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a b s t r a c t

In this paperwe study the periodic orbits of the third-order differential equation x′′′
−µx′′

+

x′
− µx = εF(x, x′, x′′), where ε is a small parameter and the function F is of class C2.
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1. Introduction and statement of the main results

In the qualitative theory of differential equations one of themain problems is the study of their periodic orbits, existence,
number and stability. A limit cycle of a differential equation is a periodic orbit isolated in the set of all periodic orbits of the
differential equation.

In this paper we deal with the third-order differential equation

x′′′
− µx′′

+ x′
− µx = εF(x, x′, x′′). (1)

Here the variables x and t , and the parameters µ and ε are real; moreover ε is a small real parameter and the function
F : Ω → R is of class C2. Here Ω is an open subset of R3. The prime denotes the derivative with respect to an independent
variable t . The objective is to study the periodic solutions of this differential equation.

There are many papers studying the periodic orbits of third-order differential equations. In particular, our class of
equations (1) is not far from the ones studied in [1–5]. But our main tool for studying the periodic orbits of Eq. (1) is
completely different to the tools of thementioned papers. We shall use the averaging theory, more precisely Theorems 3 and
4 of the Appendix. Many of the papers dealing with the periodic orbits of third-order differential equations use Schauder’s
or Leray–Schauder’s fixed point theorem, see for instance [6,7], or the nonlocal reductionmethod see [8], and others [9]. The
non-autonomous case of the differential equation (1) was studied in [10] with µ ≠ 0. As in [10], our main tool for studying
the periodic orbits of Eq. (1), was the averaging theory. But in [10] they only need to use Theorem 3, and here we shall use
Theorem 3 when µ ≠ 0 and Theorem 4 when µ = 0.

We recall that a simple zero r∗

0 of a function F (r0) is defined by F (r∗

0 ) = 0 and (dF (r∗

0 )/dr0) ≠ 0.
The main results on the periodic solutions of the third-order differential equation (1) are the following two theorems.
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