SINGULARLY PERTURBED QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS ON THE PLANE

Jaume LLIBRE¹ Paulo Ricardo da SILVA²

- ABSTRACT: In this paper singularly perturbed quadratic polynomial differential systems defined in \mathbb{R}^2 are discussed. The main results describe the fast and the slow dynamics of a list of quadratic systems obtained by singular perturbation of normal forms. In particular we show how limit cycles can appear perturbing singular quadratic systems.
- KEYWORDS: Limit cycles; vector fields; singular perturbation; quadratic systems.

1 Introduction and statement of the main results

The present work fits within the study of singularly perturbed quadratic systems:

$$x' = \frac{dx}{d\tau} = p_{\varepsilon}(x, y) = p(x, y, \varepsilon), \quad y' = \frac{dy}{d\tau} = \varepsilon q_{\varepsilon}(x, y) = \varepsilon q(x, y, \varepsilon), \tag{1}$$

with p, q real polynomials, $p_{\varepsilon}, q_{\varepsilon}$ quadratic in $x = x(\tau)$ and $y = y(\tau) \in \mathbb{R}, \varepsilon \geqslant 0$ and $(p_{\varepsilon}, q_{\varepsilon}) = 1$ for $\varepsilon > 0$ small.

The techniques of the Geometric Singular Perturbation theory (GSP-theory) can be used to obtain information on the dynamics of system (1) for small values of $\varepsilon > 0$, specially in the search of limit cycles.

As usual in GSP-theory, we consider the time rescaling $t = \varepsilon \tau$ to get

$$\varepsilon \dot{x} = p_{\varepsilon}(x, y), \quad \dot{y} = q_{\varepsilon}(x, y),$$
 (2)

¹Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain, E-mail: *jllibre@mat.uab.es*

²Departamento de Matemática – IBILCE-UNESP, Rua C. Colombo, 2265, CEP 15054-000 S. J. Rio Preto, São Paulo, Brazil, E-mail: prs@ibilce.unesp.br