Nonlinearity 28 (2015) 493-507

doi:10.1088/0951-7715/28/2/493

## Sliding vector fields for non-smooth dynamical systems having intersecting switching manifolds

## Jaume Llibre<sup>1</sup>, Paulo R da Silva<sup>2</sup> and Marco A Teixeira<sup>3</sup>

<sup>1</sup> Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

<sup>2</sup> Departamento de Matemática-IBILCE-UNESP, Rua C. Colombo, 2265, CEP 15054-000 S. J.

Rio Preto, São Paulo, Brazil

<sup>3</sup> IMECC-UNICAMP, CEP 13081-970, Campinas, São Paulo, Brazil

E-mail: jllibre@mat.uab.cat, prs@ibilce.unesp.br and teixeira@ime.unicamp.br

Received 13 January 2014, revised 15 October 2014 Accepted for publication 11 December 2014 Published 16 January 2015



Recommended by D V Treschev

## Abstract

We consider a differential equation  $\dot{p} = X(p), p \in \mathbb{R}^3$ , with discontinuous right-hand side and discontinuities occurring on a set  $\Sigma$ . We discuss the dynamics of the sliding mode which occurs when, for any initial condition near  $p \in \Sigma$ , the corresponding solution trajectories are attracted to  $\Sigma$ . Firstly we suppose that  $\Sigma = H^{-1}(0)$ , where H is a smooth function and  $0 \in \mathbb{R}$  is a regular value. In this case  $\Sigma$  is locally diffeomorphic to the set  $\mathcal{F} = \{(x, y, z) \in \mathcal{F}\}$  $\mathbb{R}^3$ ; z = 0. Secondly we suppose that  $\Sigma$  is the inverse image of a non-regular value. We focus our attention to the equations defined around singularities as described in Gutierrez and Sotomayor (1982 Proc. Lond. Math. Soc **45** 97–112). More precisely, we restrict the degeneracy of the singularity so as to admit only those which appear when the regularity conditions in the definition of smooth surfaces of  $\mathbb{R}^3$  in terms of implicit functions and immersions are broken in a stable manner. In this case  $\Sigma$  is locally diffeomorphic to one of the following algebraic varieties:  $\mathcal{D} = \{(x, y, z) \in \mathbb{R}^3; xy = 0\}$  (double crossing);  $\mathcal{T} = \{(x, y, z) \in \mathbb{R}^3; xyz = 0\}$  (triple crossing);  $\mathcal{C} = \{(x, y, z) \in \mathbb{R}^3\}$  $\mathbb{R}^3$ ;  $z^2 - x^2 - y^2 = 0$ } (cone) or  $\mathcal{W} = \{(x, y, z) \in \mathbb{R}^3; zx^2 - y^2 = 0\}$  (Whitney's umbrella).

Keywords: non-smooth dynamical system, singular perturbation, sliding vector field

Mathematics Subject Classification: 34D15, 34C40, 34C45, 34H99

(Some figures may appear in colour only in the online journal)