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Dynamic systems behaviour analysis and design based on the qualitative theory of differential
equations: the Boost power converter case
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This paper uses the qualitative theory of differential equations to analyse/design the dynamic behaviour of control systems.
In particular, the Poincaré compactification and the Poincaré–Hopf theorem are used for analysing the local dynamics near
the finite and infinite equilibrium points. As an application, a large signal characterisation of a Boost type power converter in
closed loop, including its equilibrium/bifurcation points and its global dynamics, which depends upon the value of the load
resistance, is studied.
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1. Introduction

In general, after selecting a controller for a dynamic sys-
tem, it is desirable to have a globally stable closed-loop
behaviour. The Lyapunov approach is commonly invoked
to demonstrate the stability of a control system, see for in-
stance Khalil (2000). Under this approach, if x = 0 is an
equilibrium point for ẋ = f (x) and D ⊂ R2, then given a
continuously differentiable candidate function V : D → R,
such that V̇ < 0 along the solutions of ẋ = f (x) in D\{0}
then x = 0 is asymptotically stable. That is, all trajectories
of ẋ = f (x) contained in D converge to the origin x = 0.

For a dynamic linear control system, this technique ex-
plains if such a system is stable or not. For a nonlinear
system, however, the procedure for obtaining the candidate
function is difficult, implies trial and error, and in many
cases no such function exists. A simple example is a non-
linear differential equation with two or more equilibrium
points. Under these circumstances, it is not possible to re-
sort to using the Lyapunov approach to analyse the global
dynamics of the system and defining the boundary of the
attraction zone of a locally stable equilibrium point is a
major control problem. In view of the above, the use of the
qualitative theory of differential equations is emphasised
in order to achieve this purpose. In particular, the Poincaré
compactification method for studying the dynamics of the
system near infinity will be considered, and together with
the Poincaré–Hopf theorem the local dynamics at the equi-
librium points, finite and infinite, will be analysed.
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The Poincaré compactification method introduced by
Poincaré (1881) has been referenced for instance in An-
dronov, Leontovich, Gordon, and Maier (1973) and Du-
mortier, Llibre, and Artés (2006). This method was used in
Dickson and Perko (1970) to characterise the phase portrait
of bounded quadratic systems.

A fast introduction to the Poincaré compactification is
let S2 be the 2-dimensional sphere of radius one centred
at the origin of coordinates (x, y, z) = (0, 0, 0) of R3.
The Poincaré compactification method consists in doing
two copies of a polynomial differential system flow in R2,
which is identified with the tangent plane to the sphere S2

at its north pole (0, 0, 1).
These two copies are obtained through central projec-

tions of this tangent plane, one to the open northern hemi-
sphere of S2 and another to the open southern hemisphere.
Let S1 be the equator of S2. The flow defined in S2 \ S1

is extended to the equator S1, which corresponds to the
infinity of the tangent plane R2. Finally, using the pro-
jection (x, y, z) → (x, y) the closed northern hemisphere
is equivalent to a closed unit disc, called the Poincaré
disc. This extension allows studying the flow of a poly-
nomial differential system in a neighbourhood of the in-
finity. The plane and the infinity of R2 are identified with
the interior of the Poincaré disc and with the boundary
disc S1, respectively. This technique will be used to ex-
plain the behaviour of a Boost power converter near the
infinity.
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