STRUCTURAL STABILITY OF CONSTRAINED POLYNOMIAL SYSTEMS

JaUME LLIBRE and JORGE SOTOMAYOR

Abstract

The structural stability of constrained polynomial differential systems of the form $a(x, y) x^{\prime}+b(x, y) y^{\prime}=$ $f(x, y), c(x, y) x^{\prime}+d(x, y) y^{\prime}=g(x, y)$, under small perturbations of the coefficients of the polynomial functions a, b, c, d, f and g is studied. These systems differ from ordinary differential equations at 'impasse points' defined by $a d-b c=0$. Extensions to this case of results for smooth constrained differential systems [7] and for ordinary polynomial differential systems [5] are achieved here.

1. Introduction and statement of the main results

This paper is concerned with the orbit structure and stability properties of planar differential systems of the form

$$
\begin{align*}
a(x, y) x^{\prime}+b(x, y) y^{\prime} & =f(x, y) \\
c(x, y) x^{\prime}+d(x, y) y^{\prime} & =g(x, y) \tag{1}
\end{align*}
$$

where $a(x, y), b(x, y), c(x, y)$ and $d(x, y)$ are polynomials of degree m, while $f(x, y)$ and $g(x, y)$ are polynomials of degree n. They will be called constrained polynomial systems of degree (m, n).

Constrained smooth systems (that is, systems where the coefficients a, b, c, d, f and g are of class C^{r}), have been studied in [7] and [8]. Sources of applications for these systems can be found in [2].

In matrix notation, system (1) can be written as

$$
\begin{equation*}
A(\mathbf{x}) \mathbf{x}^{\prime}=F(\mathbf{x}) \tag{2}
\end{equation*}
$$

where

$$
\mathbf{x}=\binom{x}{y}, \quad A(\mathbf{x})=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(\mathbf{x}), \quad F(\mathbf{x})=\binom{f}{g}(\mathbf{x}), \quad(\cdot)^{\prime}=\frac{d(\cdot)}{d t} .
$$

A system of the form (2) will also be referred to as (A, F). The impasse singularities of (2) are those points \mathscr{I}_{A} where $\delta_{A}=\operatorname{det}(A)$, the determinant of the matrix A, vanishes.

The solutions, orbits, singular points, etc. of system (2) are defined only outside the impasse singularities by the corresponding similar elements of the system

$$
\begin{equation*}
\mathbf{x}^{\prime}=A^{-1}(\mathbf{x}) F(\mathbf{x}), \quad \mathbf{x} \in \mathbf{R}^{2} \backslash \mathscr{I}_{A} \tag{3}
\end{equation*}
$$

System (2) differs from the ordinary differential system given by (3) only on \mathscr{I}_{A}.

[^0]
[^0]: Received 3 March 1997; revised 9 September 1997.
 1991 Mathematics Subject Classification 34C35, 34D30.
 The first author was supported by a Fapesp grant number 96/1907-2 and by a CIRIT grant number 1996BEAI400252 during the preparation of this work. The second author was partially supported by a Fapesp grant number 96/3450-0.

