ON THE LIMIT CYCLES SURROUNDING A DIAGONALIZABLE LINEAR NODE WITH HOMOGENEOUS NONLINEARITIES

JAUME LLIBRE¹ AND TAYEB SALHI²

ABSTRACT. In this paper we study the existence and non–existence of limit cycles for the class of polynomial differential systems of the form

 $\dot{x} = \lambda x + P_n(x, y),$ $\dot{y} = \mu y + Q_n(x, y),$ where P_n and Q_n are homogeneous polynomials of degree n.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

A polynomial differential system in \mathbb{R}^2 is a differential system of the form

(1)
$$\frac{dx}{dt} = \dot{x} = P(x, y), \qquad \frac{dy}{dt} = \dot{y} = Q(x, y),$$

where P(x, y) and Q(x, y) are polynomials in the variables x and y with real coefficients. Then $m = \max\{\deg P, \deg Q\}$ is the *degree* of the polynomial system.

As usual a *limit cycle* of a system (1) is an isolated periodic solution in the set of all periodic solutions of system (1). Limit cycles of planar differential systems were defined by Poincaré [21] and started to be studied intensively at the end of the 1920s by van der Pol [22], Liénard [12] and Andronov [1].

In the qualitative theory of the polynomial differential equations in the plane \mathbb{R}^2 one of the more difficult problems is the study of their limit cycles. Thus the second part of the unsolved 16-th Hilbert problem [13] asked for an upper bound on the maximum number of limit cycles for the polynomial differential systems of a given degree in function of this degree, see for more details the surveys [14] and [11].

²⁰¹⁰ Mathematics Subject Classification. Primary 34C05, 34A34.

Key words and phrases. Polynomial differential systems, polynomial vector fields, limit cycles.

In this paper for the class of polynomial differential systems in \mathbb{R}^2 of the form

(2)
$$\dot{x} = P_1(x, y) + P_n(x, y), \qquad \dot{y} = Q_1(x, y) + Q_n(x, y),$$

where n > 1, and $P_k(x, y)$ and $Q_k(x, y)$ are homogeneous polynomials of degree k, we want to study the existence and non-existence of limit cycles.

For the polynomial differential systems (2) having a linear focus at the origin of coordinates of the form

$$\dot{x} = \lambda x - y + P_n(x, y), \qquad \dot{y} = x + \lambda y + Q_n(x, y),$$

their limit cycles have been studied intensively, see for instance [3, 4, 5, 6, 8, 9, 10, 15, 17, 18, 20]. But there are very few results on the limit cycles of the polynomial differential systems having a linear node at the origin of coordinates of the form

(3)
$$\dot{x} = \lambda x + P_n(x, y), \qquad \dot{y} = \mu y + Q_n(x, y),$$

with $\lambda \mu > 0$.

Recently in [2] the polynomial differential systems (3) with $\lambda = \mu$ and n > 1 have been analyzed, proving that if n is odd such systems have at most one limit cycle, and if n is even then they have no limit cycles. On the other hand, in Proposition 6.3 and Remark 6.4 of the paper [7] are examples of systems (3) having two, one or zero limit cycles surrounding the origin. Finally, when $\lambda \neq \mu$ and $\lambda \mu > 0$ in [16] the authors provide sufficient conditions for the non-existence of limit cycles, or for the existence of one or two limit cycles.

Using polar coordinate $x = r \cos(\theta)$ and $y = \sin \theta$ system (3) becomes

(4)
$$\dot{r} = f_0(\theta)r + f(\theta)r^n, \qquad \dot{\theta} = g_0(\theta) + g(\theta)r^{n-1},$$

and in the region $R = \{(r, \theta) : g_0(\theta) + g(\theta)r^{n-1} > 0\}$ it can be studied using the differential equation

(5)
$$\frac{dr}{d\theta} = \frac{f_0(\theta)r + f(\theta)r^n}{g_0(\theta) + g(\theta)r^{n-1}}$$

 $\mathbf{2}$

where

$$\begin{aligned} f_0(\theta) &= \lambda \cos^2 \theta + \mu \sin^2 \theta, \\ g_0(\theta) &= (\mu - \lambda) \cos \theta \sin \theta, \\ f(\theta) &= \cos \theta P_n(\cos \theta, \sin \theta) + \sin \theta Q_n(\cos \theta, \sin \theta), \\ g(\theta) &= \cos \theta Q_n(\cos \theta, \sin \theta) - \sin \theta P_n(\cos \theta, \sin \theta), \\ P_n(x, y) &= \sum_{i=0}^{i=n} a_{(n-i)i} x^{n-i} y^i, \\ Q_n(x, y) &= \sum_{i=0}^{i=n} b_{(n-i)i} x^{n-i} y^i. \end{aligned}$$

Theorem 1. The polynomial differential system (3) with $n \ge 2$ has no limit cycles surrounding the origin in the region R if one of the following conditions holds.

(a) f = 0. (b) g = 0. (c) $a_{0n} = 0$. (d) $b_{n0} = 0$. (e) $g = g_0 f / f_0$. (f) $(nfg + (2 - n)f_0g)^2 - 4fgf_0g_0 \le 0$. (g) $((2n - 1)fg_0 - (2n - 3)f_0g)^2 - 4f_0g_0fg \le 0$.

The polynomial differential system (3) has at most one limit cycle surrounding the origin if the following condition holds

(h)
$$((2n-1)f_0g - (2n-3)fg_0)^2 - 4f_0g_0fg \le 0.$$

Theorem 1 is proved in the next section.

2. Proofs

For proving Theorem 1 we need the following two lemmas due to Lloyd [19].

Lemma 2. We have in a simply connected open set V containing the origin the differential system in polar coordinates

(6)
$$\dot{r} = S_1(r,\theta), \quad \theta = S_2(r,\theta),$$

where S_1 and S_2 are $C^1 2\pi$ -periodic functions such that $S_1(0,\theta) = 0$ for all θ , and $S_2(r,\theta) > 0$ in V. The differential system (6) is equivalent to the differential equation

(7)
$$\frac{dr}{d\theta} = \frac{S_1(r,\theta)}{S_2(r,\theta)} = S(r,\theta).$$

Therefore, if

(8)
$$\frac{\partial S}{\partial r} \equiv 0, \quad \frac{\partial S}{\partial r} \leqslant 0, \text{ or } \frac{\partial S}{\partial r} \geqslant 0$$

in V, then the differential system (6) has no limit cycles in V.

Lemma 3. Consider the differential system (6) defined in an annular region A that encircles the origin and where $S_2(r, \theta) > 0$. Then in A, the differential system (6) is equivalent to the differential equation (7). If (8) hold in A, then the differential system 6 has at most one limit cycle in A.

Proof statement (a) of Theorem 1. If f = 0 equation (5) becomes

$$\frac{dr}{d\theta} = \frac{f_0(\theta)r}{g_0(\theta) + g(\theta)r^{n-1}}.$$

Since $\lambda > \text{and } \mu > 0$ this last equation does not change sign in the region C. The solution $r(\theta)$ of this equation increases or decreases, so these solutions cannot be periodic in the region R, and consequently the polynomial differential system (3) has no limit cycles In R. \Box

Proof statement (b) of Theorem 1. Since g = 0 the differential equation (4) becomes

$$\dot{r} = f_0(\theta)r + f(\theta)r^n, \qquad \theta = g_0(\theta).$$

The straight lines $\theta = 0$ and $\theta = \pi/2$ are invariant for system (3). So this system cannot have limit cycles surrounding the origin. This completes the proof of this statement.

Proof statement (c) of Theorem 1. Since $a_{0n} = 0$ the differential system (3) has the straight line x = 0 invariant, consequently this system has no limit cycles surrounding the origin.

The same argument used in the proof of statement (c) proves statement (d).

Proof statement (e) of Theorem 1. Since $g = fg_0/f_0$ system (4) becomes

$$\dot{r} = f_0(\theta)r + f(\theta)r^n, \qquad \dot{\theta} = g_0(\theta)(1 + \frac{f(\theta)}{f_0(\theta)})r^{n-1}.$$

So the proof ends following the same argument used in the proof of statement (b). $\hfill \Box$

Proof statement (f) of Theorem 1. Let

$$S(r,\theta) = \frac{f_0 r + f r^n}{g_0 + g r^{n-1}},$$

defined in the simply connected region R. The derivative of S with respect to r is

$$\frac{\partial S}{\partial r} = \frac{f_0 g_0 + (nfg_0 + (2-n)f_0 g)r^{n-1} + fgr^{2n-2}}{(g_0 + gr^{n-1})^2}.$$

Since $(nfg+(2-n)f_0g)^2-4fgf_0g_0 \leq 0$ the numerator of $\partial S/\partial r$ does not change of sign, and we can apply Lemma 2 to the differential equation (5), and the proof of this statement follows.

Proof statement (g) of Theorem 1. Doing the change of variables $R = \sqrt{r}$ in the region C, the differential equation (5) becomes

(9)
$$\frac{dR}{d\theta} = \frac{f_0 R + f R^{2n-1}}{2(g_0 + g R^{2n-2})} = S(R, \theta)$$

The derivative of S with respect to R is

$$\frac{\partial S}{\partial R} = \frac{f_0 g_0 + ((2n-1)fg_0 - (2n-3)f_0 g)R^{2n-2} + fgR^{4n-4}}{2(g_0 + gR^{2n-2})^2}$$

Since $((2n-1)fg_0 - (2n-3)f_0g)^2 - 4f_0g_0fg \leq 0$ the numerator of $\partial S/\partial R$ does not change of sign, and again we can apply Lemma 2 to the differential equation (9), and statement (g) is proved.

Proof statement (h) of Theorem 1. Doing the change of variables $R = 1/\sqrt{r}$ in the region R the differential equation (5) becomes

(10)
$$\frac{dR}{d\theta} = \frac{R(f_0 R^{2n-2} + f)}{2(g_0 R^{2n-2} + g)} = S(R, \theta).$$

So the derivative of S with respect to R is

$$\frac{\partial S}{\partial R} = -\frac{fg + ((2n-1)f_0g - (2n-3)fg_0)R^{2n-2} + f_0g_0R^{4n-4}}{2(g_0R^{2n-2} + g)^2}$$

The image of the region R under the map $r \to 1/\sqrt{r}$ is an annular region A, one of the boundaries of this annulus is the infinity. Since $((2n-1)f_0g - (2n-3)fg_0)^2 - 4f_0g_0fg \leq 0$ the numerator of $\partial S/\partial R$ does not change of sign, we can apply Lemma 3 in the annular region A to the differential equation (10), and this completes the proof of this statement.

In short Theorem 1 is proved.

Acknowledgements

The first author is partially supported by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER), the Agència de Gestió d'Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911. The second author is partially supported by the Algerian Ministry of Higher Education and Scientific Research.

References

- A.A. ANDRONOV, Les cycles limites de Poincaré et la théorie des oscillations auto-entretenues, C.R. Acad. Sci. Paris 89 (1929), 559–561.
- [2] A. BENDJEDDOU, J. LLIBRE AND T. SALHI, Dynamics of the polynomial differential systems with homogeneous nonlinearities and a star node, J. Differential Equations 254 (2013), 3530–3537.
- [3] M. CARBONELL, B. COLL AND J. LLIBRE, *Limit cycles of polynomial systems with homogeneous nonlinearities*, J. Math. Anal. Appl. **142** (1989), 573–590.
- M. CARBONELL AND J. LLIBRE, Limit cycles of a class of polynomial systems, Proc. Royal Soc. Edinburgh 109A (1988), 187–199.
- [5] C. CHICONE Limit cycles of a class of polynomial vector fields in the plane, J. Differential Equations 63 (1986), 68–87.
- [6] A. GASULL, J. LLIBRE AND J. SOTOMAYOR, Limit cycles of vector fields of the form X(v) = Av + f(v)Bv, J. Differential Equations 67 (1987), 90–110.
- [7] A. GASULL, J. LLIBRE AND J. SOTOMAYOR, Further considerations on the number of limit cycles of vector fields of the form X(v) = Av + f(v)Bv, J. Differential Equations **68** (1987), 36–40.
- [8] J. GINÉ AND J. LLIBRE, Integrability and algebraic limit cycles for polynomial differential systems with homogeneous nonlinearities, J. Differential Equations 197 (2004), 147–161.
- [9] C. LI, W. LI, J. LLIBRE AND Z. ZHANG, On the limit cycles of polynomial differential systems with homogeneous nonlinearities, Proc. Edinburgh Math. Soc. 43 (2000), 529–543.
- [10] C. LI, W. LI, J. LLIBRE AND Z. ZHANG, New families of centers and limit cycles for polynomial differential systems with homogeneous nonlinearities, Ann. Diff. Eq. 193 (2003), 302–317.
- [11] J. LI, Hilbert's 16-th problem and bifurcations of planar polynomial vector fields, Int. J. Bif. Chaos 13 (2003), 47–106.
- [12] A. LIÉNARD, Etude des oscillations entretenues, Rev. Générale de l'Electricité 23 (1928), 901–912.
- [13] D. HILBERT, Mathematische Probleme, Lecture, Second Internat. Congr. Math. (Paris, 1900), Nachr. Ges. Wiss. G"ttingen Math. Phys. KL. (1900), 253–297; English transl., Bull. Amer. Math. Soc. 8 (1902), 437–479.

6

- [14] YU. ILYASHENKO, Finiteness theorems for limit cycles, Translations of Math. Monographs 94, Amer. Math. Soc., 1991.
- [15] J. LLIBRE AND C. VALLS, Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities, J. Differential Equations 46 (2009), 2192–2204.
- [16] J. LLIBRE, J. YU AND X. ZHANG, On the limit cycles of the polynomial differential systems with a linear node and homogeneous nonlinearities, Int. J. Bifurcation and Chaos 24 (2014), 1450065-pp 7.
- [17] J. LLIBRE AND X. ZHANG, On the limit cycles of linear differential systems with homogeneous nonlinearities, Canadian Math. Bull. 58 (2015), 818–823.
- [18] J. LLIBRE AND X. ZHANG, Non-existence, existence and uniqueness of limit cycles for quadratic polynomial differential systems, Proc. of the Royal Society of Edinburgh: Section A Mathematics 149 (2019), 1–14.
- [19] N.G. LLOYD, A note on the number of limit cycles in certain two-dimensional systems, J. London Math. Soc. 20 (1979), 277–286.
- [20] N.G. LLOYD, Limit cycles of certain polynomial differential systems, in Nonlinear Functional Analysis and its Applications, S.P. Singh, ed NATO AS1 Series C, Vol. 173, Reidel, Dordrecht, The Netherlands, 1986, pp. 317–326.
- [21] H. POINCARÉ, Mémoire sur les courbes définies par une équation differentielle I, II, J. Math. Pures Appl. 7 (1881), 375–422; 8 (1882), 251–296; Sur les courbes définies pas les équations differentielles III, IV, 1 (1885), 167–244; 2 (1886), 155–217.
- [22] VAN DER POL, On relaxation-oscillations, Phil. Mag. 2 (1926), 978–992.

¹ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

Email address: jllibre@mat.uab.cat

² DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MOHAMED EL BACHIR EL IBRAHIMI BORDJ BOU ARRÉRIDJ, EL ANASSER, ALGERIA

Email address: t.salhi@univ-bba.dz