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Let ðX; f Þ be a topological discrete dynamical system. We say that it is partially
periodic point free up to period n, if f does not have periodic points of periods smaller
than n þ 1. When X is a compact connected surface, a connected compact graph, or
S2m _ Sm _ · · · _ Sm, we give conditions on X, so that there exist partially periodic
point free maps up to period n. We also introduce the notion of a Lefschetz partially
periodic point free map up to period n. This is a weaker concept than partially
periodic point free up to period n. We characterize the Lefschetz partially periodic
point free self-maps for the manifolds Sn £ · · ·

k
£ Sn, Sn £ Sm with n – m, CP n, HP n

and OP n.
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1. Introduction

Let X be a topological space and let f : X ! X be a continuous map. A ðdiscreteÞ

topological dynamical system is formed by the pair ðX; f Þ.

We say that x [ X is a periodic point of period k if f kðxÞ ¼ x and f jðxÞ – x for

j ¼ 1; . . . ; k 2 1. We denote by Per( f ) the set of all periods of f.

The set {x; f ðxÞ; f 2ðxÞ; . . . ; f nðxÞ; . . . } is called the orbit of the point x [ X. To study

the dynamics of a map f is to study all the different kinds of orbits of f. If x is a periodic

point of f of period k, then its orbit is {x; f ðxÞ; f 2ðxÞ; . . . ; f k21ðxÞ}, and it is called a

periodic orbit.

Often the periodic orbits play an important role in the dynamics of a discrete

dynamical system, and for studying them we can use topological tools. One of the best-

known results in this direction is the result contained in the well-known paper entitled

‘Period three implies chaos’ for continuous self-maps on the interval, see [19].

If Perð f Þ ¼ B then we say that the map f is periodic point free. There are several

papers studying different classes of periodic point free self-maps on the annulus, see

[12,16], or on the two-dimensional torus, see [2,14,18].

If Perð f Þ> {1; 2; . . . ; n} ¼ B then we say that the map f is partially periodic point

free up to period n. If n ¼ 1, we say that f is fixed point free. Different classes of partially

periodic point free self-maps are studied in [6,25,28].
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