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PERIODIC ORBITS AND NON-INTEGRABILITY OF
ARMBRUSTER-GUCKENHEIMER-KIM POTENTIAL

JAUME LLIBRE1 AND LUCI ROBERTO2

Abstract. In this paper we study the periodic orbits of the Hamiltonian system with the
Armburster-Guckenheimer-Kim potential and its non-integrability in the sense of Liouville–
Arnold.

1. Introduction and statement of the main results

The main goal of this work is to study the periodic orbits and the non-integrability of the
Hamiltonian system with the potential energy given by the Armburster-Guckenheimer-Kim po-
tential, (see [2]), which has often been used in the study of the dynamics of galaxies. We
investigate the periodic orbits using the averaging theory and the non-integrability is studied
through the existence of periodic orbits that do not have all their multipliers equal to 1.

This Hamiltonian consists of a two dimensional harmonic potential plus the following quartic
terms

(1)
1
2
(p2

x + p2
y + x2 + y2)− a

4
(x2 + y2)2 − b

2
x2y2.

The Hamiltonian system is given by

(2)

ẋ = px,
ṗx = −x + ax(x2 + y2) + bxy2,
ẏ = py,
ṗy = −y + ay(x2 + y2) + bx2y.

As usual the dot denotes derivative with respect to the independent variable t, the time. We
name (2) the Armburster-Guckenheimer-Kim Hamiltonian systems, or simply the AGK systems.

In this work we use the averaging method of first order to compute periodic orbits, see
appendix 4.2. This method allows to find analytically periodic orbits of the AGK systems (2)
at any positive values of the energy as a function of the parameters a and b. Roughly speaking
this method reduces the problem of finding periodic solutions of some differential system to the
one of finding zeros of some convenient finite dimensional function. This method was also used
by Llibre and Jiménez-Lara in [4, 5].

Our main result on the periodic orbits of the AGK system (2) is summarized as follows.

Theorem 1. At every positive energy level the Armbruster–Guckenheimer–Kim system (2) has
at least:

(a) two periodic orbits if either b = 2a 6= 0 or b = 0 and a 6= 0.
(b) or six periodic orbits if b(a + b)(2a− b) 6= 0.
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Theorem 1 states that at any positive energy level there exist periodic orbits and we can use
these particular periodic orbits to prove our second main result about the non–integrability in
the sense of Liouville–Arnold of the AGK system (2).

Theorem 2. Assume that the AGK Hamiltonian system (2) satisfies the assumptions of one
the statements of Theorem 1, and denote by (∗) this statement. Then under the assumption of
statement (∗)

(a) either the AGK Hamiltonian system is Liouville–Arnold integrable and the gradients of
the two constants of motion are linearly dependent on some points of the periodic orbits
found in statement (∗) of Theorem 1,

(b) or the AGK Hamiltonian system is not Liouville–Arnold integrable with any second first
integral of class C1.

The proof of Theorem 1 is based on the averaging theory for computing periodic orbits, see
the appendix 4.2. And the proof of Theorem 2 is based on the Poincaré’s Method that allows
to prove the non Liouville–Arnold integrability independently of the class of differentiability of
the second first integral, see appendix 4.1 for more details. The main difficulty for applying
Poincaré’s non-integrability method to a given Hamiltonian system is to find for such system
periodic orbits having multipliers different from 1. For applying the Poincaré non–integrability
theory to AGK–system, we need to study some of the periodic orbits of these system and to
computer their multipliers.

2. Proof of Theorem 1

To prove Theorem 1 we shall apply Theorem 5 to the Hamilonian system (2). The periodic
orbits of a Hamiltonian system of more than one degree of freedom are generically on cylinders
fulfilled of periodic orbits in the phase space (see [1]), then we will not be able to apply directly
Theorem 5 to a Hamiltonian system because then the corresponding averaged function f1 at the
equilibrium point a will be always zero. This problem will be solved by fixing an energy level
where the periodic orbits can be isolated.

To apply Theorem 5 we need a small parameter ε. In system (2) we consider the change of
variables (x, px, y, py) 7→ (X, pX , Y, pY ) = (x/

√
ε, px/

√
ε, y/

√
ε, py/

√
ε). In the new variables,

system (2) becomes

(3)

Ẋ = pX ,
ṗX = −X + ε(aX3 + (a + b)XY 2),
Ẏ = pY ,
ṗY = −Y + ε((a + b)X2Y + aY 3).

This system again is Hamiltonian with the Hamiltonian

(4)
1
2
(P 2 + Q2 + X2 + Y 2)− ε

a

4

(
X2 + Y 2

)2 − ε2 b

2
X2Y 2.

As the change of variables is only a scale transformation, for all ε different from zero, the
original and the transformed systems (2) and (3) have essentially the same phase portrait, and
additionally system (3) for ε sufficiently small is close to an integrable one.

Notice that system (3) is not in the normal form for applying the averaging theory, see the
differential equation (18). We consider the change of variables

X = r cos θ, pX = r sin θ, Y = ρ cos(θ + α), pY = ρ sin(θ + α).
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Recall that this is a change of variables when r > 0 and ρ > 0. Moreover doing this change of
variables appear in the system the periodic variables θ and α. Later on the variable θ will be
used for obtaining the periodicity necessary for applying the averaging theory.

The energy or Hamiltonian in these news variables becomes

(5) H =
1
2
(r2 + ρ2)− 1

4
εa(r2 cos2 θ + ρ2 cos2(θ + α))2 − 1

2
ε2br2ρ2 cos2 θ cos2(θ + α)

and the equations of motion are given by

(6)

ṙ = εr sin θ cos θ
(
ar2 cos2 θ + (a + b)ρ2 cos2(θ + α)

)
,

θ̇ = −1 + ε(ar2 cos4 θ + (a + b)ρ2 cos2 θ cos2(θ + α)),
ρ̇ = ερ sin(θ + α) cos(θ + α)

(
(a + b)r2 cos2 θ + aρ2 cos2(θ + α)

)
,

α̇ = ε(−ar2 cos4 θ + (a + b)
(
r2 − ρ2) cos2 θ cos2(θ + α) + aρ2 cos4(θ + α)

)
.

However the derivatives of the left hand side of these equations are with respect to the time
variable t, which is not periodic. We change to the θ variable as the independent one, and we
denote by a prime the derivative with respect to θ. Then system (6) goes over to

r′ =
εr sin θ cos θ(ar2 cos2 θ + (a + b)ρ2 cos2(θ + α))
−1 + ar2ε cos4 θ + (a + b)ερ2 cos2 θ cos2(θ + α)

,

ρ′ =
ερ sin(θ + α) cos(θ + α)

(
(a + b)r2 cos2 θ + aρ2 cos2(θ + α)

)

−1 + ar2ε cos4 θ + (a + b)ερ2 cos2 θ cos2(θ + α)
,

α′ =
ε(−ar2 cos4 θ + (a + b)(r2 − ρ2) cos2 θ cos2(θ + α) + aρ2 cos4(θ + α))

−1 + ar2ε cos4 θ + (a + b)ερ2 cos2 θ cos2(θ + α)
.

Of course this system has now only three equations because we do not need the θ equation. If
we write the previous system as a Taylor series in powers of ε, we have

(7)
r′ = −εr sin θ cos θ(ar2 cos2 θ + (a + b)ρ2 cos2(θ + α)) + O(ε2),
ρ′ = −ερ sin(θ + α) cos(θ + α)((a + b)r2 cos2 θ + aρ2 cos2(θ + α)) + O(ε2),
α′ = ε

(
ar2 cos4 θ − (a + b)(r2 − ρ2) cos2 θ cos2(θ + α)− aρ2 cos4(θ + α)

)
+ O(ε2).

Now system (7) is 2π-periodic in the variable θ. We shall apply Theorem 5 in the Hamiltonian
level H = h for h > 0, and by solving equation H = h for ρ we obtain

(8) ρ =

√
−sec4(α + θ)A + εr2 cos2 θ(a + bε) sec2(α + θ)

aε
,

where
A = −1 +

√
1 + ε cos4(α + θ) (ε2b(2a + bε)r4 cos4 θ + 2a (r2 − 2h))− 2εr2 cos2 θ(a + bε) cos2(α + θ).

Then substituting ρ in equations (7) and developing in power series of ε, we obtain the two
differential equations

(9)

r′ = εr sin θ cos θ
(
(a + b)

(
r2 − 2h

)
cos2(α + θ)− ar2 cos2 θ

)
+ O(ε2),

α′ = ε
(
2(a + b)

(
h− r2

)
cos2 θ cos2(α + θ)+

a
(
r2 − 2h

)
cos4(α + θ) + ar2 cos4 θ

)
+ O(ε2).

Clearly system (9) satisfies the assumptions of Theorem 5 and it has the form (18) with
F1 = (F11, F12), given by

F11 = r sin θ cos θ
(
(a + b)

(
r2 − 2h

)
cos2(α + θ)− ar2 cos2 θ

)
,

F12 = 2(a + b)
(
h− r2

)
cos2 θ cos2(α + θ) + a

(
r2 − 2h

)
cos4(α + θ) + ar2 cos4 θ.
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Notice that F1 is 2π-periodic in the variable θ, the independent variable of system (9). Aver-
aging the function F1 with respect to the variable θ we have

f1(r, α) = (f11(r, α), f12(r, α)) =
1
2π

∫ 2π

0
(F11, F12) dθ,

where

f11(r, α) = −1
8
r(a + b)

(
r2 − 2h

)
sin(2α),

and

f12(r, α) =
1
4

(
h− r2

) (
(a + b) cos(2α)− a + 2b

)
.

We must find the zeros (r∗, α∗) of f1(r, α), and check that the Jacobian at these points is not
zero, i.e.

(10) det

(
∂(f11, f12)

∂(r, α)

∣∣∣∣
(r,α)=(r∗,α∗)

)
6= 0.

From f11(r, α) = 0 we obtain that either r = 0 or, r = ±√2h or α = 0, π/2,−π/2, π.
The solutions r = 0 and r = −√2h are not good, because r > 0. So, the good solutions of
f11(r, α) = 0 are r =

√
2h and α = 0, π/2,−π/2, π. Now we look for the solutions of f12(r, α) = 0.

We obtain nine possible solutions (r∗, α∗) with r∗ > 0:
(11)

s1 = (
√

h, 0), s2 = (
√

h, π), s3 = (
√

h, π/2), s4 = (
√

h, 3π/2), s5 = (
√

2h, 0), s6 = (
√

2h, π)

s7 = (
√

2h, π/2), s8 = (
√

2h,
1
2

arccos
(

a−2b
a+b

)
), s9 = (

√
2h, 2π − 1

2
arccos

(
a−2b
a+b

)
),

with corresponding values of ρ given by (8) tending to
√

h for the solutions s1, s2, s3, s4 when
ε → 0 and tending to 0 for the solutions s5, s6, s7, s8, s9 when ε → 0. Of course in (11) for the
solutions s8 and s9 we assume that −1 ≤ (a− 2b)/(a + b) ≤ 1.

Finally we calculate the Jacobian (10), i.e.

(12)

∣∣∣∣∣∣∣

1
4
(a + b)π

(
2h− 3r2

)
sin(2α) −1

2
(a + b)πr

(
r2 − 2h

)
cos(2α)

−πr(−a + 2b + (a + b) cos(2α)) (−a− b)π
(
h− r2

)
sin(2α)

∣∣∣∣∣∣∣
at the nine solutions s1, . . . , s9. Then we obtain the Jacobian

(13)
3
8
h2b(a + b)

at the solutions s1 and s2, the Jacobian

(14)
1
8
h2(2a− b)(a + b)

at the solutions s3 and s4, the Jacobian 0 at the solutions s5, s6 and s7, and the Jacobian

(15)
3
4
h2b(b− 2a)

at the solutions s8 and s9.
Notice that the above Jacobian at the solutions s5, s6 and s7 are zero, then we cannot use

Theorem 5 for these solutions. However we have that for h 6= 0 the Jacobian is non-zero at s1

and s2 when
b(a + b) 6= 0,
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the Jacobian is non-zero at s3 and s4 when

(2a− b)(a + b) 6= 0

and the Jacobian is non-zero at s8 and s9 when

b(b− 2a) 6= 0.

Summarizing, from Theorem 5, the solutions s1 and s2 of f(r∗, α∗) = 0 provide two periodic
solutions of system (9) (and consequently of the Hamiltonian system (3) on the level h > 0) if
b 6= 0 and b = 2a. Similarly, the solutions s3 and s4 provide two periodic solutions of system (9)
if a 6= 0 and b = 0. And, if b(a + b)(2a − b) 6= 0 the solutions si for i = 1, 2, 3, 4, 8, 9 of f1 = 0
provide at least six periodic solutions for the Hamiltonian system (3). This completes the proof
of Theorem 1.

Note that if a+b = 0, then we do not have any periodic solution given by si for i = 1, 2, 3, 4, 8, 9
because either their Jacobian is zero (for i = 1, 2, 3, 4) or they are not defined (for i = 8, 9, see
(11)).

3. Proof of Theorem 2

We assume that we are under the assumptions of Theorem 1, and that one of the six founded
periodic solutions corresponding to the solutions s1, s2, s3, s4, s8 and s9 exist, and that their
associated Jacobians (13), (14) and (15) are non-zero. So the correponding multipliers are not
all equal to 1. Hence under the assumptions of Theorem 1, by Theorem 4, either the AGK–
systems cannot be Liouville–Arnold integrable with any second first integral G or these systems
are Liouville-Arnold integrable and the vector gradient of H and G are linearly dependent on
some points of these periodic orbits. Therefore Theorem 2 is proved.

4. Appendix

4.1. Periodic orbits and the Liouville–Arnold integrability. We shall summarize some
facts on the Liouville–Arnold integrability of the Hamiltonian systems, and on the theory of the
periodic orbits of the differential equations, for more details see [1, 3] and the subsection 7.1.2
of [3], respectively. We present these results for Hamiltonian systems of two degrees of freedom,
because we are studying a Hamiltonian system with two degrees of freedom associated to the
motion of generalized Henon–Heiles systems, but these results work for an arbitrary number of
degrees of freedom.

We recall that a Hamiltonian system with Hamiltonian H of two degrees of freedom is inte-
grable in the sense of Liouville–Arnold if it has a first integral G independent with H (i.e. the
gradient vectors of H and G are independent in all the points of the phase space except perhaps
in a set of zero Lebesgue measure), and in involution with H (i.e. the parenthesis of Poisson of
H and G is zero). For Hamiltonian systems with two degrees of freedom the involution condition
is redundant, because the fact that G is a first integral of the Hamiltonian system, implies that
the mentioned Poisson parenthesis is always zero. A flow defined on a subspace of the phase
space is complete if its solutions are defined for all time.

Now we shall state the Liouville–Arnold Theorem restricted to Hamiltonian systems of two
degrees of freedom.

Theorem 3. Suppose that a Hamiltonian system with two degrees of freedom defined on the
phase space M has its Hamiltonian H and the function G as two independent first integrals in
involution. If Ihc = {p ∈ M : H(p) = h and C(p) = c} 6= ∅ and (h, c) is a regular value of the
map (H, G), then the following statements hold.
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(a) Ihc is a two dimensional submanifold of M invariant under the flow of the Hamiltonian
system.

(b) If the flow on a connected component I∗hc of Ihc is complete, then I∗hc is diffeomorphic
either to the torus S1×S1, or to the cylinder S1×R, or to the plane R2. If I∗hc is compact,
then the flow on it is always complete and I∗hc ≈ S1 × S1.

(c) Under the hypothesis (b) the flow on I∗hc is conjugated to a linear flow on S1 × S1, on
S1 × R, or on R2.

The main result of this theorem is that the connected components of the invariant sets as-
sociated with the two independent first integrals in involution are generically submanifolds of
the phase space, and if the flow on them is complete then they are diffeomorphic to a torus, a
cylinder or a plane, where the flow is conjugated to a linear one.

Using the notation of Theorem 3 when a connected component I∗hc is diffeomorphic to a
torus, either all orbits on this torus are periodic if the rotation number associated to this torus
is rational, or they are quasi-periodic (i.e. every orbit is dense in the torus) if the rotation
number associated to this torus is not rational.

We consider the autonomous differential system

(16) ẋ = f(x),

where f : U → Rn is C2, U is an open subset of Rn and the dot denotes the derivative respect
to the time t. We write its general solution as φ(t, x0) with φ(0, x0) = x0 ∈ U and t belonging
to its maximal interval of definition.

We say that φ(t, x0) is T -periodic with T > 0 if and only if φ(T, x0) = x0 and φ(t, x0) 6= x0

for t ∈ (0, T ). The periodic orbit associated to the periodic solution φ(t, x0) is γ = {φ(t, x0), t ∈
[0, T ]}. The variational equation associated to the T -periodic solution φ(t, x0) is

(17) Ṁ =
(

∂f(x)
∂x

∣∣∣
x=φ(t,x0)

)
M,

where M is an n × n matrix. The monodromy matrix associated to the T -periodic solution
φ(t, x0) is the solution M(T, x0) of (17) satisfying that M(0, x0) is the identity matrix. The
eigenvalues λ of the monodromy matrix associated to the periodic solution φ(t, x0) are called
the multipliers of the periodic orbit.

For an autonomous differential system, one of the multipliers is always 1, and its corresponding
eigenvector is tangent to the periodic orbit.

A periodic solution of an autonomous Hamiltonian system always has two multipliers equal
to one. One multiplier is 1 because the Hamiltonian system is autonomous, and another is 1
due to the existence of the first integral given by the Hamiltonian.

Theorem 4. If a Hamiltonian system with two degrees of freedom and Hamiltonian H is
Liouville–Arnold integrable, and G is a second first integral such that the gradients of H and G
are linearly independent at each point of a periodic orbit of the system, then all the multipliers
of this periodic orbit are equal to 1.

Theorem 4 is due to Poincaré [6]. It gives us a tool to study the non Liouville–Arnold
integrability, independently of the class of differentiability of the second first integral. The main
problem for applying this theorem is to find periodic orbits having multipliers different from 1.
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4.2. Averaging Theory of First Order. Now we shall present the basic results from averaging
theory that we need for proving the results of this paper.

The next theorem provides a first order approximation for the periodic solutions of a periodic
differential system, for the proof see Theorems 11.5 and 11.6 of Verhulst [7].

Consider the differential equation

(18) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0

with x ∈ D ⊂ Rn, t ≥ 0. Moreover we assume that both F1(t,x) and F2(t,x, ε) are T−periodic
in t. Separately we consider in D the averaged differential equation

(19) ẏ = εf1(y), y(0) = x0,

where

f1(y) =
1
T

∫ T

0
F1(t,y)dt.

Under certain conditions, equilibrium solutions of the averaged equation turn out to correspond
with T−periodic solutions of equation (18).

Theorem 5. Consider the two initial value problems (18) and (19). Suppose:
(i) F1, its Jacobian ∂F1/∂x, its Hessian ∂2F1/∂x2, F2 and its Jacobian ∂F2/∂x are defined,

continuous and bounded by a constant independent of ε in [0,∞)×D and ε ∈ (0, ε0].
(ii) F1 and F2 are T−periodic in t (T independent of ε).
(iii) y(t) belongs to Ω on the interval of time [0, 1/ε].

Then the following statements hold.
(a) For t ∈ [1, ε] we have that x(t)− y(t) = O(ε), as ε → 0.
(b) If p is a singular point of the averaged equation (19) and

det
(

∂f1

∂y

)∣∣∣∣
y=p

6= 0,

then there exists a T−periodic solution ϕ(t, ε) of equation (18) which is close to p such
that ϕ(0, ε) → p as ε → 0.

(c) The stability or instability of the limit cycle ϕ(t, ε) is given by the stability or instability
of the singular point p of the averaged system (19). In fact, the singular point p has the
stability behavior of the Poincaré map associated to the limit cycle ϕ(t, ε).

In the follow we use the idea of the proof of Theorem 5(c). For more details see the section
6.3 and 11.8 of [7]. Suppose that ϕ(t, ε) is a periodic solution of (18) corresponding to y = p a
singular point of the averaged equation (19). We linearise equation (18) in a neighbourhood of
the periodic solution ϕ(t, ε) and obtain a linear equation with T−periodic coefficients

(20) ẋ = εA(T, ε)x,

with A(t, ε) =
∂

∂x
[F1(t, x) + εF2(t, x, ε)]x=ϕ(t,ε) .

We introduce the T−periodic matrix

B(t) =
∂F1

∂x
(t, p).

From Theorem 5 we have limε→0 A(t, ε) = B(t). We shall use the matrices

B1 =
1
T

∫ T

0
B(t)dt
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and
C(t) =

∫ t

0
[B(s)−B1] ds.

Note that B1 is the matrix of the linearized averaged equation. The matrix C(t) is T–periodic
and it has average zero. The near-identity transformation

(21) x 7→ y = (I − εC(t))x

writes equation (20) as

(22) ẏ = εB1y + ε(A(t, ε)−B(t))y + O(ε2).

We note that A(t, ε)−B(t) → 0 as ε → 0, and also that the characteristic exponents of equation
(22) depend continuously on the small parameter ε. It follows that, for ε sufficiently small, if
the determinant of B1 is not zero, then 0 is not an eigenvalue of the matrix B1 and then it is not
a characteristic exponent of (22). By the near-identity transformation we obtain that system
(20) has not multipliers equal to 1.
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