## On the structure of the set of periodic points of a continuous map of the interval with finitely many periodic points

## By

## JAUME LLIBRE and AGUSTI REVENTÓS

1. Introduction. Let I denote a closed interval on the real line and let  $C^0(I, I)$  denote the space of continuous maps from I into itself. For  $f \in C^0(I, I)$  let P(f) denote the set of positive integers k such that f has a periodic point of period k (see section 2 for definitions).

From Šarkovskii's theorem we know: (i) if P(f) is finite then  $P(f) = \{1, 2, 4, ..., 2^n\}$  for some integer  $n \ge 0$  (see [3], [4] or [5]), (ii) if P is a periodic orbit of f of period  $2^m$ , then f has a periodic orbit of period  $2^k$ , which is contained in [min P, max P] for each k = 0, 1, ..., m - 1 (see [5]). In this paper we study the relation between these orbits.

Our main result is the following.

Theorem A. Let  $f \in C^0(I, I)$  and suppose  $P(f) = \{1, 2, 4, ..., 2^n\}$ . Then for any periodic orbit of period  $2^m$ , with  $m \le n$ , there exist m+1 periodic orbits of periods  $1, 2, 4, ..., 2^m$  such that the  $2^k$  periodic points of period  $2^k$  are separated by the  $1+2+4+\cdots+2^{k-1}=2^k-1$  fixed points of  $f^{2^{k-1}}$ , for any k=1,2,...,m (see Fig. 1 for m=3).

This theorem will be proved in section 3.



Figure 1.

Let  $f \in C^0(I, I)$  and suppose  $P(f) = \{1, 2, 4, ..., 2^n\}$ . If f has a unique periodic orbit of period  $2^k$  for any k = 0, 1, ..., n (for instance the map given by Block in [1]), then Theorem A give us the complete structure of the set of periodic points of f.

2. Preliminary definitions and results. Let  $f \in C^0(I, I)$ . For any positive integer n, we define  $f^n$  inductively by  $f^1 = f$  and  $f^n = f \circ f^{n-1}$ . We let  $f^0$  denote the identity map of I.

Let  $p \in I$ . We say p is a fixed point of f if f(p) = p. If p is a fixed point of  $f^n$ , for some  $n \in N$  (the set of positive integers), we say p is a periodic point of f. In this case, the smallest element of  $\{n \in N : f^n(p) = p\}$  is called the period of p.