# Periodic Orbits for Some Systems of Delay Differential Equations 

Jaume LLIBRE<br>Departament de Matemàtiques Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain<br>E-mail: jllibre@mat.uab.cat

Alexandrina-Alina TARTTA
Department of Applied Mathematics, Babeş-Bolyai University, 1 Kogalniceanu str., 400084 Cluj-Napoca, Cluj, Romania

E-mail: alexandra_alina@yahoo.com


#### Abstract

We provide sufficient conditions for the existence of periodic orbits of some systems of delay differential equations with a unique delay. We extend Kaplan-Yorke's method for finding periodic orbits from a delay differential equation with several delays to a system of delay differential equations with a unique delay.


Keywords delay differential system, periodic orbit
MR(2000) Subject Classification $34 \mathrm{~K} 13,34 \mathrm{~K} 18$

## 1 Introduction and Statement of the Main Results

Many papers dedicated to studying the periodic orbits of a delay differential equation using Kaplan-Yorke's method have been published these last few years, see for instance [1-6], [812]. In this paper we extend Kaplan-Yorke's method for finding periodic orbits from a delay differential equation with several delays to a system of delay differential equations with a unique delay. As far as we know this method has never been used before for finding periodic orbits for a system of delay differential equations with more than one equation.

Here we study the existence of periodic orbits for the following delay differential systems

$$
\begin{align*}
& \dot{x}(t)=-F(x(t-s), y(t-s), x(t)) \\
& \dot{y}(t)=F(y(t), x(t-s), y(t-s))  \tag{1}\\
& \dot{x}(t)=-F(x(t-s), y(t-s),-x(t-s)) \\
& \dot{y}(t)=F(-y(t-s), x(t-s), y(t-s))  \tag{1}\\
& \dot{x}(t)=F(x(t-s), y(t-s), z(t-s)) \\
& \dot{y}(t)=F(y(t-s), z(t-s),-x(t-s))  \tag{2}\\
& \dot{z}(t)=F(-z(t-s), x(t-s), y(t-s))
\end{align*}
$$

[^0]
[^0]:    Received October 26, 2005, Accepted June 5, 2006
    The first author is partially supported by a MCYT/FEDER Grant No. MTM2005-06098-C02-01 and by a CICYT Grant No. 2005SGR 00550; the second one is supported by a Marie Curie Grant No. HPMT-CT-200100247

