Sliding Vector Fields via Slow–Fast Systems

Jaume Llibre Paulo R. da Silva Marco A. Teixeira

Dedicated to Freddy Dumortier for his 60-th birthday.

Abstract

This paper concerns differential equation systems on \mathbb{R}^n with discontinuous right-hand sides. We deal with non-smooth vector fields in \mathbb{R}^n having a codimension-one submanifold M as its discontinuity set. After a regularization of a such system and a global blow-up we are able to bring out some results that bridge the space between discontinuous systems and singularly perturbed smooth systems.

1 Introduction and statement of the main results

In this paper a discussion is focused to study the phase portraits of certain nonsmooth vector fields defined in \mathbb{R}^n having a codimension-one submanifold M as its discontinuity set. We present some results in the framework developed by Sotomayor and Teixeira in [9] and establish a bridge between those systems and the fundamental role played by the Geometric Singular Perturbation Theory (GSPT). This transition was introduced in [1] and [7], in dimensions 2 and 3, respectively. Needless to say that in this area very good surveys are available (see [2, 3, 5, 6] for instance).

Let $U \subseteq \mathbb{R}^n$ be an open set. We suppose that $M = F^{-1}(0)$ where $F: U \to \mathbb{R}$ is a smooth function and $0 \in \mathbb{R}$ is a regular value of F. Clearly M is the separating boundary of the regions $M_+ = \{q \in U | F(q) \ge 0\}$ and $M_- = \{q \in U | F(q) \le 0\}$. We denote by $\mathcal{C}^r(U, \mathbb{R}^n)$ the set of all vector fields of class \mathcal{C}^r defined on U, with $r \ge 1$, endowed with the C^r -topology.

Denote by $\Omega^{r}(U)$ the set of all vector fields X on U such that

$$X(q) = \begin{cases} X_1(q) & \text{if } q \in M_+, \\ X_2(q) & \text{if } q \in M_-, \end{cases}$$
(1)

Bull. Belg. Math. Soc. Simon Stevin 15 (2008), 851-869

¹⁹⁹¹ Mathematics Subject Classification : Primary 34C20, 34C26, 34D15, 34H05.

Key words and phrases : Regularization, vector fields, singular perturbation, discontinuous vector fields, sliding vector fields.