

Taylor & Francis Taylor & Francis Group

Jaume Llibre^{a1} and Víctor F. Sirvent^b*

^aDepartament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain; ^bDepartamento de Matemáticas, Universidad Simón Bolívar, Apartado 89000, Caracas 1086-A, Venezuela

(Received 9 August 2012; final version received 23 January 2013)

Let (X, f) be a topological discrete dynamical system. We say that it is partially periodic point free up to period n, if f does not have periodic points of periods smaller than n + 1. When X is a compact connected surface, a connected compact graph, or $\mathbb{S}^{2m} \vee \mathbb{S}^m \vee \cdots \vee \mathbb{S}^m$, we give conditions on X, so that there exist partially periodic point free maps up to period n. We also introduce the notion of a Lefschetz partially periodic point free map up to period n. This is a weaker concept than partially periodic point free up to period n. We characterize the Lefschetz partially periodic point free self-maps for the manifolds $\mathbb{S}^n \times \cdot^k \cdot \times \mathbb{S}^n$, $\mathbb{S}^n \times \mathbb{S}^m$ with $n \neq m$, $\mathbb{C}P^n$, $\mathbb{H}P^n$ and $\mathbb{O}P^n$.

Keywords: periodic point; Lefschetz number; connected compact graph; connected compact surface; wedge sums of spheres; product of spheres

2000 Mathematics Subject Classification: 37C25; 37E15; 37E25

1. Introduction

Let X be a topological space and let $f: X \to X$ be a continuous map. A (*discrete*) topological dynamical system is formed by the pair (X, f).

We say that $x \in X$ is a *periodic point of period* k if $f^k(x) = x$ and $f^j(x) \neq x$ for j = 1, ..., k - 1. We denote by Per(f) the set of all periods of f.

The set $\{x, f(x), f^2(x), \ldots, f^n(x), \ldots\}$ is called the *orbit* of the point $x \in X$. To study *the dynamics of a map f* is to study all the different kinds of orbits of f. If x is a periodic point of f of period k, then its *orbit* is $\{x, f(x), f^2(x), \ldots, f^{k-1}(x)\}$, and it is called a *periodic orbit*.

Often the periodic orbits play an important role in the dynamics of a discrete dynamical system, and for studying them we can use topological tools. One of the best-known results in this direction is the result contained in the well-known paper entitled *'Period three implies chaos'* for continuous self-maps on the interval, see [19].

If $Per(f) = \emptyset$ then we say that the map f is *periodic point free*. There are several papers studying different classes of periodic point free self-maps on the annulus, see [12,16], or on the two-dimensional torus, see [2,14,18].

If $Per(f) \cap \{1, 2, ..., n\} = \emptyset$ then we say that the map *f* is *partially periodic point* free up to period n. If n = 1, we say that *f* is fixed point free. Different classes of partially periodic point free self-maps are studied in [6,25,28].

^{*}Corresponding author. Email: vsirvent@usb.ve; URL: http://www.ma.usb.ve/ ~ vsirvent