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Abstract. In this paper we study the existence and non–existence
of limit cycles for the class of polynomial differential systems of the
form

ẋ = λx+ Pn(x, y), ẏ = µy +Qn(x, y),

where Pn and Qn are homogeneous polynomials of degree n.

1. Introduction and statement of the main results

A polynomial differential system in R2 is a differential system of the
form

(1)
dx

dt
= ẋ = P (x, y),

dy

dt
= ẏ = Q(x, y),

where P (x, y) and Q(x, y) are polynomials in the variables x and y
with real coefficients. Then m = max{degP, degQ} is the degree of
the polynomial system.

As usual a limit cycle of a system (1) is an isolated periodic solution
in the set of all periodic solutions of system (1). Limit cycles of planar
differential systems were defined by Poincaré [21] and started to be
studied intensively at the end of the 1920s by van der Pol [22], Liénard
[12] and Andronov [1].

In the qualitative theory of the polynomial differential equations in
the plane R2 one of the more difficult problems is the study of their limit
cycles. Thus the second part of the unsolved 16–th Hilbert problem
[13] asked for an upper bound on the maximum number of limit cycles
for the polynomial differential systems of a given degree in function of
this degree, see for more details the surveys [14] and [11].
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In this paper for the class of polynomial differential systems in R2 of
the form

(2) ẋ = P1(x, y) + Pn(x, y), ẏ = Q1(x, y) +Qn(x, y),

where n > 1, and Pk(x, y) and Qk(x, y) are homogeneous polynomials
of degree k, we want to study the existence and non–existence of limit
cycles.

For the polynomial differential systems (2) having a linear focus at
the origin of coordinates of the form

ẋ = λx− y + Pn(x, y), ẏ = x+ λy +Qn(x, y),

their limit cycles have been studied intensively, see for instance [3, 4,
5, 6, 8, 9, 10, 15, 17, 18, 20]. But there are very few results on the
limit cycles of the polynomial differential systems having a linear node
at the origin of coordinates of the form

(3) ẋ = λx+ Pn(x, y), ẏ = µy +Qn(x, y),

with λµ > 0.

Recently in [2] the polynomial differential systems (3) with λ = µ
and n > 1 have been analyzed, proving that if n is odd such systems
have at most one limit cycle, and if n is even then they have no limit
cycles. On the other hand, in Proposition 6.3 and Remark 6.4 of the
paper [7] are examples of systems (3) having two, one or zero limit
cycles surrounding the origin. Finally, when λ 6= µ and λµ > 0 in [16]
the authors provide sufficient conditions for the non–existence of limit
cycles, or for the existence of one or two limit cycles.

Using polar coordinate x = r cos(θ) and y = sin θ system (3) becomes

(4) ṙ = f0(θ)r + f(θ)rn, θ̇ = g0(θ) + g(θ)rn−1,

and in the region R = {(r, θ) : g0(θ) + g(θ)rn−1 > 0} it can be studied
using the differential equation

(5)
dr

dθ
=

f0(θ)r + f(θ)rn

g0(θ) + g(θ)rn−1
,



LIMIT CYCLES OF A CLASS OF POLYNOMIAL DIFFERENTIAL SYSTEMS 3

where

f0(θ) = λ cos2 θ + µ sin2 θ,

g0(θ) = (µ− λ) cos θ sin θ,

f(θ) = cos θPn(cos θ, sin θ) + sin θQn(cos θ, sin θ),

g(θ) = cos θQn(cos θ, sin θ)− sin θPn(cos θ, sin θ),

Pn(x, y) =
i=n∑
i=0

a(n−i)ix
n−iyi,

Qn(x, y) =
i=n∑
i=0

b(n−i)ix
n−iyi.

Theorem 1. The polynomial differential system (3) with n ≥ 2 has
no limit cycles surrounding the origin in the region R if one of the
following conditions holds.

(a) f = 0.
(b) g = 0.
(c) a0n = 0.
(d) bn0 = 0.
(e) g = g0f/f0.
(f) (nfg + (2− n)f0g)2 − 4fgf0g0 ≤ 0.
(g) ((2n− 1)fg0 − (2n− 3)f0g)2 − 4f0g0fg ≤ 0.

The polynomial differential system (3) has at most one limit cycle sur-
rounding the origin if the following condition holds

(h) ((2n− 1)f0g − (2n− 3)fg0)
2 − 4f0g0fg ≤ 0.

Theorem 1 is proved in the next section.

2. Proofs

For proving Theorem 1 we need the following two lemmas due to
Lloyd [19].

Lemma 2. We have in a simply connected open set V containing the
origin the differential system in polar coordinates

(6) ṙ = S1(r, θ), θ̇ = S2(r, θ),

where S1 and S2 are C1 2π-periodic functions such that S1(0, θ) = 0 for
all θ, and S2(r, θ) > 0 in V . The differential system (6) is equivalent
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to the differential equation

(7)
dr

dθ
=
S1(r, θ)

S2(r, θ)
= S(r, θ).

Therefore, if

(8)
∂S

∂r
≡ 0,

∂S

∂r
6 0, or

∂S

∂r
> 0

in V , then the differential system (6) has no limit cycles in V .

Lemma 3. Consider the differential system (6) defined in an annular
region A that encircles the origin and where S2(r, θ) > 0. Then in A,
the differential system (6) is equivalent to the differential equation (7).
If (8) hold in A, then the differential system 6 has at most one limit
cycle in A.

Proof statement (a) of Theorem 1. If f = 0 equation (5) becomes

dr

dθ
=

f0(θ)r

g0(θ) + g(θ)rn−1
.

Since λ > and µ > 0 this last equation does not change sign in the
region C. The solution r(θ) of this equation increases or decreases, so
these solutions cannot be periodic in the region R, and consequently
the polynomial differential system (3) has no limit cycles In R. �

Proof statement (b) of Theorem 1. Since g = 0 the differential equa-
tion (4) becomes

ṙ = f0(θ)r + f(θ)rn, θ̇ = g0(θ).

The straight lines θ = 0 and θ = π/2 are invariant for system (3).
So this system cannot have limit cycles surrounding the origin. This
completes the proof of this statement. �

Proof statement (c) of Theorem 1. Since a0n = 0 the differential sys-
tem (3) has the straight line x = 0 invariant, consequently this system
has no limit cycles surrounding the origin. �

The same argument used in the proof of statement (c) proves state-
ment (d).

Proof statement (e) of Theorem 1. Since g = fg0/f0 system (4) be-
comes

ṙ = f0(θ)r + f(θ)rn, θ̇ = g0(θ)(1 +
f(θ)

f0(θ)
)rn−1.
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So the proof ends following the same argument used in the proof of
statement (b). �

Proof statement (f) of Theorem 1. Let

S(r, θ) =
f0r + frn

g0 + grn−1
,

defined in the simply connected region R. The derivative of S with
respect to r is

∂S

∂r
=
f0g0 + (nfg0 + (2− n)f0g)rn−1 + fgr2n−2

(g0 + grn−1)2
.

Since (nfg+(2−n)f0g)2−4fgf0g0 ≤ 0 the numerator of ∂S/∂r does not
change of sign, and we can apply Lemma 2 to the differential equation
(5), and the proof of this statement follows. �

Proof statement (g) of Theorem 1. Doing the change of variables R =√
r in the region C, the differential equation (5) becomes

(9)
dR

dθ
=

f0R + fR2n−1

2(g0 + gR2n−2)
= S(R, θ).

The derivative of S with respect to R is

∂S

∂R
=
f0g0 + ((2n− 1)fg0 − (2n− 3)f0g)R2n−2 + fgR4n−4

2(g0 + gR2n−2)2
.

Since ((2n − 1)fg0 − (2n − 3)f0g)2 − 4f0g0fg ≤ 0 the numerator of
∂S/∂R does not change of sign,, and again we can apply Lemma 2 to
the differential equation (9), and statement (g) is proved. �

Proof statement (h) of Theorem 1. Doing the change of variables R =
1/
√
r in the region R the differential equation (5) becomes

(10)
dR

dθ
=
R(f0R

2n−2 + f)

2(g0R2n−2 + g)
= S(R, θ).

So the derivative of S with respect to R is

∂S

∂R
= −fg + ((2n− 1)f0g − (2n− 3)fg0)R

2n−2 + f0g0R
4n−4

2(g0R2n−2 + g)2
.

The image of the region R under the map r → 1/
√
r is an annular

region A, one of the boundaries of this annulus is the infinity. Since
((2n − 1)f0g − (2n − 3)fg0)

2 − 4f0g0fg ≤ 0 the numerator of ∂S/∂R
does not change of sign, we can apply Lemma 3 in the annular region
A to the differential equation (10), and this completes the proof of this
statement. �
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In short Theorem 1 is proved.
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