PERIODIC STRUCTURE OF THE
TRANSVERSAL MAPS ON SURFACES

JAUME LLIBRE! AND VICTOR F. SIRVENT?

ABSTRACT. In this article we study the set of periods of transver-
sal maps on orientable and non-orientable compact surfaces with-
out boundary. We provide sufficient conditions, in terms of the
spectra of the induced maps on homology, in order that the map
has infinitely many periods, in particular odd periods.

1. INTRODUCTION AND STATEMENTS OF THE MAIN RESULTS

Let f be a continuous self-map on X. If x € X and f(z) = = we say
that x is a fized point of the map f. If f*(x) = x and f*(x) # z for all
k=1,...,n—1, then we say that = is a periodic point of the map f
of period n. We denote by Per(f) the set of the periods of all periodic
points of a map f: X — X.

Let X be a n-dimensional topological manifold and f a continuous
self-map on X. The map f induces a homomorphism on the k-th
rational homology group of X for 0 < k < n, i.e. fu : Hp(X,Q) —
Hp(X,Q). The Hi(X,Q) is a finite dimensional vector space over Q

and f,; is a linear map whose matrix has integer entries.

The Lefschetz number of the map f is an integer defined as

n

& L(f) = 3 (~1)Ftrace( ).

k=0
The Lefschetz Fized Point Theorem states that if L(f) # 0 then f
has a fixed point (cf. [2] or [12]).
The Lefschetz numbers of period m are defined by

(2) . Z'” fm/r

rlm
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where the sum is taken over all divisors r of m and p is the Mdbius
function defined by

1 if m = 1;
p(m) =< 0 if there is a k such that k* divides m;
(=1)* if m=p;---ps with p; distinct primes.

By the Mobius inversion formula we have

L(f™) =Y ().

rlm

The Lefschetz numbers of period m were introduced in [4], see also
|13, 1, 11]; for more recent developments in the characterization of
these numbers see [8].

A transversal map f on a compact differentiable manifold X is a C*
map f: X — X, such that f(X) C Int(X) and for all positive integer
m at each point z fixed by f™ we have that 1 is not an eigenvalue of
Df™(x), i.e. det(Id — Df™(x)) # 0.

The transversal maps have been studied in different contexts, see for
example [3, 5, 6, 14, 20, 21]. In [9], it was studied transversal self-maps
on spaces with the homology given by Hy(X,Q) = Q, H;(X,Q) =
Q& Q and trivial for Hg(X, Q) with k£ # 0, 1. In [14] it was considered
the case of maps on the n-dimensional sphere and spaces with the same
homology. In [7] the authors dealt with maps on the projective spaces
and the product of two spheres of different dimensions. In [18] it was
considered the periodic structure for transversal maps on the product
of any given number of spheres of different dimension, provided that
the set of partial sums of the dimensions of the spheres is a sum-free set,
i.e. the homology spaces are either one-dimensional or trivial. Recently
in [23] it was described the periodic structure of transversal self-maps
on the n-torus, the product of spheres of the same dimension and on
rational exterior spaces of a given rank.

We would like to remark that the Morse-Smale diffeomorphisms are
transversal maps, since all their periodic points are hyperbolic. How-
ever they have only a finite number of periodic points. For a description
of the periods set of Morse-Smale diffeomorphisms see the survey [17]
and within references.

The periodic points for transversal maps on surfaces were initially
studied in [19]. In particular they proved Theorem 12. In the present
paper we improved this theorem by giving weaker hypotheses and the
proofs are different because we used Lefschetz numbers of period m (for
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some m’s) and Theorem 7. In section 4 we give a detail description of
the differences of our results and the results of [19]. In section 2 we
deal with transversal maps on non-orientable surfaces and in section 3,
we deal with the case of orientable surfaces. The main results are the
following ones.

Theorem 1. Let S, be a non-orientable closed surface of genus g and
f Sy — Sy be a transversal map. Let A, ..., \,—1 be the eigenvalues
of fs1, listed in descending order according the values of theirmodulus.
Assume that

(a) Fither A\ has multiplicity k with k > 1 and |M\1| > |\;|, for
k+1<j5<g—1,ie the map f. has a dominant eigenvalue.

(b) Or Ay has multiplicity k > 2 and |\| = |Ni| > 1 for 1 <i < k+l
with 0 <[ < k.

Then there exists a positive integer N such that

(1) If m is odd and m > N , then m € Per(f).
(2) If m is even and m > N, then m or m/2 is in Per(f).

(c) Assume A\ has multiplicity k and |M\| = [N| > 1 for 1 <i <
k+1 with | > k, and A\;/\1 are roots of unity for k+1 < i < k+I.
Then there are infinitely many even m’s such that m € Per(f)
or m/2 € Per(f).

Theorem 2. Let M, be an orientable closed surface of genus g and
f i My — Mg be a transversal map of degree D. Let A\i,---, Xy be
the eigenvalues of f.1 counted with their multiplicities and listed in
descending order according to the values of their modulus. Suppose
that

(i) either |D| > max{1, ||}, where D is the degree of f,
(ii) or fa has a dominant eigenvalue greater than the mazimum of
1 and |D|,
(iii) or f. has a dominant eigenvalue with multiplicity greater than
1, and its modulus is equal to |D| > 1,
(iv) or Ay has multiplicity k > 3 and |M\| = |D| = |\ > 1 for 1 <
i <k+lwith0<l<k—1, and |\| > |\| for k+1<1i <2g.

Then here exists a positive integer N such that

(a) if m > N is odd, then m € Per(f).
(b) if m > N is even, then m or m/2 is in Per(f).
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(v) If Ay has multiplicity k > 2 and |\| = |D| = |\ > 1 for
1 <i<k+1lwihl > k—1, \j/\1 are roots of unity for
k+1<i<k+I and |\| > |Nj| for k+1<1i<2g.

Then there are infinitely many even m’s such that m € Per(f) orm/2 €
Per(f).

Theorems 1 and 2 are proved in sections 2 and 3, respectively. For
obtaining these results we prove that ¢(f™) # 0 for m sufficiently
large, the techniques used in order to get these results are based on the
techniques developed in [23].

The results of Theorems 1 and 2 are related with previous results of
Llibre and Swanson [19]. In section 4 we compare our results with the
ones of [19].

2. TRANSVERSAL MAPS ON NON-ORIENTABLE SURFACES

A closed surface is a compact, connected and without boundary sur-
face. We recall that Hp(X,Q) is a vector space over Q, so it is always
torsion free. The homology spaces for non—orientable closed surfaces

are Ho(X,Q) = Q, Hy(X,Q) = {0}, and
Hi(X,Q)=06---0Q,
—_——

g—1
for the surface X = S, formed by the connected sum of g > 1 real

projective planes, called a non-orientable surface of genus g. The well
known examples are S; the projective plane and Sy the Klein bottle.

Let Ai,...,\,—1 be the eigenvalues of f,;, counted with heir multi-
plicities, we list them in descending order according to the values of
their modulus:

M| = Ao > > [Aga| 2 0.
As in the statement of Theorem 1 we say that f,; has a dominant
eigenvalue if \; has multiplicity & > 1, and |Aq| > |\i], for k+1 < i <
g—1.
Proposition 3. Let f: S, — S, be a continuous self map.

(a) If fa has a dominant eigenvalue of modulus greater than 1, then
there exists a positive N such that ((f™) # 0 for all m > N.

(b) If A\ has multiplicity k > 2 and || = |N| > 1 for 1 < i <
k+1 with 0 <l < k. Then there exists a positive N such that
0(f™) #0 form > N.
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(¢) If A1 has multiplicity k and |M\| = |N| > 1 for 1 <i < k+1
with | > k and X\;/ Ay are roots of unity for k+1 <i < k+ L.
Then there exists a positive N such that ((f™) # 0 for infinitely
many even m’s with m > N.

Before proving Proposition 3 we need the following auxiliary lemmas.

Lemma 4. If f,1 has a dominant eigenvalue Ay of modulus greater than
1, then there exist a positive integer Ny and positive constants Cy and
Ky, such that Cy|M\|™ < |L(f™)| for m > Ni; and |L(f™)| < Kq|A\|™
for allm > 1.

Proof. According to the definition of the Lefschetz numbers (1) we have
L(f™)=1—trace(f})=1— A=\ - Aj .
j=1 1

Since |[A| > |\ for 2 <i < g —1, it follows that

1 Aj)m
AT ; <>\1
forall m > 1. So K; = g.

If A; has multiplicity &, i.e. Ay = A, for 1 < j < k and || > |\
for k+1 <i < g—1, then there exist N > 0 and a positive constant
(' such that

<y,

1 g—1 /\j m 1 g—1 A\
— — — =|— —k— - >C
P Z(Al) AT 2 (Al) -
j=1 j=k+1
for m > N. This completes the proof. O

Observe that if we omit the hypothesis of a dominant eigenvalue,
then Lemma 4 does not hold, for example consider A\; = —Xy and
A3 =1, then

LOf™) =1= (A" + (=A)" + A5") = =AT(L+ (=1)™),
ie. L(f™) =0 for m odd, but L(f™) is bounded away from zero, for m

even, when |A;| > 1. We handle this situation in the lemmas 5 and 6
which are weaker versions of Lemma 4.

Lemma 5. Let \i,...,A\;_1 be the eigenvalues of f.1 so that A\ = Aj,
for 1 < j < kN =M >1and \; # X\ for k+1<i<k+1,
with 0 < I < k, and |\| > |\, with k+1 < i < g— 1. Then there
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exrists a positive integer N1 and positive constants Cy and K such that
CyM|™ < |L(f™)| for m > Ny, and |L(f™)| < Ky|\|™ for all m.

Proof. The proof of |L(f™)| < K| \|™ for all m is the same than in
the proof of Lemma 4.

From (1) we have that

k+1 A\ g A\
3) L(f"M=1-> X'"=A"|— —k-— = E
0w -1-Sor o (G- 35 3 )
i=k+1 i=k+1+1
Since [N;| = |A\1] , for k+1 < i < k+1 we have
k+1 A
> <
. )\’1“
i=k+1
It follows
ko \m B ym
k Sl >k—1=Cy>0.
D D
i= k+1 i=k+1
On the other hand there exists Ny such that for m > N; we have that
1 J )\?‘ 02
AT i=k+1+1 Xln s 2
Therefore |L(f™)A{™| > Cy/2 = C) for m > Nj. O

We would like to remark that if [ > k, the expression k + Zer,i 41 /\Z

could be arbitrary small or even equal O for infinitely many m’s, de—
pending on the algebraic nature of the \;’s. For this reason we introduce
the following lemma.

Lemma 6. Let \i,...,\s_1 be the eigenvalues of f.1 so that A\ = A,
for 1 < j <k, |N| = |M| > 1 and \;/ A\ are roots of unity, different
from 1 fork+1<i<k+lwithl>k, and |\| > |\, fork+1<i<
g—1. Then there exists a positive integer N1 and a positive constant Cy
such that Ci|\|™ < |L(f™)| for infinitely many even m’s with m > Nj.

Proof. Let a,, := Zf:,iﬂ % By hypotheses the numbers \;/\; are

roots of unity. Therefore the sequence {a,, }., is periodic. So (A\;/ )™ =
1 for infinitely many even m’s. Since k is a positive integer it yields

the inequality
ket A

k+z

i= k+1

> 027
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where () is a positive constant. The rest of the proof follows using the
same arguments of the proof of Lemma 5. U

In Lemma 6 the hypothesis of \;/A; being roots of unity, is required
since there are algebraic numbers of modulus equal 1, which are not
root of unity, e.g. (3 + 4i)/5. Moreover there are algebraic integers
of modulus equal 1, which are not roots of unity, e.g. some Galois
conjugates of Salem numbers (cf. [22]).

Proof ot Proposition 3. From (2) we have

(™) = L™ + Y plr) L),

hit

SO

(4) ™) = L™= 1Y wr) L)
ik

Let A; be the dominant eigenvalue of f.;. Let m; = max{m/r :
r|m, r # 1}, then we claim that

(5) [ > nl) L™ < Kol h ™),
r|m;

r#l
for some constant Ky > 0, for all m > N, being N, a positive integer
and € > 0 arbitrary small.

Now we prove the claim. If m is a prime number then m; = 1,
then > . u(r)L(f™") = L(f). From the definition of the Lefschetz
r#l

number |L(f)| < C|\;| with C = g. Therefore |L(f)] < C|\|'** for
all e > 0.

If m is not prime, then m = p{*...p% for prime numbers p; > --- >
p1 > 1 and a; positive integers; so mq = p2* ~'p3? - - - p%. It follows that

D ()L™ = u(p) L™+ Y p(r) L.

T|m; r|m;

r#l r#£1;r#p1
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Using Lemma 4 we have

>l < L) Y p(r) L)

o o
< O™+ )L
o
< ™+ Y ()
e

< CIM|(1+ o(m)).

where o(m) is the number of divisors of m. It is known that for large
m, o(m) < C'm*, where C’ is a positive constant and e is arbitrary
small, for more details see [10, Theorem 315, pp. 260]. Therefore, since
|A1] > 1 there exist a positive constant K, and a positive integer Ny
such that C|\|™ (1 + o(m)) < Ky|\|™@+e) for all m > N,. This
proves the inequality (5).

By Lemma 4 there exists a constant C; > 0 and positive integer N
such that |L(f™)] > Cy|A\1|™ for m > N. Hence from (4) and (5), it
follows:

6™ 2 o™ = Kal [0 2 [N [™(C = a0+,

As we mentioned before if m is prime then m; = 1, this implies that
((f™) # 0 for large prime. If m is a composite number then m; > /m,
so my(1 4+ ¢) —m < 0 for m sufficiently large. Hence |\;|™(+)—™ g
arbitrary small for large m. Therefore |¢(f™)| > 0 for large m. This
completes the proof of statement (a).

The proof of statements (b) and (c¢) follow similar arguments as the
proof of statement (a) using Lemma 5 and 6 (respectively) instead of
Lemma 4. U

The following theorem is one of the main results that relates the
Lefschetz numbers of period m with the set of periods of a transversal
map.

Theorem 7 ([3, 13, 9]). Let X be a compact manifold and f: X — X
be a transversal map. Suppose ((f™) # 0, for some m. Then

(a) If m is odd, then m € Per(f).

(b) If m is even, then m or m/2 is in Per(f).
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Proof of Theorem 1. It follows from Proposition 3 and Theorem 7. [

The spectral radius of a linear transformation T is
sp(T') := max{|A| : A eigenvalue of T'}.
As a complement of Proposition 3 we present the following result.

Proposition 8. Let f : S, — Sy be a continuous self map such that
sp(fa) < 1, then £(f™) # 0 only for finitely many m.

The proof of Proposition 8 is based on the fact that the sequence
{L(f™)} is bounded (since sp(f.1) < 1) and the numbers ¢(f™)/m are
integers (cf. [4]), for details see [1, Theorem 2.2].

The Morse-Smale diffeomorphisms are in the context of the previous
proposition, because the eigenvalues of f,; are root of unity (see [24])
and they are transversal because all their periodic points are hyperbolic.
The explicit computation of all posible numbers ¢(f™) for the Morse-
Smale diffeomorphisms, can be found in [16] for non-orientable surfaces
and in [15] for orientable surfaces. These results were obtained using
the Lefschetz zeta function.

3. TRANSVERSAL MAPS ON ORIENTABLE SURFACES

The homology spaces for the closed orientable surfaces are Hy(X, Q) =
Q, Hy(X,Q) = Q and if X = M, for g > 0 an orientable surface of
genus g, i.e. a sphere with g handles, then

2
g

If f: M, — M, is a continuous self map, then f., = (D), where D
is the degree of f. Therefore, from (1) the Lefschetz numbers of f are

29
(6)  L(f™) =1—trace(f]]) + trace(fi3) =1 — Z A D™

i=1

where A, ..., Ay, are the eigenvalues of f,;, we order them descendingly
according to their modulus
(7) M| > Ao = - > [Agg| > 0.

We need the following auxiliary result.

Proposition 9. Let p := max{|\;|,|D|} and suppose that p > 1 and
that (7) holds. Assume
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(i) either p = |D| > |\],
(i) or p= | > |,
(iii) or p = |M\1| = |D|, the multiplicity of A1 as eigenvalue of f. is
k>1 and || > |\ for k+1 <1i <2g.
(iv) or p = |A\i| = |D|, A1 has multiplicity k > 3 and |\| = |[\;| > 1
fork+1<i<k+4+lwithO<l<k-—1.

Then there exist a positive integer N1, and positive constants C and
Ky such that Cyp™ < |L(f™)| for m > Ny; and |L(f™)| < Kip™ for
allm>1.

(v) If p = | M| = |D|, A\ has multiplicity k > 1 and \;/\1 are roots
of unity for k+1<i<k+1l withl>k—1.

Then there exists a positive integer Ny, and positive constants C7 and
Ky such that Cip™ < |L(f™)]| for infinitely many even m’s with m >
Ni; and |L(f™)| < Kip™ for all m.

Proof. First notice that since p > 1 then

29
L™ < T4+ IN™ + D™ < Kip™,

i=1
where K1 =29+ 2 and m > 1.
If p = |D| > |A1] then, by (9) we have:

1 29 )\’L m
52 (3)

i=1

L™ = D™

Clearly there exist a positive integer N;, and a positive integer Cf,
such that |L(f™)|p~™ > C; for m > Nj. The proposition follows
under assumption (i).

If p = |A1| > |D| then

2g m m
1 A D
L)) AT i=1 (Al) i (/\1) Ml
2g m m
1 by D .
8) aTELEDY (x) +(x) Al
1 i=k+1

where k is the multiplicity of \; as eigenvalue of f,;. Clearly there exist
a positive integer N; and a positive integer C) such that |[L(f™)| >
C1p™ for m > Nj. The proposition follows under assumption (ii).
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If p=|A| = |D| with [\] > |\, for k4+1 <i<2gand k > 1
the multiplicity of A;. Then from (8) there exist a positive integer N;
and a positive integer C} such that |L(f™)| > Cyp™, for m > Ny. The
proposition follows under assumption (iii).

If A\; has multiplicity k£ and p = |\| = |D| = |\, for 1 <i < k+1
and |A1| > |\, for k +1 < j <2g, with | # k and | < k — 1 it follows
®) k+l 2

1 + A\ m g \ m D m
2 A Ai e
AT 2 <>\1) 2 <>\1> i (/\1)

IL(f™)| = ™.
i=k+1 i=k+1+1

By the same argument used in the proof of Lemma 5 there exists a
positive integer N7 and a positive integer C such that |L(f™)|p™™ >
(4, for m > Nj. Note that we require [ < k — 1, because the sum (9)
have the term (D/A;)™, which has modulus equal 1 and it is not in (3).
The rest of the proof of the proposition under assumption (iv) follows
from Lemma 5.

Similarly as in the proof of Lemma 6 there exists a positive integer
N; and a positive integer C) such that |L(f™)|p~™ > C for m > N
and for infinitely many m > Nj. So the proof under assumption (v)
follows from Lemma 6. U

The following result is the version of Proposition 3 for continuous
maps on orientable surfaces.

Proposition 10. Let f : M, — M, be a continuous self map satisfying
(7) and

(i) either |D| > max{l, |\ : 1 <1i < 2g},
(ii) or |[\| > max{1,|D|},
(iii) or || = |D| > 1, the multiplicity of A1 as eigenvalue of f. is
k> 1 and |A\1| > [N, for k+1 <i<2g.
(iv) or |M| = |D| = |N| > 1 for 1 <i < k41 and |\| > |\;| for
E+1<i<2g, with0 <l <k—1 where k is the multiplicity of
A1 as eigenvalue of f..

Then there ezists a positive integer N such that ((f™) # 0 for all
m > N.

(v) If |\| = |D] = |Ni] > 1 for 1 <i < k+1 and X/ are roots
of unity for k+1 < i < 2¢g, with | > k — 1 where k 1is the
multiplicity of A1 as etgenvalue of f1.
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Then there exists a positive integer N such that ¢(f™) # 0, for infinitely
many even m’s with m > N.

Proof. Since the proof goes to the same lines as the proof of Propo-
sition 3 using Proposition 9 instead of Lemma 4 we only provide the
main new steps of it.

Let p = max{|\{|,|D|}. Suppose that one of the conditions (i), (ii)
or (iii) holds. As in the proof of Lemma 4, we have inequality (4) and
for large m’s

UL < Ko 0
i

where my = max{m/r : r|m, r # 1}, K3 is a positive constant and ¢ >

0 is sufficiently small. By Proposition 9 under one of the assumptions

(i), (ii) or (iii) there exists a constant C' > 0 and a positive integer N

such that |L(f™)] > Cp™ for m > N. Therefore

L") = Cp™ = Kap™ U > p"(C — Kyp™ HH97m),

By the same argument as in the proof of Lemma 4, it follows that
10(f™)] > 0 for large m’s.

However if p = |\| = |D| = |\;)| > Lfor 1 <i <k+1land [A]| > |
for k+1 < i < 2g, with 0 <l < k— 1 where k is the multiplicity
of \; as eigenvalue of f,;. Then, by Proposition 9 under assumption
(iv) there exist a constant C' > 0 and a positive integer N such that
|[L(f™)] > Cp™ for m > N. Therefore in this case [¢((f™)] > 0, for
m > N.

Similarly, under assumption (v), by Lemma 6 there exist a constant
C > 0 and a positive integer N such that |L(f™)| > Cp™ for infinitely
many m’s with m > N. Hence |[¢(f™)] > 0 for infinitely many m’s
m > N. O

Proof of Theorem 2. It follows from Propositions 9 and 10 and Theo-
rem 7. ]

Similarly to Proposition 8 in the context of orientable surfaces we
have the following result.

Proposition 11. Let f : M, — M, be a continuous self map. If
max{sp(fi1), |D|} <1, then L(f™) # 0 only for finitely many m.
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4. REMARKS

Here we will give a detail description of the differences of our results
and the previous results of Llibre-Swanson [19]. Before we recall some
definitions. We say that a subset B of A is cofinite if A\ B is finite.
A transversal map f is semi-positive if at each x, fixed by f™, we have
det(Df™(x)) > 0.

The main theorem of [19] is the following one.

Theorem 12. Let f : X — X be a transversal map defined on a
surface X. Assume that f wverifies either D > max{l,sp(f.)}, or
sp(fe1) > max{1, D} and lim,, . |trace(f™)|*/™ exists. Then all the
following statements holds.

(1) Per(f) contains a cofinite subset of odd positive integers.

(2) Per(f) contains infinitely many powers of two. Furthermore,
there exists a positive integer m such that two consecutive pow-
ers of two larger than m include (at least) one period of f.

(3) Moreover, if f is semi-positive, then Per(f) contains a cofinite
subset of the set of all powers of two.

We would like to emphasize that our methods are different from the
ones used in [19]. As the reader have noticed we use the Lefschetz
numbers of period m. In particular we show that ¢(f™) # 0 for large
m’s, and later we use Theorem 7.

First we comment the case of transversal maps on orientable surfaces.
The hypotheses (i) and (ii) of Theorem 2 imply that the sp(f,) > 1
and the existence of lim,,_. [trace(f7)[*/™. However the assumptions
(iii), (iv) and (v) of Theorem 2 are not covered in Theorem 12.

In the case of transversal maps on non-orientable surfaces. The hy-
potheses of statements (a) and (b) of Theorem 1 imply the sp(f,1) > 1
and the existence of lim,, ., [trace(f™)[}/™. So we can use in this sit-
uation Theorem 12. Again the result of statement (c) of Theorem 1 is
not covered by Theorem 12.
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