Applied Mathematics Letters 26 (2013) 425-430

Contents lists available at SciVerse ScienceDirect

## **Applied Mathematics Letters**

journal homepage: www.elsevier.com/locate/aml

# On the periodic orbits of the third-order differential equation $x''' - \mu x'' + x' - \mu x = \varepsilon F(x, x', x'')$

### Jaume Llibre<sup>a,\*</sup>, Luci Roberto<sup>b</sup>

<sup>a</sup> Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain <sup>b</sup> Departamento de Matemática, Universidade Estadual Júlio de Mesquita, 15054-000 São José do Rio Preto, Brazil

#### A R T I C L E I N F O

*Article history:* Received 16 July 2012 Accepted 25 October 2012

*Keywords:* Periodic solution Averaging method Third-order differential equation

#### ABSTRACT

In this paper we study the periodic orbits of the third-order differential equation  $x''' - \mu x'' + x' - \mu x = \varepsilon F(x, x', x'')$ , where  $\varepsilon$  is a small parameter and the function F is of class  $C^2$ . © 2012 Elsevier Ltd. All rights reserved.

Applied Mathematics

(1)

Letters

#### 1. Introduction and statement of the main results

In the qualitative theory of differential equations one of the main problems is the study of their periodic orbits, existence, number and stability. A *limit cycle* of a differential equation is a periodic orbit isolated in the set of all periodic orbits of the differential equation.

In this paper we deal with the third-order differential equation

$$x''' - \mu x'' + x' - \mu x = \varepsilon F(x, x', x'').$$

Here the variables *x* and *t*, and the parameters  $\mu$  and  $\varepsilon$  are real; moreover  $\varepsilon$  is a small real parameter and the function  $F : \Omega \to \mathbb{R}$  is of class  $C^2$ . Here  $\Omega$  is an open subset of  $\mathbb{R}^3$ . The prime denotes the derivative with respect to an independent variable *t*. The objective is to study the periodic solutions of this differential equation.

There are many papers studying the periodic orbits of third-order differential equations. In particular, our class of equations (1) is not far from the ones studied in [1–5]. But our main tool for studying the periodic orbits of Eq. (1) is completely different to the tools of the mentioned papers. We shall use the *averaging theory*, more precisely Theorems 3 and 4 of the Appendix. Many of the papers dealing with the periodic orbits of third-order differential equations use Schauder's or Leray–Schauder's fixed point theorem, see for instance [6,7], or the nonlocal reduction method see [8], and others [9]. The non-autonomous case of the differential equation (1) was studied in [10] with  $\mu \neq 0$ . As in [10], our main tool for studying the periodic orbits of Eq. (1), was the averaging theory. But in [10] they only need to use Theorem 3, and here we shall use Theorem 3 when  $\mu \neq 0$  and Theorem 4 when  $\mu = 0$ .

We recall that a *simple zero*  $r_0^*$  of a function  $\mathcal{F}(r_0)$  is defined by  $\mathcal{F}(r_0^*) = 0$  and  $(d\mathcal{F}(r_0^*)/dr_0) \neq 0$ .

The main results on the periodic solutions of the third-order differential equation (1) are the following two theorems.

\* Corresponding author.



E-mail addresses: jllibre@mat.uab.cat (J. Llibre), lroberto@ibilce.unesp.br (L. Roberto).

<sup>0893-9659/\$ –</sup> see front matter 0 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2012.10.017