

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On the dynamics of a class of Kolmogorov systems

Jaume Llibre a,*, Tayeb Salhi b

ARTICLE INFO

Keywords: Kolmogorov systems Lotka-Volterra systems Periodic orbits Integrability

ABSTRACT

We characterize the integrability and the non-existence of periodic orbits for the 2-dimensional Kolmogorov systems of the form

$$\dot{x} = x(P_n(x, y) + R_m(x, y)),$$

 $\dot{y} = y(Q_n(x, y) + R_m(x, y)),$

where n and m are positive integers and P_n, Q_n and R_m are homogeneous polynomials of degree n, n and m, respectively.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main results

The so called Kolmogorov systems are differential equations of the form

$$\dot{x}_i = x_i f_i(x_1, \dots, x_n)$$
 for $i = 1, \dots, n$.

These systems appear in applications that the per unit of change \dot{x}_i/x_i of the dependent variables $x_i=x_i(t)$ are given functions $f_i(x_1,\ldots,x_n)$ of these variables at any time. These systems are also called *Lotka–Volterra systems* because were started to be studied by them in [19] and in [23], respectively. Later on Kolmogorov came, giving some generalizations in [14] and then some authors denote them by Kolmogorov systems.

There are many natural phenomena which can be modeled by the Kolmogorov systems such as mathematical ecology and population dynamics [21], chemical reactions, plasma physics [15], hydrodynamics [3], economics, etc.

Starting with Volterra, mathematicians have been interested in Kolmogorov systems particularly in

- their integrability, i.e. when such differential systems have first integrals (see for instance [1,2,4-8,17,18,22]),or
- in their periodic orbits (see for example [9-11,13,16,20,24-26]).

See also the references quoted in those articles.

In this paper we are interested in studying the integrability and the periodic orbits of the 2-dimensional Kolmogorov systems of the form

$$\dot{x} = x(P_n(x, y) + R_m(x, y)),
\dot{y} = y(Q_n(x, y) + R_m(x, y)),$$
(1)

where n and m are positive integers and P_n , Q_n and R_m are homogeneous polynomials of degree n, n and m, respectively.

E-mail addresses: jllibre@mat.uab.cat (J. Llibre), salhi3tayeb@yahoo.fr (T. Salhi).

^a Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

^b Département de Mathématiques, Université de Bordj Bou Arréridj, Bordj Bou Arréridj 34265, El Anasser, Algeria

^{*} Corresponding author.