . , k1,

Kngn = K2g2 for n = k1 + 1, . . . , k2,

...
...

...
...

Kngn = KSgS for n = kj + 1, . . . , S − 1.

It is possible to show that the cofactors are

Kj = g
S∑

n=1

λn{log |gn|, log |gj |} =

g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{log |g1|, log |gj |} . . . 0 . . . {log |gS |, log |gj |}
1 . . . 1 . . . 1
a1 . . . aj . . . aS
a21 . . . a2j . . . a2S
... . . .

... . . .
...

aN1 . . . aNj . . . aNS
r21 . . . r2j . . . r2S
a1r

2
1 . . . ajr

2
j . . . aSr

2
S

... . . .
... . . .

...
al1r

2k
1 . . . aljr

2k
j . . . alSr

2k
S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where l + 2k = S − 2, and N < S − 2. These cofactors are polynomial of degree at
most S − 1, and the relations (12) hold.

By considering that the matrix with elementsH := ({log |gn|, log |gj |}) is skewsym-

metric then the relation
S∑

j=1

λjKj = 0 holds, thus there exists the first integral

F =
S∏

j=1

|gj |λj . �
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Proposition 16. The polynomial vector field of degree S with the S invariant
circles (27) for which (32) and (33) hold is the vector field

X = g

S∑
n=1

λn{log |gn|, ∗}

= g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{log |g1|, ∗} . . . {log |gj |, ∗} . . . {log |gS |, ∗}
1 . . . 1 . . . 1
a1 . . . aj . . . aS
a21 . . . a2j . . . a2S
... . . .

... . . .
...

aS−3
1 . . . aS−3

j . . . aS−3
S

aS−2
1 . . . aS−2

j . . . aS−2
S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where {f, ∗} =
∂f

∂x

∂

∂y
− ∂f

∂y

∂

∂x
, with λn a constant for n = 1, . . . , S. The vector

field X is Darboux integrable.

Proof. The vector field with S invariant circles can be written in the form X =
(P,Q) where P and Q are given by the formula (4) and the cofactors of the given
circles are given by the formula (34). Thus we obtain that

X (∗) =

S∑
j=1

λj

 S∏
m=1
m ̸=j

gm

 {g1, gj}

{g1, g2}
{∗, g2}+

S∑
j=1

λj

 S∏
m=1
m ̸=j

gm

 {g2, gj}

{g1, g2}
{g1, ∗}

=

S∑
j=1

λj

 S∏
m=1
m ̸=j

gm


{g1, g2}

({g1, gj}{∗, g2}+ {g2, gj}{g1, ∗})

=
S∑

j=1

λj

 S∏
m=1
m ̸=j

gm

 {gj , ∗},

where λj for j = 1, . . . , S are constants. Thus in view of Corollary 7, the vector
field is Darboux integrable. Hence

X (∗) = g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{log |g1|, ∗} . . . {log |gj |, ∗} . . . {log |gS |, ∗}
1 . . . 1 . . . 1
a1 . . . aj . . . aS
a21 . . . a2j . . . a2S
... . . .

... . . .
...

aS−3
1 . . . aS−3

j . . . aS−3
S

aS−2
1 . . . aS−2

j . . . aS−2
S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where g =
S∏

n=1

gn.
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First we shall see that the vector field X has degree S and has the invariant
circles (27). Indeed,

X = 2(x2 + y2)S−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 . . . 1
1 . . . 1 . . . 1
a1 . . . aj . . . aS
a21 . . . a2j . . . a2S
... . . .

... . . .
...

aS−3
1 . . . aS−3

j . . . aS−3
S

aS−2
1 . . . aS−2

j . . . aS−2
S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
x
∂

∂y
− y

∂

∂x

)

+2x(x2 + y2)S−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 . . . aj . . . aS
1 . . . 1 . . . 1
a1 . . . aj . . . aS
a21 . . . a2j . . . a2S
... . . .

... . . .
...

aS−3
1 . . . aS−3

j . . . aS−3
S

aS−2
1 . . . aS−2

j . . . aS−2
S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∂

∂y
+ . . .

after some calculations we obtain that the vector field X is a polynomial vector
field of degree S. On the other hand from the relations

X (gj) =

S∏
m=1

gm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{log |g1|, gj |} . . . 0 . . . {log |gS |, gj}
1 . . . 1 . . . 1
a1 . . . aj . . . aS
a21 . . . a2j . . . a2S
... . . .

... . . .
...

aS−3
1 . . . aS−3

j . . . aS−3
S

aS−2
1 . . . aS−2

j . . . aS−2
S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= gjKj ,

for j = 1, . . . , S. Consequently gj = 0 for j = 1, . . . , S are invariant algebraic curves
of the polynomial vector field of degree S. �

Proposition 17. The polynomial vector field of degree S with the S invariant
circles

gj = (x− a1)
2 + y2 − r2j = 0 for j = 1, 3, . . . , k1,

gj = (x− a2)
2 + y2 − r2j = 0 for j = 2, k1 + 1, . . . , k2,

...
...

gj = (x− aS)
2 + y2 − r2j = 0 for j = kj + 1, . . . , S,
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having different radii for the circles with the same center, can be written as

X = g
S∑

n=1

λn{log |gn|, ∗}

= g

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{log |g1|, ∗} . . . 0 . . . {log |gS |, ∗}
1 . . . 1 . . . 1
a1 . . . aj . . . aS
a21 . . . a2j . . . a2S
... . . .

... . . .
...

aN1 . . . aNj . . . aNS
r21 . . . r2j . . . r2S
a1r

2
1 . . . ajr

2
j . . . aSr

2
S

... . . .
... . . .

...
al1r

2k
1 . . . aljr

2k
j . . . alSr

2k
S

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where l + 2k = S − 2, and N < S − 2, and λn is a constant for n = 1, . . . , S. The
vector field X is Darboux integrable.

Proof. Its proof is analogous to the proof of the previous proposition. �

Proposition 18. The unique polynomial vector field with the S invariant circles

(35)

g1 = (x− a1)
2 + y2 − r21 = 0,

g2 = (x− a2)
2 + y2 − r22 = 0,

gj = (x− aj)
2 + (y − bj)

2 − r2S = 0, for j = 3, . . . , S,

with
S∑

j=3

b2j ̸= 0, is the zero vector field.

Proof. The integrability of the polynomial vector field of degree S with S invariant
circles

(36) gj = (x− aj)
2 + (y − bj)

2 − r2j = 0 for j = 1, . . . , S,

follows from differential system (1). Indeed, by Proposition 6 and Theorem 5 we
know that any polynomial differential system having the circles (36) as invariant
algebraic curves can be written as system (1), i.e.

(37)

ẋ = −λS+1

S∏
m=1

gm − 2
S∑

j=1

λj(y − bj)

 S∏
m=1
m ̸=j

gm

 = P (x, y),

ẏ = λS+2

S∏
m=1

gm + 2

S∑
j=1

λj(x− aj)

 S∏
m=1
m ̸=j

gm

 = Q(x, y),
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where λ1, . . . , λS+2 are arbitrary polynomials. Thus if max(deg(P ), deg(Q)) = S
then λS+1 = λS+2 = 0, we obtain the system

ẋ = −2
S∑

j=1

λj(y − bj)

 S∏
m=1
m ̸=j

gm

 , ẏ = 2
S∑

j=1

λj(x− aj)

 S∏
m=1
m ̸=j

gm

 ,

where λj for j = 1, . . . , S are polynomials of degree κj , i.e.

λj = Ajx+Bjy + Cj +Mjx
2 +Njxy + Ljy

2 + . . .+ µjy
κj .

By requiring that this differential system is a polynomial vector field of degree S

we obtain that we must eliminate at most
1

2
(S + κ − 1)(3S + κ + 2) coefficients

where κ = max(κ1, . . . , κS). Thus we have the following relations

(38)

S∑
j=1

τ
(n1)
3,j Cj = 0,

S∑
j=1

τ
(n2)
1,j Aj = 0,

S∑
j=1

τ
(n3)
2,j Bj = 0,

S∑
j=1

τ
(n4)
2,j Nj = 0,

S∑
j=1

τ
(n5)
2,j Mj = 0,

S∑
j=1

τ
(n6)
2,j Lj = 0,

...
...

...

where τ
(nk)
m,j = τ

(nk)
m,j (a1, . . . , aS , b1, . . . , bS , r

2
1, . . . , r

2
S) are homogenous polynomials

of degree nk on the variables a1, . . . , aS , b1, . . . , bS , r
2
1, . . . , r

2
S where j = 1, . . . , S.

After some computations we prove that (38) is equivalent to the linear system in
the unknowns Aj , Bj , Cj ,Mj , Nj , Lj , . . . for j = 1, . . . , S

S∑
j=1

anj Cj = 0, for n = 0, . . . , S − 2,

S∑
j=1

aljr
2k
j Cj = 0, for l + 2k = 2, . . . , S − 2

S∑
j=1

anj Aj = 0, for n = 0, . . . , S − 1,

S∑
j=1

aljr
2k
j Aj = 0, for l + 2k = 2, . . . , S − 1,

S∑
j=1

anj Bj = 0, for n = 0, . . . , S − 1,

S∑
j=1

aljr
2k
j Bj = 0, for l + 2k = 2, . . . , S − 1,

S∑
j=1

anj Mj = 0, for n = 0, . . . , S,
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S∑
j=1

aljr
2k
j Mj = 0, for l + 2k = 2, . . . , S,

S∑
j=1

anj Nj = 0, for n = 0, . . . , S,

S∑
j=1

aljr
2k
j Nj = 0, for l + 2k = 2, . . . , S,

S∑
j=1

anLj = 0, for n = 0, . . . , S,

S∑
j=1

aljr
2k
j Lj = 0, for l + 2k = 2, . . . , S,

S∑
j=1

bjCj = 0,

...
...

...
...

Consequently we have that Aj = Bj = Mj = Nj = Lj = Cj = . . . = 0, for

j = 1, . . . , S, if
S∑

j=1

b2j ̸= 0. Hence we obtain that λj = 0 and consequently the

vector field is a zero vector field. �

Proof of Theorem 3. The integrability for the case when the circles are given by
the formula gj = (x− aj)

2 + y2 − r2j = 0 follows from Propositions 16 and 17. For
the circles (35) follows from Proposition 18. �

5. Proof of Theorem 4

The next result is due to Christopher [2].

Theorem 19. Let g = 0 be a real non-singular algebraic curve of degree n, and h
a first degree polynomial, chosen so that the real straight line h = 0 lies outside all
ovals of g = 0. Choose the real numbers a and b so that ahx + bhy ̸= 0, then the
polynomial vector field of degree n,

ẋ = ag − hgy, ẏ = bg + hgx,

has all the ovals of g = 0 as hyperbolic limit cycles. Furthermore this vector field
has no other limit cycles.

From Theorem 3 we have that the polynomial vector field of degree S with S
invariant circles does not admits limit cycles. We claim that a polynomial vector
field of degree S can have at most S − 1 algebraic limit cycles given by circles.
We denote by A(S) the maximum number of algebraic limit cycles given by circles
which admits a polynomial vector fields of degree S.

Corollary 20. A(2)=1.
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Proof. Indeed, by Theorem 19 taking a = 0, b = 1, g = x2 + y2 − 1 and h = y + 2,
it follows that the polynomial differential system

ẋ = 2(y + 2)y, ẏ = x2 + y2 − 1− 2(y + 2)x.

of degree m = 2 has the circle x2 + y2 − 1 = 0 as an algebraic limit cycle, which
is the unique limit cycle of this system. Thus we have that A(2) ≥ 1. Now we
prove that A(2) = 1. By Proposition 10 the quadratic planar vector fields with two
invariant circles are rational integrable, consequently the quadratic system has no
limit cycles. So the claim is proved. �

Now we prove that A(S) ≥ S − 1, S ≥ 2.

Proposition 21. Consider the polynomial differential system

(39)
ẋ =

(
F0(x, y)− Fa(x, y)

)
y = P (x, y),

ẏ = −
(
F0(x, y)− Fa(x, y)

)
x+ aF0(x, y) = Q(x, y),

where

Fa(x, y) = (x+ y − a)
S∏

j=1

((x− a)2 + y2 − r2j ), F0(x, y) = Fa(x, y)|a=0,

of degree m = 2S + 1 if a ̸= 0, then system (39) has only three equilibrium points:
(0, 0) and (a, 0) which are foci, and (a/2, 0) which is a saddle. Moreover the circles
x2 + y2 − r2j = 0 and (x− a)2 + y2 − r2j = 0 for j = 1, . . . , S are limit cycles of the
system if 0 < r1 < r2 < . . . , < rS < a/2.

Proof. First we claim that system (39) has the following three singular points in
R2: (0, 0), (a/2, 0), (a, 0). Now we prove the claim. First we show that there are
no singular points (x0, y0) on the curve F0(x, y) − Fa(x, y) = 0, i.e. F0(x0, y0) −
Fa(x0, y0) = 0; otherwise from (39) we should have F0(x0, y0) = 0, and consequently
Fa(x0, y0) = 0, and this a contradiction. Thus the singular points of system (39)
are of the type (x0, 0) where x0 is a zero of the function

G(x) = x(x− a)

 S∏
j=1

((x− a)2 − r2j )−
S∏

j=1

(x2 − r2j )

 .

The function R(x) := G(x+ a/2)

R(x) = (x− a/2)(x+ a/2)

 S∏
j=1

((x− a/2)2 − r2j )−
S∏

j=1

((x+ a/2)2 − r2j )

 ,

is such that G(−x) = −G(x). This function can be written as

R(x) = (x− a/2)(x+ a/2)Φ(x), Φ(−x) = −Φ(x).

It is easy to show that Φ(x) < 0, for all x > 0, and Φ(0) = 0. Thus the unique
singular points of the differential system are: (0, 0), (a/2, 0), (a, 0).

The quantities

σ (x0, 0) = div(P,Q) (x0, 0) , ∆(x0, 0) =

∣∣∣∣ Px Qx

Py Qy

∣∣∣∣ (x0, 0) ,
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for system (39) are such that:

σ(0, 0) = σ(a, 0), ∆(0, 0) = ∆(a, 0),

σ(0, 0) = (−1)Sa
S∏

j=1

r2j ̸= 0,

∆(0, 0) = a2
S∏

j=1

(a2 − r2j )

 S∏
j=1

(a2 − r2j ) + (−1)S
S∏

j=1

r2j

 > 0,

σ2(0, 0)− 4∆(0, 0) = a2

2

S∏
j=1

(a2 − r2j )− (−1)S
S∏

j=1

r2j

2

−8a2

 S∏
j=1

(a2 − r2j )

2

< 0,

and

σ(
a

2
, 0) = a

S∏
j=1

(a2
4

− r2j
)
,

∆(
a

2
, 0) = −a4

4

S∏
j=1

(a2
4

− r2j
) S∑
k=1

S∏
j ̸=k

(
(
a2

4
− r2j

)
.

It is well known that if ∆ (x0, y0) < 0 then the singular point (x0, y0) is a saddle,
and if ∆ (x0, y0) > 0 and σ2 (x0, y0) − 4∆ (x0, y0) < 0 then the singular point is
a foci which is stable if σ (x0, y0) < 0 and unstable if σ (x0, y0) > 0. If a > 2rS ,
then ∆(a/2, 0) < 0, and, as a consequence the singular point (a/2, 0) is a saddle.
The other two singular points are focii their stability depend on the parity of S (for
more details see [1]). Thus the given circles are isolated periodic solutions of the
differential system (39), i.e. are limit cycles [11]. �

Proposition 22. The differential system

(40)

ẋ = y νε,

ẏ = −x νε + a
S+1∏
n=1

(x2 + y2 − 1

n2
),

where ε is small parameter, a > 2 and

νε =
S+1∏
n=1

(x2 + y2 − 1

n2
)− ((x− a)2 + y2 + εy+ (S +1)−2)

S∏
n=1

((x− a)2 + y2 − 1

n2
),

of degree m = 2S + 2 has only two equilibrium points which are foci, Moreover the

circles x2 + y2 − 1

n2
= 0 for n = 1, . . . , S + 1, and (x − a)2 + y2 − 1

n2
= 0 for

n = 1, . . . , S are limit cycles of the system.

Proof. We claim that system (40) has two equilibrium points which are foci. Now
we prove the claim. First we show that there are no singular points (x0, y0) on
the curve νε(x, y) = 0, i.e. νε(x0, y0) ̸= 0 for all (x0, y0). Otherwise from (40) we
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should have
S+1∏
n=1

(x2
0+y20 −

1

n2
) = 0, and consequently ((x0−a)2+y20 +εy0+1/(S+

1)2)

S∏
n=1

((x0 − a)2 + y20 − 1

n2
) = 0, and this a contradiction because these last two

curves do not intersect. Thus the singular points of system (40) are of the type
(x0, 0) where x0 is a root of the polynomial

L(x) = −(x− a)
S+1∏
n=1

(x2 − 1

n2
) + x((x− a)2 + (S + 1)−2)

S∏
n=1

((x− a)2 − 1

n2
)

of degree 2S + 1. By considering that a > 2 then we obtain that

L(0) = (−1)1+Sa
S+1∏
n=1

1

n2
, L(a) = (−1)Sa

S+1∏
n=1

1

n2
,

L(a/2) =
a3

4

S∏
n=1

(
a2

4
− 1

n2
) > 0,

L(−1/S) = −1/S((a− 1/S)2 + 1/(S + 1)2)
S∏

n=1

((1/S + a)2 − 1

n2
) < 0,

L(1/S) = 1/S((a− 1/S)2 + 1/(S + 1)2)

S∏
n=1

((1/S − a)2 − 1

n2
) > 0,

L(a− 1/S) = 1/S
S+1∏
n=1

((1/S − a)2 − 1

n2
) > 0,

L(a+ 1/S) = −1/S

S+1∏
n=1

((1/S + a)2 − 1

n2
) < 0,

and we obtain that

L(x) < 0 for x < −1/S,

L(x) < 0 for x > a+ 1/S, ,

L(− 1

S
)L(

1

S
) < 0, L(a− 1

S
)L(a+

1

S
) < 0,

and by considering that the minimum of L(x) is reached in a point which is close
of the point x = a/2 and its value is positive, then we have proved that in the
intervals (−1/S, 1/S) and (a− 1/S, a+ 1/S) there exist only one real root. These
roots approximately have the coordinates(

(−1)S 102−2S , 0
)
,

(
a+ (−1)S+1 102−2S , 0

)
,

and clearly tends to the point (0, 0) and (a, 0) when S tends to infinity.

These singular points are foci. Indeed, by considering that if (x0, 0) is a singular
point of (40) then the linear part of this differential system are
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ẋ = ν0(x0, 0) y,

ẏ = (−ν0(x0, 0) + 2x0(a− x0)σ(x0))x+ ε x0

S∏
n=1

((x0 − a)2 − 1

n2
) y,

where

σ(x) =
S+1∑
j=1

S+1∏
m=1
m ̸=j

(
x2 − 1

m2

)
+
(
(x− a)2 + 1/(S + 1)2

) S∑
j=1

S∏
m=1
m̸=j

(
(x− a)2 − 1

m2

)

consequently the point (x0, 0) is a foci because the roots λ1 and λ2 such that∣∣∣∣∣∣∣
λ −ν0(x0, 0)

ν0(x0, 0)− 2x0(a− x0)σ(x0) λ− ε x0

S∏
n=1

((x0 − a)2 − 1

n2
)

∣∣∣∣∣∣∣ = 0

are complex numbers. The stability of this singular point depend of the sign of the

number ε x0

S∏
n=1

((x0 − a)2 − 1

n2
). In short the claim is proved.

For ε = 0 we obtain that the singular points are centers. Indeed from (40) follows
that

d

dt
(x2 + y2) = 2ay

S+1∏
n=1

(x2 + y2 − 1

n2
),

d

dt
((x− a)2 + y2) = 2ay((x− a)2 + y2 + εy + (S + 1)−2)·

S∏
n=1

((x− a)2 + y2 − 1

n2
),

when ε = 0 follows that
d

dt
(x2 + y2)

S+1∏
n=1

(x2 + y2 − 1

n2
)

−

d

dt
((x− a)2 + y2)

((x− a)2 + y2 + (S + 1)−2)
S∏

n=1

((x− a)2 + y2 − 1

n2
)

= 0.

Hence we deduce the existence of the first integral

H(x, y) =

S∏
n=1

∣∣∣∣(x− a)2 + y2 − 1

n2

∣∣∣∣µn

S+1∏
n=1

∣∣∣∣x2 + y2 − 1

n2

∣∣∣∣λn
earctan((x−a)2+y2+(S+1)−2)

where µn =

S∏
l=1
l ̸=n

(
1

n2
− 1

l2

)
and λn =

S+1∏
l=1
l ̸=n

(
1

n2
− 1

l2

)
. Since the integral or its

inverse is defined on the circles (x − a)2 + y2 − 1

n2
= 0 for n = 1, . . . , S and

x2 + y2 − 1

n2
= 0, for n = 1, . . . , S + 1. These periodic solutions cannot be limit
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cycles. Finally by the analyticity of the Poincaré map it follows that the two
singular points are centers. �
Proof of Theorem 4. From Theorem 3 follows that the polynomial vector field of
degree S with S invariant circles is Darboux integrable without limit cycles. From
proposition 21 and 22 follows that there exist polynomial planar vector fields of
degree S with S − 1 invariant circles which are limit cycles. �
Remark 23. There exist other configuration of polynomial vector field of degree
S with S − 1 invariant circles as limit cycles different from the circles given in
Proposition 21 and 22. For example for S = 4 we have the following quartic vector
field with 3 invariant circles as limit cycles.

Example 24. The polynomial vector fields of degree four

ẋ = 8x4 − (28y + 48)x3 + (274y + 56)x2 + (−28y3 + 144y2

−1028y + 48)x− 8y4 + 82y3 − 216y2 + 1070y − 64,

ẏ = 14x4 + (16y − 178)x3 − (144y − 792)x2

+(16y3 + 14y2 + 272y − 1166)x− 14y4

+48y3 − 236y2 − 48y + 250,

admits the following three invariant circles which are limit cycles

x2 + y2 − 1 = 0, (x− 4)2 + (y − 4)2 − 1 = 0, (x− 3)2 + y2 − 1 = 0,

with cofactors

2(−24x2 + 48xy + 24y2 + 32x− 125y + 4x3 − 7yx2 + 4xy2 − 7y3),

2(−36x2 + 48xy + 12y2 + 68x− 65y − 12 + 4x3 − 7yx2 + 4xy2 − 7y3),

2(−12x2 + 48xy + 36y2 − 4x− 185y + 12 + 4x3 − 7yx2 + 4xy2 − 7y3),

6. Other results related with invariant circles of the polynomial
planar vector field

Theorem 25. The following statement hold.

(a) Every configuration of S ≥ 2 circles in the plane is realizable for a planar
polynomial vector field of degree m = 2S if m is even, and m = 2S − 1 if
m is odd.

(b) Every configuration of S ≥ 2 pairwise disjoint circles in the plane is realiz-
able by algebraic limit cycles for a planar polynomial vector field of degree
m = 2S. These limit cycles are the unique limit cycles of the polynomial
vector field.

Proof. Let gj = (x−aj)
2+(y−bj)

2−r2j = 0, for j = 1, . . . , S, be the given circles We
consider a polynomial vector fields (37) of the degree 2S, with λS+1 = a, λS+2 = b,
where a and b are arbitrary constants.

On the other hand we consider a polynomial vector fields (37) of the degree
2S − 1, taking

λS+1 = λS+2 = 0, λ1 = C1 −
S∑

j=2

(Ajx+Bjy) ,

λj = Ajx+Bjy + Cj , for j = 2, . . . , S,



THE 16TH HILBERT PROBLEM FOR ALGEBRAIC LIMIT CYCLES 31

where C1, Aj , Bj and Cj for j = 2, . . . , S, are arbitrary constants. Under these
conditions system (37) is a polynomial vector field of degree 2S−1. Thus statement
(a) of Theorem 25 is proved.

We study the case when the vector field (37) has the degree m = 2S with

λ1 = . . . = λS = λ = (x+ y + C)/2, λS+1 = −1, λS+2 = 1,

where C is a constant such that the straight line x+ y + C = 0 does not intersect

the given circles gj = 0. Denote by g =

S∏
j=1

gj , then (37) takes the form

ẋ = g − (x+ y + C)gy, ẏ = g + (x+ y + C)gx,

In view of Theorem 19 we obtain the proof of statement (b) of Theorem 25. �
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