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Abstract. The complete characterization of the phase portraits of real
planar quadratic vector fields is very far to be completed. As this at-
tempt is not possible in the whole class due to the large number of
parameters (twelve, but, after affine transformations and time rescaling,
we arrive at families with five parameters, which is still a big number of
parameters), many subclasses have been considered and studied. In this
paper we complete the characterization of the global phase portraits in
the Poincaré disc of all planar quadratic polynomial differential systems
having an invariant conic and a Darboux invariant, constructed using
only the invariant conic.

1. Introduction

Denote by R[x, y] the ring of the real polynomials in the variables x and
y, and consider the differential system in R

2 given by

(1)
ẋ = P (x, y),
ẏ = Q(x, y),

where P,Q ∈ R[x, y]. In (1) the dot denotes derivative with respect to the
time t and, we define the degree of system (1) as m = max{degP, degQ}.

A quadratic system is a quadratic polynomial differential system as (1)
for which m = 2. The quadratic systems appear in the modeling of many
natural phenomena described in different branches of the sciences, and in bi-
ological and physical applications. Of course, the quadratic systems became
a matter of interest for the mathematicians because after the linear differen-
tial systems they are the easiest polynomial differential systems. More than
one thousand of papers have been published about quadratic systems. See
for instance [8, 9] for a bibliographical survey.

Because we want to study quadratic systems, in this paper we always
assume that the polynomials P and Q are coprime, otherwise system (1)
can be reduced to a linear or constant system by a rescaling of the time
variable.
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The existence of a first integral for a planar differential system is particu-
larly important because it allows to draw the curves containing the trajecto-
ries of the differential system. Also it is interesting to know if a differential
system has invariants, i.e. first integrals depending on the time. The in-
variants that here we will study are the Darboux invariants which allow to
describe the asymptotic behavior of the solutions of the system, as showed
in [1, 6, 7]. A Darboux invariant is a special invariant of the form f(x, y)est,
they are defined in Subsection 2.2.

In [1] the authors charactherize the global phase portraits in the Poincaré
disc of all planar Lotka–Volterra quadratic polynomial differential systems
having a Darboux invariant. The characterization of all planar polynomial
differential systems with a unique invariant algebraic curve given by a real
conic and having a Darboux invariant is in [6], but there the authors do not
provide the global phase portraits in the Poincaré disc of such differential
systems. The authors of this paper in [7] investigated the quadratic systems
with invariant straight lines of total multiplicity two (except to the Lokta-
Volterra systems which were done in [1]) having Darboux invariants and
classified their phase portrait in the Poincaré disc.

In this paper we complete the classification of the global phase portraits
in the Poincaré disc of quadratic polynomial differential systems with an
invariant algebraic conic having a Darboux invariant. From the mentioned
results only remains the study of the quadratic systems having an invariant
non–degenerate conic and a Darboux invariant.

The normal forms of quadratic systems with an invariant non degenerate
conic is given in Proposition 4 of [2] which we reproduce bellow.

Proposition 1. Applying an affine change of coordinates, the real quadratic
systems having an invariant non degenerate conic can be written in one of
the following forms:

(E) ẋ = (a/2)(x2 + y2 − 1) + 2y(p x+ q y + r),
ẏ = (b/2)(x2 + y2 − 1)− 2x(p x+ q y + r),

(CE) ẋ = (a/2)(x2 + y2 + 1) + 2y(p x+ q y + r),
ẏ = (b/2)(x2 + y2 + 1)− 2x(p x+ q y + r),

(H) ẋ = (a/2)(x2 − y2 − 1)− 2y(p x+ q y + r),
ẏ = −(b/2)(x2 − y2 − 1)− 2x(p x+ q y + r),

(P) ẋ = (b/2)x y − (a/2)(y − x2) + p x+ q y + r,
ẏ = b y2 + c(y − x2) + 2x(p x+ q y + r).

In the statement of Proposition 1 systems (E), (CE), (H) and (P) provide
the normal forms of the quadratic systems having an invariant real ellipse,
complex ellipse, hyperbola and parabola, respectively.

The next theorem provides the characterization of the Darboux invariants
of the quadratic systems having an invariant non degenerate conic. We
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remark that we are only considering the Darboux invariants which can be
obtained using only the invariant conic, see for more details Proposition 4.

Theorem 2. The following statements hold for the quadratic systems of
Proposition 1.

(1) The quadratic systems of type (E), (CE) and (H) of Proposition 1 do
not admit a Darboux invariant constructed using only the invariant
conic.

(2) Quadratic systems of type (P) of Proposition 1 having a Darboux
invariant, constructed using only the invariant parabola, are

ẋ =p x+ q y + r,

ẏ =c(y − x2) + 2x(p x+ q y + r),

where c, p, q and r real parameters. Moreover, its Darboux invariant
is

I(x, y, t) = e−ct (y − x2).

Theorem 2 shows that the unique quadratic system with an invariant
non–degenerate conic having a Darboux invariant, constructed using only
the invariant conic, are those having an invariant parabola.

The next result provides the global classification of all phase portraits in
the Poincaré disc of the quadratic systems with an invariant parabola having
a Darboux invariant.

Theorem 3. The phase portrait in the Poincaré disc of a quadratic polyno-
mial differential system with an invariant parabola having a Darboux invari-
ant, constructed only using the invariant parabola, is topologically equivalent
to one of the 10 phase portraits of Figure 1.

The paper is organized as follows. Basic definitions and results necessary
to complete the study of the Darboux invariants and of the phase portraits
in the Poincaré disc of the quadratic systems are given in section 2. In
sections 3 and 4 we prove Theorems 2 and 3 respectively.

2. Basic results

2.1. Invariants. If Ω is an open and dense subset of R2 and H : Ω → R is
a nonconstant function such that H(x(t), y(t)) is constant for all the values
of t for which (x(t), y(t)) is a solution of system (1) contained in Ω, then we
say that H is a first integral of system (1) on Ω. So H is a first integral of
system (1) if and only if

(2) P
∂H

∂x
+Q

∂H

∂y
= 0,

for all (x, y) ∈ U .

Let Ω be an open and dense subset of R
2, an invariant of system (1)

in Ω is a nonconstant analytic function I in the variables x, y and t such
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(1) (2) (3)

(4) (5) (6)

(3)

(7) (8) (9)

(10)

Figure 1. Global phase portraits of quadratic systems with an
invariant parabola and a Darboux invariant. The dashed curves
are curves covered of singular points of the system. The thick lines
are formed by separatrices of the system, and the thin lines are
orbits in the canonical regions of the system.

that I(x(t), y(t), t) is constant on all solution curves (x(t), y(t)) of system
(1) contained in Ω, i.e.

∂I

∂x
P +

∂I

∂y
Q+

∂I

∂t
= 0,

for all (x, y) ∈ U , in other words, I is a first integral of system (1) depending
on the time t.
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For f ∈ C[x, y] the curve f(x, y) = 0 is an invariant algebraic curve of
system (1) if there exists K ∈ C[x, y] such that

P
∂f

∂x
+Q

∂f

∂y
= Kf.

The polynomial K is called the cofactor of the invariant algebraic curve
f = 0. If K = 0 then f is a polynomial first integral.

Let f, g ∈ C[x, y] such that f and g are relatively prime in the ring C[x, y],
or that g = 1. Then the function exp(f/g) is a exponential factor of system
(1) if there exists a polynomial L ∈ C[x, y] of degree at most m − 1 such
that

P
∂ exp(f/g)

∂x
+Q

∂ exp(f/g)

∂y
= L exp(f/g).

The polynomial L is called the cofactor of the exponential factor exp (f/g).

2.2. Darboux invariants. A Darboux invariant for system (1) is an in-
variant I of the form

I(x, y, t) = fλ1

1 · · · fλp
p Fµ1

1 · · ·Fµq
q es t,

where fi = 0 are invariant algebraic curves of system (1) for i = 1, . . . p,
and Fj are exponential factors of system (1) for j = 1, . . . , q, λi, µj ∈ C and
s ∈ R \ {0}.

The next proposition explain how to find Darboux invariants and it is
proved in [3].

Proposition 4. Suppose that a polynomial system (1) of degree m admits
p invariant algebraic curves fi = 0 with cofactors Ki for i = 1, ..., p, q
exponential factors exp(gj/hj) with cofactors Lj for j = 1, ..., q, then, if
there exist λi and µj ∈ C not all zero such that

p
∑

i=1

λiKi +

q
∑

j=1

µjLj = −s,

for some s ∈ R\{0}, then substituting fλi

i by |fi|λi if λi ∈ R, the real (multi-
valued) function

fλ1

1 . . . f
λp
p

(

exp

(

g1
h1

))µ1

. . .

(

exp

(

gq
hq

))µq

est

is a Darboux invariant of system (1).

2.3. Poincaré compactification. The phase portrait of a system is the
decomposition of its domain of definition as union of all its orbits.

Let

(3) X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y

be the planar polynomial vector field of degree m associated to the polyno-
mial differential system (1). The Poincaré compactified vector field π(X ) of
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X is an analytic vector field induced on S
2 as we describe in what follows

(for more details see [4]).

Denote by S
2 = {y = (y1, y2, y3) ∈ R

3; y21 + y22 + y23 = 1} and by TyS
2

the tangent plane to S
2 at point y. We identify R

2 with T(0,0,1)S
2 and let

f : T(0,0,1)S
2 → S

2 be the central projection. The map f defines two copies

of X on S
2, one in the southern hemisphere and the other in the northern

hemisphere. Denote by X ′ the vector field D(f)◦X defined on S
2\S1, where

S
1 = {y ∈ S

2; y3 = 0}, the equator of S2, is identified with the infinity of
R
2.

The extension of X ′ to a vector field π(X ) on S
2, including S

1 is the
unique analytic extension of ym−1

3 X ′ to S
2, where m is the degree of X .

On S
2 \ S1 there is two symmetric copies of X . The behavior of π(X ) near

S
1 determines the behavior of X in a neighborhood of the infinity. The

Poincaré compactification π(X ) has S1 as an invariant curve under the flow
of π(X ). Finally, the projection of the closed northern hemisphere of S2 on
y3 = 0 under (y1, y2, y3) 7→ (y1, y2) is called the Poincaré disc D, and its
boundary is S1.

We say that the vector fields X and Y are topologically equivalent if there
exists a homeomorphism on S

2 preserving the infinity S
1 carrying orbits of

the flow induced by π(X ) into orbits of the flow induced by π(Y) preserving
or not the orientation of the orbits.

For the differentiable manifold S
2 we consider six local charts Ui = {y ∈

S
2; yi > 0} and Vi = {y ∈ S

2; yi < 0}, where i = 1, 2, 3, and the dif-
feomorphisms Fi : Ui → R

2 and Gi : Vi → R
2, for i = 1, 2, 3, which are

the inverses of the central projections from the tangent planes at the points
(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1), respectively.
So, we can compute the explicit expression of π(X ) as follows. Denote by
z = (u, v) the value of Fi(y) and Gi(y), for any i = 1, 2, 3, therefore has z
different meaning depending on the local charts that we are working. After
some computations, we get that π(X ) is given by

vm∆(z)

(

Q

(

1

v
,
u

v

)

− uP

(

1

v
,
u

v

)

,−vP
(

1

v
,
u

v

))

in U1,

vm∆(z)

(

P

(

u

v
,
1

v

)

− uQ

(

u

v
,
1

v

)

,−vQ
(

u

v
,
1

v

))

in U2,

∆(z)(P (u, v), Q(u, v)) in U3,

where ∆(z) = (u2 + v2 + 1)−(m−1)/2. The expressions for Vi’s are the same
as those for Ui’s multiplied by the factor (−1)m−1. In these coordinates and
for the local charts U1, V1, U2 and V2 we have that v = 0 always denotes the
points of the infinity S

1.
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2.4. α and ω limit sets and the Darboux invariant. Let φp(t) =
(x(t), y(t)) be the maximal solution of system (1) defined on the interval
(αp, ωp) such that φp(0) = p. If ωp = ∞ we define the ω–limit set of p as

ω(p) = {q ∈ R
2 : ∃{tn} with tn → ∞ and φp(tn) → q when n→ ∞}.

Analogously, if αp = −∞ we define the set α–limit set of p as

α(p) = {q ∈ R
2 : ∃{tn} with tn → −∞ and φp(tn) → q when n→ ∞}.

The next proposition, proved in [7], explain how the Darboux invariant
provides information about the α– and ω–limit sets of all orbits of system
(1).

Proposition 5. Let I(x, y, t) = f(x, y)est be a Darboux invariant of system
(1). If p ∈ R

2 and φp(t) is the maximal solution of system (1) in the interval
(αp, ωp) such that φp(0) = p, then

(1) ω(p) ⊂ {f(x, y) = 0} ∪ S
1 if ωp = ∞,

(2) α(p) ⊂ {f(x, y) = 0} ∪ S
1 if αp = −∞,

where S
1 denotes the infinity of the Poincaré disc.

2.5. Separatrices and canonical regions. Let D be the Poincaré disc and
π(X ) be the Poincaré compactification on D of the polynomial differential
system (1) defined in R

2. Consider φ the analytic flow associated to π(X )
and denote by (U, φ) the flow of φ on an invariant set U ⊂ D. The flow
(U, φ) is parallel if it is topologically equivalent to one to the following flows:

(i) the flow in R
2 given by the differential system ẋ = 1, ẏ = 0, known

as trip flow.

(ii) the flow in R
2 \ {0, } given in polar coordinates by the differential

system ṙ = 0, θ̇ = 1, known as annular flow;

(iii) the flow in R
2 \ {0, } given in polar coordinates by the differential

system ṙ = r, θ̇ = 0, known as spiral or radial flow.

Moreover, the separatrices of a polynomial vector field π(X ) in the Poincaré
disc D are all the infinity of R2 (i.e. all orbits of π(X ) on the boundary of
S
1 of the Poincaré disc), all the finite singular points of π(X ), all the limit

cycles of π(X ), and all the separatrices of the hyperbolic sectors of the finite
and infinite singular points of π(X ).

Denote by S the union of the separatrices of (D, φ) defined by π(X ). S is
an invariant closed set. In addition, if N is a connected component of D \S,
then N is an invariant set under the flow φ, and the flow (N,φ\N) is known
as canonical region of the flow. For a given vector field φ(X ) its separatrix
configuration is formed by all the separatrices of φ(X ) plus an orbit in each
one of its canonical regions.

The next two results are fundamental in the description of the phase
portrait of a flow associated to the planar vector field π(X ).
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Theorem 6. Suppose that the number of separatrices of the flow (D, φ) is
finite. Then every canonical region of the flow (D, φ) is parallel.

Theorem 7. Let (D, φ) and (D, ψ) be two compactified Poincaré flows with
finitely many separatrices generated by the solutions of two polynomial vec-
tor fields (3). Then they are topologically equivalent if and only if their
separatrix configurations are topologically equivalent.

The proof of the two results above can be found in [5]. From the previous
theorem it follows that to classify the phase portrait in the Poincaré disc of
a planar polynomial differential system having finitely many separatrices it
is enough to describe their separatrix configuration.

3. Darboux invariants

Proposition 1 provides the normal forms of all quadratic system with an
invariant non degenerate conic. So to prove Theorem 2 we must investigate
each system described in Proposition 1.

Proof of Theorem 2 for real or complex ellipses. Let fi = x2 + y2 + (−1)i,
i = 1, 2. It is easy to check that fi satisfy the equation

∂fi
∂x

ẋ+
∂fi
∂y

ẏ = fiK,

for K = ax+ by, where (ẋ, ẏ) are given by (E) if i = 1 and by (CE) if i = 2.
So f1 = 0 is an invariant real ellipse with cofactor K for system (E) and
f2 = 0 is an invariant complex ellipse with the same cofactor K for system
(CE).

As the equation λK + s = 0 has no solution for s 6= 0, it follows from
Proposition 4 that does not exist quadratic systems with invariant real or
complex ellipses having a Darboux invariant, constructed only using the
invariant ellipse. �

Proof of Theorem 2 for hyperbolas. Let f = x2 − y2 − 1. Because f satisfy
the equation

∂f

∂x
ẋ+

∂f

∂y
ẏ = fK,

forK = ax+by where (ẋ, ẏ) are given by (H), f = 0 is an invariant hyperbola
with cofactor K for systems of type (H) in Theorem 2.

Observe that λK + s = 0 has no solution if s 6= 0. So from Proposition 4
there are no quadratic systems with invariant hyperbolas having a Darboux
invariant, constructed only using the invariant hyperbola. �

Proof of Theorem 2 for parabolas. Consider f(x, y) = y − x2 and K(x, y) =
ax+ by + c, we assume c 6= 0 otherwise f is a polynomial first integral and
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the phase portrait of the system is easy to do. Then the following equation
is satisfied

∂f

∂x
ẋ+

∂f

∂y
ẏ = fK,

where (ẋ, ẏ) are given by (P). So f is an invariant parabola for system
(P) with cofactor K. Moreover the solution of equation λK + s = 0 has
an unique solution if s 6= 0, the solution is λ = −s/c, a = b = 0. So

I(x, y, t) = est(y − x2)−
s
c is Darboux invariant for system for every s, c ∈

R \ {0}, constructed only using the invariant parabola. Consequently, also
e−ct(y − x2) is a Darboux invariant. �

4. Phase portraits

In this section we prove Theorem 3.

Proof of Theorem 3. It follows from the proof of Theorem 2 that a quadratic
system having an invariant non–degenerate conic and a Darboux invariant
(constructed using only the invariant conic) has an invariant parabola and
its normal form is

(4) ẋ = p x+ q y + r, ẏ = c(y − x2) + 2x(p x+ q y + r).

In order to study the global phase portrait of those systems in the Poincaré
disc, first we study the local phase portrait of the finite and infinite singular
points according to the following cases.

Case 1: c = 0. Then system (4) after the change of independent variable
ds = (px + qy + r)dτ becomes the linear system x′ = 1, y′ = 2x where
the prime denotes the derivative with respect to s. The phase portrait of
the system x′ = 1, y′ = 2x is easy to do. Then adding the straight line of
singular points px+ qy+ r = 0 we get two non-equivalent phase portraits of
system (4) when c = 0, they are the phase portraits (1) and (2) of Figure 1.

From now on we assume c 6= 0. Note that if q 6= 0 then we can suppose
q > 0, otherwise we do the change of variables (x, y, t) → (x, y,−t).
Case 2: c 6= 0, q > 0. Denote by ∆ = p2 − 4pr and consider the points

(

−p±
√
∆

2q
,
−2qr + p(p±

√
∆)

2q2

)

.

If ∆ > 0 system (4) has two finite singular points and their eigenvalues are

c and −
√
∆ and, c and

√
∆, respectively. Thus, in this case system, (4) has

two hyperbolic finite singular points, a saddle and a node, which is stable if
c < 0 and unstable if c > 0, see for more details Theorem 2.15 of [4].

If ∆ = 0 system (4) admits a unique finite singular point (−p/(2q), r/q),
that is a saddle–node (see Theorem 2.19 of [4]). Finally, if ∆ = 0 the system
has no finite singular points.
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To study the singular points at infinity of a polynomial vector field via
the Poincaré compactification we need to study the singular points on v = 0
in the local chart U1 and the origin of the local chart U2, see subsection 2.3.

The Poincaré compactification π(X ) of (4) in the local chart U1 is given
by

u̇ = 2p− c+ 2qu+ 2rv + (c− p)uv − qu2v − ruv2,
v̇ = −pv2 − quv2 − rv3.

Then (u, v) = ((c − 2p)/2q, 0) is the unique infinite singular point in this
chart. As its eigenvalues are 0 and 2q, this point is a semi-hyperbolic singular
point. Re-writting the system, applying Theorem 2.19 of [4], and using the
notation of that theorem we have λ = 2, G(y) = −2cu2/q + ... and m = 2.
So the point ((c− 2p)/2q, 0) in the local chart U1 is a saddle-node, and the
line u = 0 separates the parabolic sector from the two hyperbolic sectors in
the Poincaré disc.

System (4) in the chart U2 is written as

(5)
u̇ = qv − 2qu2 + (p− c)uv + rv2 + (c− 2p)u3 − 2ru2v,
v̇ = −2quv − cv2 + (c− 2p)u2v − 2ruv2,

having the origin as a nilpotent equilibrium point because q > 0. Applying
Theorem 3.5 in [4] and using the notation introduced there we have F (u) =
−4u3 + ... and G(u) = −6u+ .... Thus, in this case m = −3, a = −4, n = 1
and b = −6, therefore b2+4a(n+1) = 4 and (0, 0) is a singular point with a
hyperbolic sector and an elliptic sector, as shown in Figure (k) of Theorem
3.5 of [4]. Now we need to decide the position of these sectors in the Poincaré
disc, for this we shall do some blow ups.

Doing the blow up (u, v) → (u,w), where u = u and w = v/u we get the
system

(6)
u̇ = −2qu2 + quw + (c− 2p)u3 + (p− c)u2w − 2ru3w + ru2w2,
ẇ = −qw2 + puw2 + ruw3,

which has (0, 0) as a linearly zero singular point. So applying a second blow
up (u,w) → (u,W ), where W = w/u we get a new system that, after the
rescaling of the time by ds = udt writes as
(7)
u′ = −2qu+ (c− 2p)u2 + quW + (p− c)u2W − 2ru3W + ru3W 2,

w′ = 2qW + (2p− c)uW − 2qW 2 + (c− 2p)uW 2 + 2ru2W 2 − 2ru2W 3,

where the prime denotes the derivative with respect to s. This system has
two singular points with u = 0. They are (u,W ) = (0, 0) and (u,W ) = (0, 1).
The eigenvalues of these singular points are−2q, 2q and−2q,−q respectively.
Thus the first point is a hyperbolic saddle and the second point is a stable
node because q > 0. From the blow down we get local behavior of the
solutions in a neighborhood of (0, 0) in the local chart U2 when q 6= 0. In
Figure 2 we describe step by step how we get the local phase portrait of the
origin in the local chart U2.
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(6)(6’)(7) (5)

WW
w v

uu
uu

Figure 2. Blow down of the origin in the local chart U2.

Finally we observe that each finite singular point, when they exist, is
located on the invariant parabola y − x2 = 0, so the system has no limit
cycles. Indeed, if a limit cycle exists there will be a singular point in the
bounded region limited by it, see for instance Theorem 1.31 of [4], but since
here all the finite singular points are in the parabola, limit cycles cannot
surround such equilibria. So in this case playing with the different values of
the parameters p, q, c and r there are three distinct phase portraits which
are topologically equivalent to the phase portraits (3), (4) and (5) of Figure
1.

Case 3: q = 0 and cpr(c− 2p) 6= 0. Then system (4) is

(8) ẋ = p x+ r, ẏ = c(y − x2) + 2x(p x+ r).

Then (−r/p, r2/p2) is the unique finite singular point of system (8) and its
eigenvalues are c and p. So if cp < 0 the finite singular point is a hyperbolic
saddle, and if cp > 0 it is a hyperbolic node (stable if c+p < 0 and unstable
if c+ p > 0), for more details see Theorem 2.15 of [4].

In the local chart U1 the compactified vector field π(X ) of (8) writes

(9)
u̇ = 2p− c+ 2rv + (c− p)uv − ruv2,
v̇ = −pv2 − rv3,

so this system has no infinite singular points on this local chart.

The compactified vector field π(X ) of (8) in the local chart U2 is given by

(10)
u̇ = (p− c)uv + rv2 + (c− 2p)u3 − 2ru2v,
v̇ = −cv2 + (c− 2p)u2v − 2ruv2,

so the origin is a linearly zero singular point. In order to identify the local
phase portrait of this degenerate point we apply the blow up (u, v) → (u,w),
where w = v/u and get the following system after the rescaling of the time
ds = udt

(11)
u′ = (c− 2p)u2 + (p− c)uw − 2ru2w + ruw2,
w′ = −pw2 + rw3,

that has two singular points when u = 0, the points (0, 0), a linearly zero
singular point and the point (0,−p/r) with eigenvalues cp/r and −p2/r. In
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this case, the point (0,−p/r) is a hyperbolic saddle point if cp > 0, and a
hyperbolic node (unstable if r < 0 and stable if r > 0), otherwise.

Now we apply a second blow up to study the origin. Taking (u,w) →
(u,W ), where W = w/u, we get the following system that after rescaling of
the time dτ = uds becomes

(12)
u′ = (c− 2p)u+ (c− p)uW + 2ru2W − ru2W 2,
W ′ = (2p− c)W − (2p− c)W 2 + 2ruW 2 − 2ruW 3,

where the prime denotes the derivative with respect to τ . This system
has two singular points on the line u = 0, they are (0, 0) and (0, 1). The
eigenvalues of these points are c− 2p,−(c− 2p) and c− 2p,−p, respectively.
So, the first point is a hyperbolic saddle and, the second is a hyperbolic
saddle, if (c−2p)p > 0 and a hyperbolic node, otherwise. By the blow down
we conclude that the local phase portrait of the origin of the local chart U2

is given in Figures 3 and 4 according to the given conditions.
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Figure 3. Blow down of the origin in the local chart U2, for
p < 0, r > 0, c > 0 and c− 2p < 0.

From the previous considerations and observing that the unique finite
singular point in this case belongs to the parabola y−x2 = 0 (so the system
does not admit limit cycles) we get that the global phase portrait in the
Poincaré disc of system (8) under the conditions q = 0 and cpr(c− 2p) 6= 0
are the phase portraits (6), (7) and (8) of Figure 1.
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Figure 4. Blow down of the origin in the local chart U2, for
p < 0, r > 0, c < 0 and c− 2p > 0.

Case 4: q = r = 0 and c(c − 2p) 6= 0. The study of this case is completely
similar to Case 3, obtaining the same phase portraits.

Case 5: q = 0, cp 6= 0 and c = 2p. In this case system (4) is given by
ẋ = r + px, ẏ = 2(r + py). Since this system is not quadratic we do not
consider this case.

Case 6: p = q = 0, cr 6= 0. In this case system (4) is written as ẋ = r,
ẏ = 2rx + cy − cx2. This is a regular system in the plane, without infinite
singular points in the local chart U1 and with a linearly zero point at the
origin of the local chart U2. The local phase portrait of this linearly zero
point can be studied as the origin of the local chart U2 in the Cases 3 and 4,
after two blow ups we get two singular points on the line u = 0, (0, 0) and
(0, 1). Their eigenvalues are −c, c and c, 0. So we have a hyperbolic saddle
and a semi-hyperbolic point. It is not difficult to verify that this point is a
saddle-node, because r 6= 0. By blow down we get the local phase portrait
at origin in this case, as shown in Figure 2. Finally, this system cannot
have limit cycles because there are no finite singular points. Therefore we
get that the global phase portrait in the Poincaré disc for system (4) under
the hypothesis p = q = 0, cr 6= 0, is topologically equivalent to the phase
portrait (9) of Figure 1.
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Case 7: q = p = r = 0 and c 6= 0. Under these conditions, system (4) is
given by ẋ = 0, ẏ = c(y − x2), which is topologically equivalent to system
ẋ = 0, ẏ = 1, except by the points in the parabola y − x2 = 0. In this
case the parabola is a curve covered by singular points. So the global phase
portrait is topologically equivalent to the phase portrait (10) of Figure 1.

Finally, since system (4) has the Darboux invariant I(x, y, t) = e−ct(y−x2)
all their orbits have ω– and α–limit sets contained in the boundary of the
Poincaré disc or to the equilibrium points contained in the parabola y−x2 =
0. �
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