ERRATUM: MINIMAL SETS OF PERIODS FOR MORSE–SMALE DIFFEOMORPHISMS ON ORIENTABLE COMPACT SURFACES

JAUME LLIBRE AND VÍCTOR F. SIRVENT

Communicated by the editors

Let $f: M_g \to M_g$ be a Morse-Smale diffeomorphism on M_g a compact orientable surface of genus g. In the article [1] we considered $\zeta_f(t)$ the Lefschetz zeta function of f. We showed that

(1)
$$\zeta_f(t) = \begin{cases} \frac{p(t)}{(1-t)^2} & \text{if } f \text{ is orientation preserving and} \\ \frac{p(t)}{(1-t^2)} & \text{if } f \text{ is orientation reversing,} \end{cases}$$

where p(t) is the polynomial $\det(Id_{*k} - tf_{*1})$, and f_{*1} is the induced map on the 1-st homology group of M_g with rational coefficients. We showed that p(t) is a product of cyclotomic polynomials of total degree 2g. If $\zeta_f(t) \neq 1$ then it can be written as

(2)
$$\zeta_f(t) = \prod_{i=1}^{N_{\zeta}} (1 + \Delta_i t^{r_i})^{m_i},$$

where $\Delta_i = \pm 1$, the r_i 's are positive integers, m_i 's are nonzero integers and N_{ζ} is a positive integer depending on f.

If $\zeta_f(t) \neq 1$ the minimal set of Lefschetz periods is defined as

$$\mathrm{MPer}_L(f) := \cap \{r_1, \ldots, r_{N_c}\},$$

 $^{2000\} Mathematics\ Subject\ Classification.\ 37D15,\ 37E15.$

Key words and phrases. Morse–Smale diffeomorphism, Lefschetz number, zeta function, set of periods, minimal set of periods.