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THE 16TH HILBERT PROBLEM RESTRICTED TO CIRCULAR
ALGEBRAIC LIMIT CYCLES

JAUME LLIBRE!, RAFAEL RAMIREZ2, VALENTIN RAMIREZ3 AND NATALIA
SADOVSKAIA3

ABSTRACT. We prove the following two results.

First every planar polynomial vector field of degree S with S invariant
circles is Darboux integrable without limit cycles.

Second a planar polynomial vector field of degree S, admits at most S — 1
invariant circles which are algebraic limit cycles.

In particular we solve the 16th Hilbert problem restricted to algebraic limit
cycles given by circles, because a planar polynomial vector field of degree S
has at most S — 1 algebraic limit cycles given by circles, and this number is
reached.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

Let Rz, y] be the ring of all real polynomials in the variables z and y. Assume
that P, @ € R[z,y] such that P and @ are coprime in R[z,y|. Consider the set X
of all planar real polynomial vector fields

0 0
X =P— —
oz + Q@x’
associated to the differential polynomial systems

Lt':P(.%‘,y), ’QZQ(LL',y).
of degree m = max {degP, degQ}, here the dot denotes derivative respect to the
time t.

Let U be an open and dense set in R2. We say that a non-constant C'! function
H:U — Ris a first integral of the polynomial vector field X on U, if H(z(t), y(t))
is constant for all values of ¢ for which the solution (z(t),y(t)) of X is defined on
U. Clearly H is a first integral of X on U if and only if YH =0 on U.

Let g = g(x,y) € R[z,y]. Then Let g = 0 is an invariant algebraic curve of X if
9g
oz
where K = K(z,y) is a polynomial of degree at most m — 1, which is called the
cofactor of g = 0. If the polynomial g is irreducible in R[x, y], then we say that the
invariant algebraic curve g = 0 is irreducible and that its degree is the degree of the
polynomial g.

)
Xg=P +Q8—5:Kg,

We recall that a limit cycle of a polynomial vector field X is an isolated periodic
orbit in the set of all periodic orbits of X. An algebraic limit cycle of degree n of
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X is an oval of an irreducible invariant algebraic curve g = 0 of degree n, which is
a limit cycle of X.

Hilbert in [3] asked: Is there an upper bound for the mazimum number of limit
cycles of any polynomial vector field with a given degree? This is a version of the
second half part of the Hilbert’s 16—th problem. This problem remains open, see for
more information [4, 5].

A simpler version of the second part of the 16-th Hilbert’s problem restricted
to algebraic limit cycles can be stated as follows: Consider the set X/ of all real
polynomial vector fields & of degree m having real invariant algebraic curves. Is
there an upper bound on the mazimum number of algebraic limit cycles of any
polynomial vector field of ¥1,7 (see [6, 7]).

There is the following conjecture (see [7]) about the maximum number of alge-
braic limit cycles of polynomial vector fields with a given degree.

Conjecture 1. The mazimum number of algebraic limit cycles that a polynomial
vector field of degree m > 2 can have is 1 + (m — 1)(m — 2)/2.

Conjecture 1 has been proved when the invariant algebraic curves of the poly-
nomial vector fields satisfy some generic properties see [7], see also [6, 8, 12].
Let fi,95,hj € Rlz,y] fori=1,...,pand j =1,...,q. Then the (multi-valued)
function
AR ‘fp|)‘pel‘flgl/hl ... eta9a/Pq

with A;, u; € C is called a (generalized) Darboux function.

A configuration of circles is a finite collection of disjoint circles. We say that a
configuration of circles is realizable as algebraic limit cycles if there exists a poly-
nomial vector field such that all its circles of the given configuration are algebraic
limit cycles of the vector field.

A nest of r circles is formed by a finite numbers C4, ..., C,. of circles such that its
configuration is homomorphic to the configuration z2 +y%—352 =0, for j =1,...,r.

Let ¢g; and ¢ be functions defined in an open subset U C R2. We define the
Jacobian matrix of g; and g5 as

991 991
_ Jdr 0Oy
Sl
dr 0Oy
The Jacobian of J, i.e. the determinant of J is denoted here by
|J] := {91, 92}

Our main results are the following.

Theorem 2. We consider the polynomial differential system

S S S
T= —Ast1 Hgm+z)‘j Hgm {9j, 2} = P(x,y),
m=1 j=1 m;l
m#j

m=1

s s s
Y= Ast2 H Im + ZAj H gm | {95, y} = Q(z,y).
m=1 j=1
m#j
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where \j for j =1,...,5+2 are arbitrary polynomials. This system has g; =0 as
invariant algebraic curves for j =1,...,5. We assume that {g1,92} Z 0. Then the
s

generalized Darbouz function F = e H |gj\’\j is a first integral of the polynomial
i=1
) , , , or or
differential system (1) if and only if As+1 = 0 Asto = e where T = 7(x,y)
Y x

is an arbitrary polynomial and A1, ..., \g are constants.
Theorem 2 is proved in section 3.

Theorem 3. A polynomial vector field X of degree S with S invariant circles is
Darboux integrable, and the invariant circles are not limit cycles.

Theorem 3 is proved in section 4

Theorem 4. For a polynomial vector field X of degree S the maximum number of
algebraic limit cycles given by circles is at most S — 1. Moreover this upper bound
is reached.

Theorems 4 is proved in section 5. We note that Theorem 4 shows that polyno-
mial vector fields of degree S can have at most S — 1 circles as limit cycles.

Theorem 3 and 4 provide the solution of the 16th Hilbert problem restricted to
algebraic limit cycles given by circles.

Some basic results that we shall need for proving Theorems 2, 3 and 4 are stated
in section 2.

2. PRELIMINARY RESULTS

The next result is the Proposition 2.1 of [10], see also the Corollary 1.3.4 of [9].
Here we provide a proof of it because some arguments of the proof will be used
later on.

Theorem 5. Let g; = g;(z,y) for j = 1,2,...,S with S > 2 polynomials such
that at least two of them (that without loss of generality we can assume that they
are g1 and gz) satisfy {g1,92} Z 0. Then a polynomial differential system having
the curves g; = 0 as invariant algebraic curves with cofactors K; = {g1, g2}p; for
j=1,...,8 respectively, and satisfying

(2) 139i{91. 92} = 191{gj, g2} + p292{91, 95},
forj=3,...,8, can be written as

&= mgi{z, g2} + p2g2{g1, v} = P(x,y),
= mg{y 92} + p2g2{g1,y} = Q(z,y).

(3)

where p; for j =1,...,5 are arbitrary rational functions such that P and Q are
polynomials.
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Proof. If the polynomial planar vector field associated to system (3) admits the

curves g; = 0 for 7 =1,...,5 as invariant algebraic curves then
0 0
991 p ﬂ Q= gk,
ox
892 8g2
— P+ -=Q= K
oz + Ay J252
%ip, %g_ 4k P — g,K
a_ +ain_ gj j<:>{gj7y} +{x7g]}Q—gJ R

ox

for j =3,...,S5. By solving the two first equations with respect to P and @ and by
considering that the matrix coefficient is the matrix J with determinant {g1, g2},
we obtain

_ Kig1 .
(4) r= {91,92}{ ’g2}+{g 7 }{91, x},
— K91
0= {91,92}{ 92} + {g S }{gl,y}

By inserting P and @ in the last S — 2 equations we deduce
Kigi ({z, 92395, y} +{y. 921z, 9;}) + Kag2 ({91, 2}{g;, v} + {91, yHz, 95})
= {gla gQ}g]K

In view of the identity

(5) {f:pHg, a3 +{f,aH{p. g} = {f.9Hp, ¢},
for arbitrary C! functions f, g, q, p. we finally obtain

K191{9j, 92} + K292{91,9;} = {91, 92 }9,; K
After the change K; = {g1, g2}1; we finally obtain the proof of the theorem. O
Proposition 6. Let g; = g;(z,y) for j =1,2,...,5 with S > 2 polynomials such
that at least two of them (that without loss of generality we can assume that they

are g1 and g2) satisfy {g1,92} Z 0. Then the differential system (3) satisfying (2)
and the differential system (1) are equivalent.

Proof. Forn=1,...,S we define K,, = {g1, g2} as follows

S+2 S
(6) Kngn = Z )\j H dm {gj7 gn}a
j=1 m=1
m#j
where gsy1 = vy and gs4+2 = « and Aq,..., Ag42 are arbitrary rational functions

such that K,, be a polynomial.
Substituting K;g;, K191 and Kago from (6) into (2) we obtain that equalities
(2) become

S+2
Z Al H gm | (g, 991,92} + {91, a9, 92} + {92, 1}{g1,9;}) = 0.
1=1 mst

This equality holds in view of identity (5).
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Assume that we have system (4) satisfying (2) with K,, = {g1, g2}, given in
(6). Then, substituting the K, in (4) which is equivalent to (3) we have

S—+2 S S+2 S
S| T 9m | {910 953 SN T om | {920 95
Jj=1 m;l j=1 mzl
P= e z, 925 + n7 g1,z
{91792} { } {g1392} { }
S+2 s
> | I 9m
=\
= ({91, 9iHz. 92} + {92, 9, g1, 2}) ,
{91,92}
S+2 s 542 s
S| T 9m [ {91 95 SN T om | {920 95
=\ Y
Q= Y, 92} + 91,y
{91, 92} v 02} {91, 92} to1.v}
S+2 s
Z )‘j H 9Im
Y
= ({91, 9iHy, 92} + {92, 9;Ho1,9}) -
{91,92} ! !
and using the relation (5) we have
S+2 s
20 | 1T om
=1 m=—1 S+2 s
m#j
P= {91792}{gja1:} = Z )\j H 9m {gj,J?}
{91,92} = =1
m#j
s s s
= 7AS+1 Hgn+z)\] H 9m {gj7x}7
n=1 j=1 m=1
m#j
S+2 s
> A | 1L om
7j=1 TYL;l S+2 S
Q= —{gn, 02 Hoi v} =D N | T[] 9m [{95:9}
{9192} = =
m#j

S S S
= Ast2 H gn + ZA]‘ H 9m {gj,y}.
n=1 j=1

m=1
m#j

Thus by considering that {z,y} = 1, {,2} = 0 and {y,y} = 0, then the differential
system (3) coincide with system (1).



6 J. LLIBRE, R. RAMIREZ, V. RAMIREZ AND N. SADOVSKAIA

Now we consider system (1) written in the form

S+2 S+2 S
E=Y N Hgm {g;. 7}, nyA 1T 9m [{95:},
=R mzi

where gg11 =y and gsy2 = . Thus we easily obtain the relations (6).

We consider the equalities

{91, 2},

{91, 92}

S S S
g
_)‘S+1Hgm+z>‘j Hgm {gjax K101 { 792}+{g }
m=1 j=1 1,9

m=1
m#j
s
As2 || gm+D N gm | {955 v} = {90} + {91, 9},
" nnl JZ} H ! {9 192 } { 92}
mgéj
or equivalently
s
M{log lg1], 2} + Aoflog|gal, 7} = Ass1 — D> A;{log|g,, =}
j=3
1 Klgl )
({91792}{ =92} + {g 92 }{gl’ o)
5
Ai{log|g1],y} + Aoflog|gal, y} = —Asya — Y Ai{loglg;l, v}
j=3
1 Kig1 )
- z,g + 91,y
({91792}{ 2} {g 92 }{ vl
s
where g = H gm- Thinking this last system as a linear system in the variables Ay
m=1

and Ay it can be solved because its determinant is {g1, g2}/g192. So the differential
system (3) can be obtained from (1). Moreover, since the cofactor of the curve
gn =0forn =1,...,5 in (1) is the K,, defined in (6), the condition (2) holds.
Hence the theorem is proved. ([

We observe that (1) is a particular case of the equations given in Theorem 1.6.1

of [6].

We remark that if the statement of Proposition 6 we have {g1, g2} = 0, then the
differential systems(1) and (3) are not equivalent. Indeed if the given circles are
concentric, i.e.

gj:x2+y2_’r]2‘:07 jzla"'aSa

with 0 < 71y <rgy <...<rg, then {g1, g2} =0, and system (1) takes the form

T =—As119 —yv, Y= Asy29 + TV,
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5 5
where g = H gm and v = H ng)\j H gm |, and system (3) cannot be
m=1 m=1 j=1

msﬁj
defined.

3. PROOF OF THEOREM 2
Proof of Theorem 2. Assume that the A\;’s for j = 1,..., S of the differential system
or or
dy Ox
polynomial. Then system (1) admits the representation

(1) are constant and Agy; = =7, and Agjo = = 7., being 7 = 7(x,y) a

g or

i= g ff+zk{10glgj|,ﬂc} =13 F+szlx\{log\gg\ x}
_ 9 f_or _
=z ayFJrZA{F xz} | = g{log F, z},

J=1

) or 5 g [ Ot
i= g %+;/\j{loglgﬂ7y} =5l 7 F+FZA{10glgy| y}

j=1

g [ Or
= Z|—F MNiA{F, = g{log F,
= 5 +; AF v} | = g{log F, y},
5 5
where F = €7 H lgm|*™, g = H gm- and we have used
m=1 m=1

Am

S
Fo= m,F+¢€ Z)\jgj {gjay} H |g
Jj=1 m=1
m#j

S
= F 7+ M{loglgly} |,

Jj=1

F, = Z)\jg] _1{9],$} H |gm [

m#?

S
= —F|-m+ > XNd{loglgl,z} |,
=1
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and
S S S
Plx,y) = —Aspr [T om+D % | I o | {955 2}
m=1 =1 m=1
S
= g Asii+ > Afloglgl, =} |,
(8) ~
S S S
Qx,y) = Ase2 [[ om + D N | [] 9m | {95 v}
m=1 j=1 %z
S
= g | A2+ N{loglg;l, v}
j=1

Consequently the function F' is a first integral.
s

Let F = ¢7 H |gm|"™ where v, for m = 1,...,S are constants. Then F is a

m=1
first integral of the vector field (1). By applying (7) and (8) we have that
F= F,P+F,Q

S
= Fm+> v{loglgl;y}
j=1

S
g (—/\s+1 +> A{loglgly v} | +

Jj=1

S
F (Ty Y vi{loglglj,z}

j=1

j=1

s
g (/\s+2 +> Afloglgly, =} | +
0.

This relation holds if A\; = v; and As41 = 7y and Ag42 = 7. This completes the
proof of the theorem. O

Corollary 7. The vector field

s s s
j=1 m=1 j=1 m=1
m#j m#j
is Darbouz integrable if and only if A\1,..., As are constants.

Proof. Tt follows easily from Theorem 2. O
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4. PROOF OF THEOREM 3

The proof of Theorem 3 follows from the following results.
By Proposition 6 and Theorem 5 we know that any polynomial differential system
having the circles

(10) gj(;my)E(:E—aj)Q—l—(y—bj)Q—r?:0, i=12,...,8

as invariant algebraic curves can be written as system (1), i.e.

s s
= _)\S+1Hgm_22/\j(y_bj) Hgm = P(z,y),
m=1 j=1

m#]

s s
g= Ast2 [ gm+2D A& —ay) Hgm = Q(z,y),
m=1 j=1
m#]

where A1,...,Agyo are arbitrary polynomials. We assume that system (37) has
degree S, because this is an assumption of Theorem 3.

From now on we shall assume without loss of generality that a; = b, = by = 0.

Proposition 8. The cofactors of the circles (10) for the system (37) are
(12) K; = 4axy (fa‘gj) + /@'gj) +...+ Ii(j) + /is_g) ,
where KSZ) are homogenous polynomial of degree n, and kKg_o is an homogenous

polynomial of degree S — 2. Note that the homogenous polynomial of degree S — 2
are the same for all j =1,...,85.

Proof. From the proof of Theorem 5 and from the equivalence between the systems
(3) and (1) given in Proposition 6, we have that the cofactor K of the invariant
circle g; = 0 for j = 1,...,5 are of the form K; = {g1,g2}p; being p1; a rational
function . Since {g1,92} = 4asy and K; must be a polynomial of degree at most
S — 1, we have that p; is a polynomial of degree S — 2. Then we shall determine
the cofactors K; for j =1,...,5 as follows

5-2
(13) Kj:4a2y2f££l =y Z linl.’L‘ yl,
n=0 n+1=0
where n( 9 = (j ) (z,y) are homogenous polynomial of degree n. From the conditions

(2) it follows that

y (Kjgjaz + Kigi1(aj — a2) — Kagaay)

(14)
+bj£E(Kggz — Klgl) =+ ijlgla2 = 0,

for j =3,...,5. Inserting (13) in these equations we obtain that

(=% +9°) ( (aﬁg)z + (a; — a2>“(51)2 aa”g)z) + bz (k (1)2 - “(5232)) +...=0,



10 J. LLIBRE, R. RAMIREZ, V. RAMIREZ AND N. SADOVSKAIA
On the other hand, from (2) it follows that

1
) = _— —
x Aas (K191 K292)

= y(@ 4+, -y +. ) =P,

. 1
(15) = -7 (x(K191 — Kag2) + a2 K1g1)
asy

= —z ((QU2 + yg)(nglz — 11(5232) +.. )

+ay ((9c2 +y2)egl, 4. ) =Q.

Hence by considering that m = max(degP, deg@) = S, we obtain that /1(5}12 = HSEQ.
From (25) we finally deduce that

NP N N

Consequently (12) is proved. O

Proposition 9. If the S concentric circles
gj :x2+y2—r]2:0 for j=1,...,85,

with 1 < ro < ... <rg are invariant circles of the polynomial system of degree S
then this system admits the first integral F = x? +y?. Consequently this system has
no limit cycles.

Proof. Indeed the polynomial planar vector field with S invariant concentric circles
has the form (see formula (1))

S S S S
T= —Agt1 H Gm — 2yZ)\j H gm | = —yv — As+1 H 9m,
m=1 7j=1 m=1 m=1

m#j

S S S S
g= Asg2 [[gm+22) N | [[ 9m | =2v + Asi2 [ 9m-
m=1 j=1 m=1 m=1

m#j
Clearly if this polynomial system has degree S then Ag41 = Ag42 = 0 and A for j =
1,...,S are such that the polynomial v has degree at most S — 1. Consequently the
most general polynomial planar vector field of degree S with S invariant concentric
circles takes the form

T =—yv, Y=av.
This system admits the first integral 22 + 2. ([l

Proposition 10. The quadratic vector fields with two invariant circles are rational
integrable.

Proof. For the case when m = 2 we always can consider that the given invariant
circles are

g =24y —1r1 =0, gp=(@—a)?+y°—1r3=0, ay#0.
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In view of Proposition 8 we obtain that the cofactors of the given circles are K; =
K5 = 4asqy. Then from (3) the quadratic vector field is

&= —qy(2a0x+1r3—ri—d}),

y= 2q(az(y* —2?) + (a3 + 1] —r3)z —asr}),
Consequently this quadratic system has the rational first integral F = g1/g2. O
Proposition 11. The cubic vector fields with the three invariant circles

gn= (r—a)+y>—ri=0,
go= (v—a2)*+y>—r3 =0,
g3= (r—as)’+(y—bs)* —ri =0,
{91,902} = Alaz —ar)y, a1 # as,
is the zero wvector field if bs # 0, and Darboux integrable if bs = 0 with the first
3

(16)

integral F = H |gj\)‘f, where
j=1

(17) )\1 = )\0(0,2 — (Zg), )\2 = )\0((13 — (11), )\3 = )\0(&1 — (LQ),
and \g s a constant.
Proof. Indeed the cofactor of the circles are polynomials of degree 2 which we

determine as follows

K; =4a2y (C; + Az + By),

for j = 1,2, 3. Here we use Proposition 8. Thus the equation

K191{92,93} + K292{93, 91} + K393{91,92} = 0,

is a polynomial of degree 5. This polynomial is a zero polynomial if and only if
the constants C7, Cy,C3, A and B are such that

bs (A1(a3 — a3 +1?) 4+ a2(Cy — 2C3)) =0,
bsr?a;C; =0,

by (Ca(r3 — a3) — Ciri + Ariag) =0,

bs (C1 — Cy +axA) =0,

asC3 4+ a3Ci — a3Cs — agbsB =10

B (a2b§ — Clg’l"% — CLQ’I"% + QQT% + agag + agrg — a%ag)

(18)
+b3 (a2Cy — a2C3) =0,
A (agr} + agb3 — aor3 + aszr3 — asri — adas + aza3)
+agas (C3 — Cy) =0,
bsB (a3 +ri—13) =0,

r2C1 (ag — az) + azCy (r% — a%) — agb3 Br?

+Csaz (b =13 +a3) =0,

Thus we have a system of 9 equations linear with respect to the 5 variables Cy, Co, C5, A

and B. After some computations we obtain:
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(i) If b3 # 0 then the unique solutions are
A=B=C1=Cy=C3=0,

thus the cofactors are all zero and consequently the vector field is a zero
vector field.

(ii) If b3 = 0 and (a3 — az)as # 0, then the linear system is formed by 4
equations admits a non trivial solutions

Cy = Xasas (’I“% — 7"% + a% - a%) )
Cy = Xo(az —a3)as (T% — 75+ a%) )
Cs = Aolaz —as)as (7’% -3+ a%) )

A = )\0&2&3(@2 — a3), B = 0,

where \g is a constant. Then the cofactors are

K= y\ (&2&3(&2 —a3)r + agas (r% — 13 +al— a%)) ,
(19) K> =y (azas(az — az)z + (a2 — ag)as (r? — 3 + a3)),
K3z = y)o (azas(az — ag)z + (a2 — as)as (rf — r3 + a3)).

Thus there exists constants A1, Ay and A3 such that
Kid + Kody + K3A3 = 0.

These constants are given by the formula (17). Consequently we have the
first integral

F = lga |72 ga| >~ ga| 17
This first integral prevents that the invariant circles are limit cycles.

It is easy to observe that the cofactors (19) can be written as

3 3
Kn= > Xfgion} | [ om
j=1 n=1

n#j
3 {log|gi],loglgnl} {loglgz|,log|gnl} {loglgsl log|gnl}
= J[ 9m 1 1 1 ,
m=1 al as as

where A1, A2 and A3 are given by formula (17).
(iii) If bs = 0 and ag = 0, then the system (18) admits the solutions

C,=C3=A=B=0,

and C is an arbitrary constant.

In this case K1 = K3 = 0 and Ky = 4asyCy. Thus differential system (15) takes
the form

&= —Cag2y, Y= Cagax.

Hence go = 0 is a singular circle. By considering that this system admits the
analytic first integral 22 + 32, then this system has no limit cycles. O
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Remark 12. The differential system (9) with three invariant circles is a polynomial
vector field of degree 3 if and only if the constants A1, Ay and A3 satisfies the linear

system
A+ Ao+ A3
a1>\1 + a2>\2 + ag)\g

b3z =

0,
0,
0.

Thus if bg # 0 then Ay = Ao = A3 = 0. Ifbg = 0 then by considering that a; —ag # 0,
then \; for j =1,2,3 are given by the formula (17).

Note that the solutions of the \’s are the same than in the proof of Proposition
11, and consequently the cubic vector fields coincide.

Proposition 13. The polynomial vector field of degree four with four different

invariant circles

g = (@—a)+y>—r{ =0,
g2= (z—az)*+y*—r3=0,
(20) g3= (v—a3)*+y*—r3=0,
gi= (®—as)*+(@y—bs)? =13 =0,
{91,092} = 4(a2 —a1)y, a1 # ag,
is the zero vector field if
R I A
1 1 1 1
by #0, or H:= o ay as as £ 0,
@ o a2 o

3

or Darbouz integrable if by = 0 and H = 0 with the first integral F = H g1,

where A1, A2, A3, \g
(i) are either

j=1

1 1 1 1 1 1

A =X | a2 a3 a4 |, Aa=-X| a1 az ay |,
o i af ot af
1 1 1 1 1 1
A3=—X| a1 az a4 |, Aa=Xo| a1 as ag
a? a3 a? a? a3 a3

with
r?:a—i—ﬂaj—&—va? for 7=1,2,3,4,
(ii) or
A = A3 = A\(r3 —73), for Xo ==Xy =AN(r3 —1}),

where Ay is an arbitrary constant, a1 = as, and as = a4.

Proof. We determine the solutions of the equations

K3g3{g1, 92} + K191{92, 93} + K2g2{93, 91} =
K194{91, 92} + K191{92, 94} + K292{94, 91} =

(22)

where

0,
0,

K; = 4ayy (C’j +ij+Bjy+Lx2 +Mxy+Ny2), 71=1,23,4.
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Here we have used Proposition 8. These equations are polynomials of degree 5. By
solving these equations we obtain a linear system with respect to A;, B;, Cj, L, M N
for j =1,2,3,4.

by (a2l + Ay — A2) =0,  byasriCy 0

by (Ayaor? —riCy 4+ Co(r3 —a3)) = 0

(23) by (’I‘%Al =+ AQ(CL% — T%) + asCq — GQT%L)) = 0,
by (L (’/’%—Fa% —r%) 4+ agA; — 2a0A9 + Cy —Cl) = 0

There are 25 equations. By using the algebraic manipulator we obtain that if by # 0
or H # 0, then we get that the unique solution of the linear system (23) with respect
to the 15 unknowns A;, B;, C;, L, M N for j = 1,2,3,4, are the trivial solutions

Aj=B;=C;=L=M=N=0, for j=1234.

Thus K1 = Ky = K3 = K4 = 0. Consequently the vector field is the zero vector
field. Hence the proposition is proved if by # 0 or H # 0.

If by = 0 and H = 0, then system (23) is formed for 20 equations which admits
non-trivial solutions. Indeed if H = 0 then ’I“J2- =a+ fBa; + fya? for 7=1,2,3,4,
or rank(A) = 2, where

11 1 1
A= a1 a2 a3 a4
@ a o a
In the first case under the assumption that rank(A) # 2 we obtain that the cofactors

are
N/, . - -
Ky= T (4 )2+ 42 + 22 (a2 + a3 + ax) +26)

+B875(az + as + as) + 7*(azas + azaq + azaq) + ﬂz)

= y(Va(z,y) + Ui(z,y)a1 + Yoai)
N
Ko = T (((3+4)2% + 30 + 20 (Glar + a3 + 1) +28)

+85(a1 + as + as) + 7*(a1a3 + a1a4 + azaq) + 52)

= y(Pa(z,y) + Vi (z,y)a1 + Yoa3),

N
K= ya ((’y +4)2® +3y* + 22 (F(a1 + a2 + as) + 28)

+B7(a1 + az + as) + *(araz + a1aq + azay) + 62)
= Y (lI}Q(‘T7y) + \Ill(xvy)a?) + ‘I’oag) )

N
Ky = y7<( +4)2® + 7y + 22 (v(ar + az + a3) + 25)

+B%(a1 + az + aq) + ?(aras + ajaz + azas) + B2)

= y(Vo(z,y) + ¥i(z,y)as + Voal),
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where ¥ = v — 1, Uy, ¥y and ¥y are convenient polynomials. It is easy to show
that the equation A\ K1 + Ao Ko + A3 K3 + A\ Ky = 0, holds if and only if

4 4 4
)‘j = 0, Zaj)\j = 0, Za?)\j = 0,

j=1

thus A; for j = 1,2,3,4 are determined by the formula (21). Consequently by

4

Theorem 2 there exists the first integral F = H |g;|*7. Therefore the proposition
j=1

is proved when by = 0 and H = 0 under the conditions 7? = o + fBa; + fyaf for

J
j=1,2,3,4.

We observe that when 4 = 0, we obtain K; = Ky = K3 = K,. Consequently
from (3) it follows that the curve K7 = 0 is a set of the critical points of the vector
field.

In the second case (i.e. rank(A) = 2) without loss the generality we suppose
that a; = a3 = 0 and a2 = a4, we have that the solutions of system (22) (i.e.
(a2 —a1)(K3gs — Kig1) = 0, (a2 — a1)(K191 — K2g2) = 0) are

A= A3=DB,=By=DB3=DB,=M, =0,
Cl = A4T§, C2 = —A4(G,i — TZ)a
03 = A4r%, 04 = —A4(a§ — 7‘%),
Ll = N1 :L:7A4, A2:A4.

Therefore the cofactors are

Ky = dagy (C1 + L(2? + y?)) = —4agyAsgs,
K3 = dagy (Cs + L(z* + y?)) = —dasyAsgn,
Ky = dasgy (Cg + 2a4 A4 + L(2? + y2)) = —4as A4ygs,
Ky = dasy (C'4 +2a4 A4 + L(2? + y2)) = —das Asygo.

We consider the equation A\{ K7 + Ao Ko + A3K3 + M K4 = 0, and we obtain
MCL+ACo+ X303+ MCi =0, A+X+XA3+M=0, AX2+ ) =0

Hence

M= X(Co—Cy) =3 =AN(r3 —13),

(24) 2 _ .2
Ao = Ag(C3—Ch) ==Xy = AXo(r5 —17),

where Ao is an arbitrary constants. Again, by Theorem 2 there exist the first
4

integral F' = H | gj|)‘j . Hence the proposition is proved when by = H = 0 under
j=1

the condition rank(A) = 2. In short the quartic system with four invariant circles

is Darboux integrable. Thus the proposition is proved. ([l
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From the proof of Theorem 2 we get that the cofactors K, of the circles g, =0
when 7']2 =a+ Ba; +fya? for j =1,2,3,4. are

4 4
Kn = Z)‘j{gjagn} H Im = /\Og'
j=1 m=

=1
m#j
{loggi],1og|gnl} {loglgal,log|gn|} {loglgs|,log|gn|} {log|gal log|gnl}
1 1 1 1
a a2 as Qg
ai a3 a3 aj
s
for n = 1,2,3,4, where g = H Gm, A1, A2, A3 and A4 are given by the formula
m=1

(21) and (24).

If rank(A) = 2 ( assuming that a; = a3 and as = a4), then the cofactors K,, are

4 4
K, = Z)‘j{gjagn} H gm = Aog-
m=1

j=1

mAj
{loglgil,loglgnl} {logl|gal,loglgn|} {loglgs|,log|gnl} {logl|gsl log|gnl}
1 1 1 1
aq a ai as
r? r3 r2 3

for n =1,2,3,4, From here we observe that K791 = K3gs and Kago = K4g4.

The case when 7“32 =a+ fa; + *ya? for j = 1,2,3,4, and rank(A) = 2, implies
that g1 = g3 and g2 = g4.

Remark 14. The polynomial vector field (9) with the four invariant circles (20)
18 a polynomial vector field of degree four if and only if the constants A1, A2, A3 and
A4 are such that

4
Za}’)\j: 0, for n=0,1,2,
j=1

bsAs +bghg = O,

(25) asbsAs + asbgdg = 0,
bsbs(As + Ag) = 0,

D orin = b3 — bl = 0.

j=1
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Thus if b% + bZ #£0, then \; = Ay = A3 = Ay = 0. Thus the vector field is the zero
vector field. If b3 = by = 0 then system (25) becomes

4
Za?)\j = 0, for n=0,1,2,
j=1

(26)

4
Z 7“]2»)\]‘ = 0.
j=1

This system admits nontrivial solutions if and only if the matrix

2 .2 .2 .2
rH Ty Tz Ty

1 1 1 1

ap a2 az a4

ai a3 a3 af

Q:

has rank smaller than 4. By considering that ax # ag then rank(Q)) = 3 if one of
the following three conditions hold:

either 7”]2- =a+ fa; + 'ya?- for j=1,2,3,4,
or ay; = ag, a2 = a4,

orai; = ayg, ag = as. In the first case we obtain that the constants \’s are given
in (21).

In the second case it is easy to show that the solutions of the linear system (26)

are \1 = —A3 = Ao(r3 —r3), Ao = =Xy = \(r3 — 1%), hence we have the first
4
integral F' = H g1
j=1

The third case follows in a similar way to the second case.

Note that the solutions of the A’s are the same than in the proof of Proposition
13, therefore the quartic vector fields coincide.

Now we shall extend the results of Proposition 11 and 13 to the configuration of
S circles with S > 4.

Proposition 15. We consider the configuration of S > 4 circles of the form
(27) gi=(x—a;)?+y*—r3=0, for j=1,...,85,

with {g1, 92} = 4(a2 — a1)y, az — a1 # 0, and the matriz

1 1 1
al as e e as
af a3 ag
A S—2 S—2 S—2
A= ay (05 Gg )
v oo
2 2
airy asry ... asrg
1.2k 1.2k 1 .2k
2
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where after the row af_Q, ceey ag—z come all the rows of the form air?*, abr2k ..., a,lsr?gk
with 1 4+ 2k = 2,3,...,S — 2, thus for | + 2k = 2 we have the row r%,...,r%, for
| + 2k = 3 we have the row a3, ..., asr%, for |+ 2k = 3 we have two rows,....

The vector field (3) under the conditions (2) is Darbouz integrable and it is not
a zero vector field if and only if the matriz A satisfies rank(A) < S.

Proof. We suppose that a planar polynomial vector field with the S invariant circles
(27) is Darboux integrable and it is not the zero vector field, then by Theorem 2
this polynomial differential system (1) becomes system (9). For the circles (27)
system (9) can be written as

s
= —y@@?+y)5 Y N - (@ +97) P Ra(z,y) + ... = Pla,y),
j=1
(28) g
y= wx(z?+y?)°! Z)\j — (22 + 92 2Ry(z,y) + ... = Q(z, ),
j=1
where
s s s
Ry = yz (—Qxaj —i—a? —r?) Z Am —l—yZ)\j (255‘(1]' — a? —|—7"J2-),
j=1 m=1 =1
S S
(29) Ry = Z (—2za; + a? - 7’]2) Z (y — am)A\m

1 m=1

<.
Il

M

s
(y — aj)Aj (2za; — af +13) — (2 + ) Zaj)\j.
1 =1

<.
Il

Since we want that max (degP(z,y), degQ(z,y)) = S we obtain the following linear
system in the unknowns A{,..., Ag

(30) ZT;")(al,...,as,rf,...,rg))\j =0,
j=1
where T;n)(al, ceyag, T ,r%) are homogenous polynomials of degree n on the

variables ay,...,ag,7%,..., 73 where j =1,...,Sandn =0,...,5; < (35+2)(S—
1)/2. Some of the equations (30) are

S
)\j = O7 Za?/\j = O,
j=1

2N =0,

S
0, E Q;

Jj=1

S S
j 0, E a;

Jj=1
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obtained directly from (29) and (30). After some computations we can show that
(30) can be written as follows

s
Za?)\j: 0, for n=0,...,5—2,
j=1

S
D odra =0, for 1+2k=2,...,8-2 k>0,
j=1

or equivalently
AX=0, A=(\,...,x9) .
Thus if rank(A) = S, then \; = 0 for j = 1,..., S. Since by assumption system (28)

is a non-zero vector field, we must have that rank(A) < S.

We prove the reciprocal. From (14) with b; = 0 we deduce the equations
(31) Kjgj(az — a1) + Kigi(a1 — a;j) + Kig1(a; — az) =0,
forj=3,...,5.

First we study the case when
(32) II (aj—ax) #0,

1<j<k<S

and the radii of the circles satisfy

(33) r? =a+faj+yal, for j=1,...,5.

The solutions of equations (31) are

S
Kj=gY An{log|gal,log|g;|} =
n=1
{loglgil,doglgsl} ... 0 ... {logl|gs| logl|g;|}
1 U 1
(34) ay e Qj e as
p a? c.a a%
a$~3 LaS L as3
als72 e ajsf2 e a§72
S

where g = H n-

n=1
It is easy to show that these cofactors are polynomial of degree S — 1 and that
they can be written as in (12).
In view of the fact that the matrix with elements ({log|g,|,log|g;|}) is skewsym-
s s
metric, then the equation Z A;jK; = 0, holds, thus the first integral F' = H |gj|’\f
j=1 j=1
exists.
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Analogously we can study the case when some of the circles have the same center
with different radii. Assume that

a]p = as oo = Ay
az = Ag;41 = .. = Qfy,
aijrl = ak].+2 =...=4dags.
It is possible to show that cofactors of these circles which are solutions of (31) are
such that

K,g, = Kig1 for n=3,... ky,

Kngni KQQQ for n:k1+1,...,k2,

Kngn= Kggs for n=Fk;+1,...,5-1

It is possible to show that the cofactors are

s
Kj=g Z /\n{log |gn|a log |gj‘} =
n=1
{log|g1|.loglg;[} ... O {log|gs|, log |g;]}
1 1 1
aiq aj ags
aj a3 a
9 a{v aév ag ’
r? rjz r%
apri ajrf- asr?
alr?k . aér?k . akrk

where [ + 2k =5 — 2, and N < S — 2. These cofactors are polynomial of degree at
most S — 1, and the relations (12) hold.

By considering that the matrix with elements H := ({log|gx|,log|g;|}) is skewsym-
5

metric then the relation Z)\jK ; = 0 holds, thus there exists the first integral

j=1
S
F=T1Tlgl™ O
j=1
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Proposition 16. The polynomial vector field of degree S with the S invariant
circles (27) for which (32) and (33) hold is the vector field

S
X= g> Afloglgal,+}
n=1

{log|gu],+} {log|g;, } {log gsl, *}
1 - 1 1
a1 e a; as
N L i |
af73 e affS ag
ay . aff2 ag72
of 0 Of 0
where {f,x} = %87; — 6—5%, with A, a constant for n = 1,...,5. The vector

field X is Darboux integrable.

Proof. The vector field with S invariant circles can be written in the form X =
(P, Q) where P and @ are given by the formula (4) and the cofactors of the given
circles are given by the formula (34). Thus we obtain that

s
SN TT 9m | {ors 95}

s
SN IT 9m | {92 95}

j=1 m;l_ j=1 m;l
X(x) = 7 %, g2} + m7 g1, *
&) {91, 92} g} {91, 92} g3}
S S
2N | I 9m
Jj=1 M;l
m
= : ({91, giH{*, 92} + {92, gi Hg1, *})
{91,902}
s s
= Z)‘J H Im {gja *}a
j=1 m=1
m#j
where \; for j = 1,...,5 are constants. Thus in view of Corollary 7, the vector
field is Darboux integrable. Hence
{log [ga], *} {log|g;l, *} {log lgs|, =}
1 1 1
a1 .. a; as
2 2 2
X(*) =g ay e GJ]- CLS ,
aff‘g aff?’ a§73
af72 afo a§72
S

where g = H In-

n=1
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First we shall see that the vector field X has degree S and has the invariant
circles (27). Indeed,

1 1 1
1 1 1
aq .. a; as
2 2 2 o O
X = 2$2+ 2\S—1 ay aj ag T — y—
(z® +y?) : | | o Vou
af_g af_g a§_3
af72 affz a§72
aq a; as
1 1 1
aq a; as
2 2 2
+2m(a? +y?)572| N % a§ |9,
. : : dy
affj affS agfg
af_2 af_Q ag_Q

after some calculations we obtain that the vector field X is a polynomial vector
field of degree S. On the other hand from the relations

{loglgil, 951} -~ 0 ... {loglgsl g;}
1 . 1 . 1
S aj ce Q;j RN as
a? .. a? a?
X(g5) =[] 9m ! J S = g; K,
m=1 : : :
af73 affg agfg
affz affz agfz
forj=1,...,8. Consequently g; = 0 for j = 1,...,S are invariant algebraic curves
of the polynomial vector field of degree S. O

Proposition 17. The polynomial vector field of degree S with the S invariant
circles

g; = (x—a1)?+y2—r?2=0 for j=1,3,... ki,
-7

J
g5 = (zia’2)2+y2 ?:0 fOT’ j:25k1+1a"'7k27

gi= (x—ag)?+y*—r2=0 for j=kj+1,...,5,
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having different radii for the circles with the same center, can be written as

S
X =g Mfloglgal,*}
n=1

{log |g1],*} ... 0 ... {loglgs], *}
1 .. 1 .. 1
aq [P aj ‘e ags
2 2 2
a3 a ag
=9 a{v aj»v a]SV ’

2 2 2
] T3 e

arr? ajTJQ- asr?

a2k ... aér?k .. akrik

where | +2k =5 —2, and N < § — 2, and A, is a constant forn =1,...,5. The
vector field X is Darboux integrable.

Proof. Its proof is analogous to the proof of the previous proposition. O

Proposition 18. The unique polynomial vector field with the S invariant circles

= (r—a)?+y*—ri=0,
(35) g2 = (r—a2)*+y* -5 =0,
gi= (x—a)*+@y—0b;)>—ri=0, for j=3,...,5,
s

with Z b? # 0, is the zero vector field.
j=3

Proof. The integrability of the polynomial vector field of degree S with S invariant
circles

(36) gi=@—a;)’+(@y—b)*—r?=0 for j=1,...,85,

follows from differential system (1). Indeed, by Proposition 6 and Theorem 5 we
know that any polynomial differential system having the circles (36) as invariant
algebraic curves can be written as system (1), i.e.

m=1

s s s
= —Agq1 Hgm*22/\j(y*bj) Hgm = P(z,y),
m=1 j=1

(37) m#j
s s s
Y= Ast2 Hgm+22)\j($—aj) Hgm =Q(z,y),
m=1 j=1 m=1

m#j
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where A1,...,Agyo are arbitrary polynomials. Thus if max(deg(P), deg(Q)) = S
then Ag+1 = Agt2 = 0, we obtain the system

s S s al
1‘2—22)\j(y—bj) Hgm > QZQZ)‘j(x_aj) Hgm ’
j=1 m=1 j=1 m=1

m#£j m#j
where \; for j =1,...,S are polynomials of degree x;, i.e.
N = Ajx+ Bjy+Cj + Mjx? + Njoy + Liy* + ...+ pujy™.
By requiring that this differential system is a polynomial vector field of degree S
we obtain that we must eliminate at most %(5 + K —1)(3S 4+ k + 2) coefficients

where kK = max(k1,...,ks). Thus we have the following relations

S S S
Do Ci= 0. DA =0, Yoni B =0,
Jj=1 j=1 j=1

S S S

38
s 0 S =0 S o
j=1 j=1 j=1
where 7'7(72’;) = Tgt);)(al, cooyag, by, ... bg, T3 ... r%) are homogenous polynomials
of degree ny on the variables ai,...,as,b1,...,bs,77,... ,r% where j = 1,...,S.

After some computations we prove that (38) is equivalent to the linear system in
the unknowns Aj, Bj, Cj, Mj,Nj,Lj, ... for j = 17 ey S

S
Za;‘Cj: 0, for n=0,...,5-2,
j=1
S
Zagrfkcjz 0, for 1+2k=2,...,5-2
j=1

ia?Aj: 0, for n=0,...,5—-1,
Za%-rzkAj = 0, for [4+2k=2,...,5—-1,
Za?Bj: 0, for n=0,...,5—-1,
> ahr¥B;= 0, for 1+2k=2,...,5-1,

S
> aiM;j= 0, for n=0,...,8,
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Zal~r2-ij: 0, for [+2k=2,...,5,

s
Za?Nj: 0, for n=0,...,5,

j=1
s
> ar?N; = 0, for 1+2k=2,...,5,
j=1
s
Za"Lj = 0, for n=0,...,5,
j=1
s
> ar? L= 0, for 1+2k=2,...,8,
j=1
s
> b= 0,
j=1
Consequently we have that A; = B; = M; = N; = L; = C; = ... =0, for
s
j=1,...,8if Zb? # 0. Hence we obtain that A; = 0 and consequently the
=1
vector field is a Zjero vector field. O

Proof of Theorem 3. The integrability for the case when the circles are given by
the formula g; = (z — a;)* 4+ y* — r5 = 0 follows from Propositions 16 and 17. For
the circles (35) follows from Proposition 18. O

5. PROOF OF THEOREM 4
The next result is due to Christopher [2].

Theorem 19. Let g = 0 be a real non-singular algebraic curve of degree n, and h
a first degree polynomial, chosen so that the real straight line h = 0 lies outside all
ovals of g = 0. Choose the real numbers a and b so that ah, + bhy # 0, then the
polynomial vector field of degree n,

= ag — hgy, Y =bg + hge,

has all the ovals of g = 0 as hyperbolic limit cycles. Furthermore this vector field
has no other limit cycles.

From Theorem 3 we have that the polynomial vector field of degree S with §
invariant circles does not admits limit cycles. We claim that a polynomial vector
field of degree S can have at most S — 1 algebraic limit cycles given by circles.
We denote by A(S) the maximum number of algebraic limit cycles given by circles
which admits a polynomial vector fields of degree S.

Corollary 20. A(2)=1.



26 J. LLIBRE, R. RAMIREZ, V. RAMIREZ AND N. SADOVSKAIA
Proof. Indeed, by Theorem 19 taking a =0,b=1, g=22+y> —1and h =y + 2,
it follows that the polynomial differential system

i=2y+2y, y=2"+y" —1-2y+2)u.

of degree m = 2 has the circle 22 + 2 — 1 = 0 as an algebraic limit cycle, which
is the unique limit cycle of this system. Thus we have that A(2) > 1. Now we
prove that A(2) = 1. By Proposition 10 the quadratic planar vector fields with two
invariant circles are rational integrable, consequently the quadratic system has no
limit cycles. So the claim is proved. O

Now we prove that A(S)>S—1, S5 > 2.

Proposition 21. Consider the polynomial differential system

i o= (Fo(x,y) - Fa(z,y)) y = P(z,y),

(39)
y = _<F0(x’y) - Fa(xvy)) T+ aFo(l‘,y) = Q(x,y),
where
S
Fo(z,y)=(z+y—a) H((CIj —a)? +y* =1}, Fo(r,y) = Fu(2,9)]ao,

of degree m = 2S5 + 1 if a # 0, then system (39) has only three equilibrium points:
(0,0) and (a,0) which are foci, and (a/2,0) which is a saddle. Moreover the circles
%+ 77“]2. =0 and (z —a)? +y? 77’]24 =0 forj=1,...,8 are limit cycles of the
system if 0 <ry <rg <...,<rg<a/2

Proof. First we claim that system (39) has the following three singular points in
R?: (0,0), (a/2, 0), (a, 0). Now we prove the claim. First we show that there are
no singular points (zg,yo) on the curve Fy(x,y) — Fy(z,y) = 0, i.e. Fy(zo,yo) —
Fo.(z0,y0) = 0; otherwise from (39) we should have Fy(xg, yo) = 0, and consequently
F,(x0,y0) = 0, and this a contradiction. Thus the singular points of system (39)
are of the type (zo,0) where z is a zero of the function

s s
G(z) = 2(w—a) [ [((e—a)® =) = ][ (@® = r})
Jj=1 j=1
The function R(x) := G(z + a/2)
s s
R(z) = (& —a/2)(x +a/2) | [J((z —a/2)® =) = [[ (e +a/2)* =1D) | ,
j=1 j=1
is such that G(—z) = —G(x). This function can be written as
R@) = (2~ a/2)(a +a/2)0(x), B(~2) = ~B(z)
It is easy to show that ®(x) < 0, for all z > 0, and ®(0) = 0. Thus the unique

singular points of the differential system are: (0,0), (a/2, 0), (a, 0).
The quantities

Py Qa

o (20,0) = div(P, Q) (x0,0), A (z0,0) = ‘ Py Qy
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for system (39) are such that:
0(0,0) = o(a,0), A(0,0) = A(a,0),

and

J
It is well known that if A (o, yo) < 0 then the singular point (o, yo) is a saddle,
and if A (2o, yo) > 0 and o2 (z0, yo) — 44 (70, yo) < 0 then the singular point is
a foci which is stable if o (zo, yo) < 0 and unstable if o (zg, yo) > 0. If a > 2rg,
then A(a/2,0) < 0, and, as a consequence the singular point (a/2,0) is a saddle.
The other two singular points are focii their stability depend on the parity of S (for
more details see [1]). Thus the given circles are isolated periodic solutions of the
differential system (39), i.e. are limit cycles [11]. O

Proposition 22. The differential system
i: = y VE7

(40) . S+1 1
§ = —xu5+aH(a:2+y2 - ﬁ)’

n=1

where € is small parameter, a > 2 and

S+1 s
1 1
v = TL@ 402 = ) = (@—aP + P+ ey + 5+ T - +17 - ),
n=1 ne1

of degree m = 25 + 2 has only two equilibrium points which are foci, Moreover the

1 1
circles x2+y2——2 =0 forn=1,....,5S+1, and (x—a)z—l—yg—ﬁ =0 for

n=1,...,85 are limit cycles of the system.

Proof. We claim that system (40) has two equilibrium points which are foci. Now
we prove the claim. First we show that there are no singular points (zg, o) on
the curve ve(z,y) = 0, i.e. v.(xo,y0) # 0 for all (zo,yo). Otherwise from (40) we
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S+1
1
should have H (z3 45 — —5) = 0, and consequently ((zo—a)? +yd +eyo+1/(S+
n

n=1
2) . 2, .o 1 . .
H xo—a) +y; — ﬁ) = 0, and this a contradiction because these last two
1

curve g do not intersect. Thus the singular points of system (40) are of the type
(z9,0) where xq is a root of the polynomial

5
1 _ 1
L) =~@-a [[*- ) +e(@-a’+ S+ D7) [[ (@ -’ - 5)
n=1 n=1
of degree 25 + 1. By considering that a > 2 then we obtain that
S+1 S+l
— s
- coenlf 3 wo- ool 3
3 5 2
a a 1
> 1
L(-1/8)= —1/S((a—1/8)?+1/(S+1)? ]1 (1/5+a)* = —) <0,

S
L(1/S) = 1/8((a—1/8)*+1/(S+1)?) [[((1/S — a)? n12)>o,

S+1

Lia—1/8)= 1/8 [[((1/S —a)* - %) >0,

S+1

1
L 1/8)= -1 1 L ——
(a+1/S) /Sn];[l(( [§+a)——5) <0,
and we obtain that
L(z) <0 for z<-1/85,
L(z) <0 forx >a+1/S,
1 1 1 1
L(_E)L(E) < 0, L(a- E)L(a + g) <0,

and by considering that the minimum of L(x) is reached in a point which is close
of the point = a/2 and its value is positive, then we have proved that in the
intervals (—1/5,1/5) and (a — 1/S,a + 1/5) there exist only one real root. These
roots approximately have the coordinates

((_1)S 102725’ 0) ; (a 4 (_1)S+1 102725’70) ,

and clearly tends to the point (0,0) and (a,0) when S tends to infinity.

These singular points are foci. Indeed, by considering that if (z¢, 0) is a singular
point of (40) then the linear part of this differential system are
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T = VO(anO) Y,

s
. 1
= (—vo(x0,0) + 2z(a — zg)o(zo)) z + g H (2o —a)? — ﬁ) Y,
n=1
where
S+1 S+1 s S 1
2 2 2
=>"1I (x —) +((x—a)* +1/(S+1) )Z 11 ((x—a) —mz>
j=1m=1 j=1m=1
m#j m#j
consequently the point (z,0) is a foci because the roots A; and Ay such that
A —V()(:L‘o,())
5 1. =0
9 =
vo(zo,0) — 2z9(a — zo)o(xg) A —exo H((mo —a)® — ﬁ)

are complex numbers. The stability of this singular point depend of the sign of the
s
1
number € zg H ((zo —a)?* — — ). In short the claim is proved.
n=1 n
For e = 0 we obtain that the singular points are centers. Indeed from (40) follows
that
d S+1 1
Z@ ) = 20y [T +9° - ),
n=1
d

(@ —a?+y?) = 2ay((z —a)® +y* +ey+ (S+1)77):

5 1
[ +42— ),

n=1
when € = 0 follows that

d d
G =+ ) »
S+1 1 S 1 B
2 2
]jl(x ') (@—a)? +y2+(S+1)" r_[ v—a) +y" - )
Hence we deduce the existence of the first integral
S 1 Hn
[T |- a2 +v? -
n=1 arctan((z—a)?4y? -2
H(x’y) = o1 ™ e tan(( )y +H(S+1)77)
2 2 1
I+ -5
n
n=1
S 1 1 S+1 1 1
where p, = lljl (n? - P) and A\, = ll:[1 (712 — l2> . Since the integral or its
l;én l;a_én

inverse is defined on the circles (z — a)? + y? — 5
n

=0forn =1,...,5 and

1
% 42 — 2= 0, for n = 1,...,5 + 1. These periodic solutions cannot be limit
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cycles. Finally by the analyticity of the Poincaré map it follows that the two
singular points are centers. (I

Proof of Theorem 4. From Theorem 3 follows that the polynomial vector field of
degree S with S invariant circles is Darboux integrable without limit cycles. From
proposition 21 and 22 follows that there exist polynomial planar vector fields of
degree S with S — 1 invariant circles which are limit cycles. ]

Remark 23. There exist other configuration of polynomial vector field of degree
S with S — 1 invariant circles as limit cycles different from the circles given in
Proposition 21 and 22. For example for S = 4 we have the following quartic vector
field with 8 invariant circles as limit cycles.

Example 24. The polynomial vector fields of degree four
&= 8x* — (28y + 48)x> + (274y + 56)2% + (—28y> + 144>
—1028y + 48)x — 8y* + 82y% — 216y + 1070y — 64,
= lda* + (16y — 178)x> — (144y — 792)z>
+(16y> + 14y? + 272y — 1166)z — 14y*
+48y> — 236y? — 48y + 250,
admits the following three invariant circles which are limit cycles
P4y’ —1=0, (z—-4°+@y—-4?-1=0, (z-372+y*-1=0,
with cofactors
2(—24x% + 482y + 24y? + 32z — 125y + 43 — Tya? + day? — Ty?),
2(—36a22 + 487y + 12y + 68z — 65y — 12 + 43 — Tyz? + day? — Ty3),
2(—122% + 482y + 36y? — 4x — 185y + 12 + 423 — Tyx? + day? — Ty3),

6. OTHER RESULTS RELATED WITH INVARIANT CIRCLES OF THE POLYNOMIAL
PLANAR VECTOR FIELD

Theorem 25. The following statement hold.

(a) Ewery configuration of S > 2 circles in the plane is realizable for a planar
polynomial vector field of degree m = 25 if m is even, and m = 25 — 1 if
m s odd.
(b) Ewvery configuration of S > 2 pairwise disjoint circles in the plane is realiz-
able by algebraic limit cycles for a planar polynomial vector field of degree
m = 25. These limit cycles are the unique limit cycles of the polynomial
vector field.
Proof. Let g; = (x—aj)Q—l—(y—bj)Q—r? =0,forj=1,...,5, be the given circles We
consider a polynomial vector fields (37) of the degree 25, with Agy1 = a, Agy2 = b,
where a and b are arbitrary constants.
On the other hand we consider a polynomial vector fields (37) of the degree
25 — 1, taking
S
Ast1= Asi2=0, M =Ci—Y (Az+Bjy),
j=2

Aj = Ajl‘—l-Bjy—‘er, for 7=2,....,5,
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where Ci, A;, B; and C; for j = 2,...,5, are arbitrary constants. Under these
conditions system (37) is a polynomial vector field of degree 25 — 1. Thus statement
(a) of Theorem 25 is proved.

We study the case when the vector field (37) has the degree m = 25 with
>\1:--.:>\S:/\:(I+y+0)/27 As+1=—1, Asqa=1,

where C' is a constant such that the straight line z 4+ y + C' = 0 does not intersect
s

the given circles g; = 0. Denote by g = H gj, then (37) takes the form
j=1

:'c:gf(x+y+0)gy, y:g+(x+y+0)gz,

In view of Theorem 19 we obtain the proof of statement (b) of Theorem 25. O
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