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PIECEWISE LINEAR DIFFERENTIAL SYSTEMS

WITHOUT EQUILIBRIA PRODUCE LIMIT CYCLES?

JAUME LLIBRE1 AND MARCO ANTONIO TEIXEIRA2

Abstract. In this article we study the planar piecewise differential
systems formed by two linear differential systems separated by a straight
line, such that both linear differential have no equilibria, neither real nor
virtual.

When the piecewise differential system is continuous, we show that
the system has no limit cycles. But when the piecewise differential
system is discontinuous, we show that it can have at most one limit
cycle.

1. Introduction and statement of the main result

The study of the so-called discontinuous linear differential systems goes
back to Andronov, Vitt and Khaikin [1] and have received special attention
from the mathematical community nowadays, mainly because these systems
are widely used to model processes appearing in electronics, mechanics, econ-
omy, etc. See, for instance, the books of di Bernardo, Budd, Champneys
and Kowalczyk [5] and Simpson [28], the survey of Makarenkov and Lamb
[26], and the hundreds of references which appear in these last three cited
works.

The simplest possible piecewise linear differential systems are the ones
formed by two linear differential systems separated by a straight line. We
note that for these apparently simple systems, when they are continuous,
some serious work is necessary for proving that they have at most one limit
cycle, see [7] and [21]. This solved the conjecture of Lum and Chua [25]
done in 1990 that such continuous differential systems can have at most one
limit cycle.

The study of the maximum number of limit cycles of these systems, when
they are discontinuous, still is an open question. Up to now we know that
there are discontinuous systems with at least three limit cycles, see for in-
stance [2, 4, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15, 22, 17, 18, 19, 20, 22, 24].

We consider planar piecewise differential systems formed by two linear
differential systems separated by the straight line x = 0, such that both
linear differential have no equilibria, neither real nor virtual. We say that
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an equilibrium point (x0, y0) of the linear differential system defined in the
half–plane x ≥ 0 is real if it x0 ≥ 0, otherwise it is called virtual.

Theorem 1. Continuous planar piecewise differential systems formed by
two linear differential systems separated by a straight line, such that both
linear differential have no equilibria, neither real nor virtual, have no limit
cycles.

Theorem 1 is proved in section 2.

Figure 1. The limit cycle of the piecewise linear differential sys-
tem stated in Theorem 2.

Theorem 2. Discontinuous planar piecewise differential systems formed by
two linear differential systems separated by a straight line, such that both
linear differential have no equilibria, neither real nor virtual, have at most
one limit cycle, and the next example shows that there are piecewise linear
differential systems with one limit cycle: The piecewise linear differential
system

ẋ = x− y − 1
2 ,

ẏ = x− y, if x > 0, and
ẋ = −x− y,
ẏ = 3x+ 3y − 1,

if x < 0,

has the limit cycle of Figure 2.

Theorem 2 is proved in section 3.

Remark 3. Concerning Theorem 2, we stress that a closed curve, consisting
of union of branches of trajectories of both systems, one in x > 0 and the
other in x < 0, passing through points of the closure of the sliding region
is not considered a limit cycle. For a definition of sliding region see for
instance [5].
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2. Continuous piecewise differential system: Proof of
Theorem 1

We consider in the half–plane x > 0 the following general linear differen-
tial system without equilibria

(1)
ẋ = αx+ βy + γ = P+(x, y),
ẏ = λαx+ λβy + δ = Q+(x, y),

and in the half–plane x < 0 another general linear differential system without
equilibria

(2)
ẋ = ax+ by + c = P−(x, y),
ẏ = µax+ µby + d = Q−(x, y).

Here the dot denotes derivative with respect to the independent variable t
usually called the time. Changing the sign of the time (if necessary) we can
assume without loss of generality that

(3) λβ ≥ 0.

In order that both linear differential systems define in the whole plane R2

a continuous differential system we must take

(4) β = b, γ = c, µ = λ, δ = d.

We denote the divergence of system (j) by Divj , thus we have

Div1 = α+ λb, Div2 = a+ λb.

We note that in order that the continuous piecewise linear differential sys-
tems in R2 formed by systems (1) and (2) can have periodic orbits it is
necessary that either Div1 Div2 < 0, or Div1 = Div2 = 0. This follows from
the following claim: If either Div1 Div2 > 0, or Divi 6= 0 and Divj = 0 for
i 6= j, then the continuous piecewise linear differential systems in R2 formed
by systems (1) and (2) have no periodic solutions. Now we prove the claim.

Clearly if there is a limit cycle this must cross the straight line of sep-
aration x = 0 between the two linear differential system because linear
differential systems have no limit cycles. The vector field associated to our
differential system is

X(x, y) =

{
(P+(x, y), Q+(x, y)) if x > 0,

(P−(x, y), Q−(x, y)) if x < 0.

We shall use the following well-known result, the Green’s theorem, for a
proof see for instance [27].

Theorem 4. Let γ be a piecewise smooth, simple closed curve in R2, and
let R be the open region bounded by γ. If P = P (x, y) and Q = Q(x, y)
are functions defined on an open region containing R and have continuous
partial derivatives there, then∮

γ
(P dy −Qdx) =

∫∫
R

(
∂P

∂x
+
∂Q

∂y

)
dx dy,
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where the integration path along γ is in counterclockwise sense.

The divergence of a C1 differential system

ẋ = P (x, y), ẏ = Q(x, y),

is the function

div(x, y) =
∂P

∂x
+
∂Q

∂y
.

Let γ be a periodic solution of the vector field X(x, y), and let R be the
bounded region limited by γ. In order to apply the Green’s theorem to this
curve γ and to the region R, we shall split such an integral as limit of two
integrals as follows. We add to the periodic orbit γ the segment S of the
y-axis contained in the region bounded by γ, now we split this segment as
limit of two parallel segments S−(ε) and S+(ε) contained in x < 0 and x > 0
and at a distance ε > 0 of S, respectively, and such that a piece γ−(ε) of
γ contained in x < 0 together with S−(ε) forms an oval O−(ε). Similarly,
we consider a piece γ+(ε) of γ contained in x > 0 such that together with
S+(ε) forms another oval O+(ε), in such a way that the union of these ovals
tends to γ ∪ S when ε 7→ 0.

Figure 2. The ovals O−(ε) in x < 0, and O+(ε) in x > 0.

Clearly the two integrals∮
O−(ε)

(P dy −Qdx) and

∮
O+(ε)

(P dy −Qdx)

are well defined, and the integral∮
γ
(P dy −Qdx)

is the limit when ε 7→ 0 of

(5) Iε =

∮
O−(ε)

(P dy −Qdx) +

∮
O+(ε)

(P dy −Qdx).
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Applying the Green’s theorem (Theorem 4) to both integrals of (5) we
obtain that

(6) Iε =

∮
R−(ε)

(
∂P

∂x
+
∂Q

∂y

)
dx dy +

∮
R+(ε)

(
∂P

∂x
+
∂Q

∂y

)
dx dy,

where R±(ε) are the open regions bounded by the ovals O±(ε). Now, from
(5) and (6) the limit of Iε when ε 7→ 0 is∮

γ
(P dy −Qdx) =

∫∫
R

(
∂P

∂x
+
∂Q

∂y

)
dx dy.

Since γ is a periodic solution of the vector field X(x, y) we have that P dy−
Qdx = 0, so ∮

γ
(P dy −Qdx) = 0.

Consequently, if R− = R ∩ {x < 0} and R+ = R ∩ {x > 0}, then∫∫
R

(
∂P

∂x
+
∂Q

∂y

)
dx dy =

∫∫
R+

Div1 dx dy +

∫∫
R−

Div2 dx dy = 0,

which is a contradiction with the assumptions that either Div1 Div2 > 0, or
Divi 6= 0 and Divj = 0 for i 6= j. Hence the claim is proved.

Now in order to prove Theorem 1 it remains to show that when either
Div1 = Div2 = 0, or Div1 Div2 < 0 the vector field X(x, y) has no periodic
solution, we distinguish two cases.

Case 1: Div1 = Div2 = 0. Then, the piecewise differential system (1) and
(2) becomes the linear differential system

(7)
ẋ = −λbx+ by + c,
ẏ = −λ2bx+ λby + d,

which clearly has no periodic solutions.

Case 2: Div1 Div2 < 0. Without loss of generality we can assume that
Div1 = α + bλ > 0 and Div2 = a + bλ < 0, otherwise we reverse the sign
of the independent variable in the differential system. Then, the solution
(x+(t), y+(t)) of system (1) with the initial condition (x+(0), y+(0)) = (0, y0)
is

x+(t) =
1

(α+ bλ)2
(
− cα− b((α+ bλ)(y0 − ctλ) + d(t(α+ bλ) + 1))

+et(α+bλ)(cα+ b(d+ y0(α+ bλ)))
)
,

y+(t) =
1

(α+ bλ)2
(
d(tα(α+ bλ)− bλ) + α(y0(α+ bλ)− cλ(tα+ btλ+ 1)

+et(α+bλ)λ
(
y0λb

2 + (d+ y0α)b+ cα
)
)
)
,
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and the corresponding solution (x−(t), y−(t)) of system (2) with the same
initial condition is

x−(t) =
1

(a+ bλ)2
(
− a(−btλc+ c+ b(dt+ y0))− b(btλd+ d+ bλ(y0 − ctλ))

+et(a+bλ)(a(c+ by0) + b(d+ by0λ))
)
,

y−(t) =
1

(a+ bλ)2
(
(dt− cλt+ y0)a

2 + λ(b(dt+ y0)− c(btλ+ 1))a− bdλ

+et(a+bλ)λ(a(c+ by0) + b(d+ by0λ))
)
.

Let t+ be the time that the solution (x+(t), y+(t)), starting at the point
(0, y0) when t = 0, enters in forward time in the half–plane x > 0 and
reaches by first time the straight line x = 0, in case that such solution exists.
Similarly, let −t− be the time that the solution (x−(t), y−(t)), starting at
the point (0, y0) when t = 0, enters in backward time in the half–plane x < 0
and reaches by first time the straight line x = 0, in case that such solution
exists. Therefore, the piecewise linear differential system (1) and (2) has
limit cycles if the system

(8) x+(t+) = 0, x−(−t−) = 0, y+(t+)− y(−t−) = 0,

has isolated solutions. We have three equations and three unknowns t+, t−
and y0.

From equation x+(t+) = 0 we get that

et+(α+bλ) =
cα+ b((α+ bλ)(y0 − ct+λ) + d(t+(α+ bλ) + 1))

cα+ b(d+ y0(α+ bλ))
,

and from equation x−(−t−) = 0 we obtain that

et−(a+bλ) =
a(c+ by0) + b(d+ by0λ)

λ(−dt− + cλt− + y0)b2 + db+ a(bt−λc+ c+ b(y0 − dt−))
.

We note that if some of the denominators in the expressions of the previous
both exponentials is zero, it follows easily that system (8) has no solutions.

Substituting these two exponentials in equation y+(t+)− y(−t−) = 0 we
obtain that

(t+ + t−)(d− cλ) = 0.

This is in contradiction with the facts that t+ > 0, t− > 0 and d− λc 6= 0,
otherwise system (7) would have a straight line of equilibria. Then system
(8) has no solutions, so the piecewise linear differential system has no limit
cycles. This completes the proof of Theorem 1.

3. Discontinuous piecewise differential system: Proof of
Theorem 2

Again we consider the planar piecewise differential systems formed by
two linear differential systems separated by a straight line, such that both
linear differential have no equilibria, neither real nor virtual, defined by (1)
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and (2). But now we assume that this piecewise differential systems are
discontinuous, i.e. we do not consider the conditions (4).

Using the notation of the proof of Theorem 1 we have

Div1 = α+ λβ, Div2 = a+ µb.

Here, we must separate the proof of Theorem 2 in three cases.

Case 1: Div1 = Div2 = 0. Then the solution (x+(t), y+(t)) of system (1)
with the initial condition (x+(0), y+(0)) = (0, y0) is

(9)
x+(t) =

1

2
t(2y0β + tδβ + γ(2− tβλ)),

y+(t) =
1

2
βλ(δ − γλ)t2 + δt+ y0βλt+ y0,

and the corresponding solution (x−(t), y−(t)) of system (2) with the initial
condition (x−(0), y−(0)) = (0, y0) is

x−(t) =
1

2
t(−btµc+ 2c+ bdt+ 2by0),

y−(t) = y0 + 1
2 t(d(btµ+ 2) + bµ(2y0 − ctµ)).

We define the times t+ and t− as in the proof of Theorem 1. So, now
the discontinuous piecewise linear differential system (1) and (2) has limit
cycles if the system

(10) x+(t+) = 0, x−(−t−) = 0, y+(t+)− y(−t−) = 0,

with unknowns t+, t− and y0 has isolated solutions.

From equation x+(t+) = 0 we get that

(11) t+ = −2(y0β + γ)

β(δ − γλ)
,

and from equation x−(−t−) = 0 we obtain that

(12) y0 =
b(d− µc)t− − 2c

2b
.

We note that the denominator of t+ cannot be zero, otherwise t+ will be
infinity, and we cannot have a periodic solution solution satisfying (10).
Also the denominator of y0 cannot be zero, otherwise b = 0 and therefore
x−(t) = ct. So if c 6= 0 never holds x−(−t−) = 0; and if c = 0 we have that
x−(t) = 0 for all t, so in this case we cannot have periodic solutions of the
ones here consider with a piece in the half-space x > 0 and another piece in
the half-space x < 0.

Substituting t+ and y0 in equation y+(t+)− y(−t−) = 0 we have that
c

b
− γ

β
= 0.

Hence, if this last equality does not hold, then system (10) has no solutions
and consequently the system has no periodic solutions. If c/b − γ/β 6= 0
then solving the second equation from (10) with respect to t− > 0 we get at
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most one solution, which substituted in (12) provides at most one periodic
solution. So the theorem is proved in Case 1.

Case 2: Div1 = 0 and Div2 6= 0. Of course the case Div1 6= 0 and Div2 = 0
would follow in a similar way. Now the solution (x+(t), y+(t)) of system
(1) with the initial condition (x+(0), y+(0)) = (0, y0) is given in (9), and
the corresponding solution (x−(t), y−(t)) of system (2) with the same initial
condition is

x−(t) =
1

(a+ bµ)2
(
bet(a+bµ)(d+ by0µ) + a

(
− b(dt+ y0)

+et(a+bµ)(c+ by0) + c(btµ− 1)
)
− b(btµd+ d+ bµ(y0 − ctµ))

)
,

y−(t) =
1

(a+ bµ)2
(
(dt− cµt+ y0)a

2 + µ
(
b(dt+ y0)

+et(a+bµ)(c+ by0)− c(btµ+ 1)
)
a+ bµ

(
et(a+bµ)(d+ by0µ)− d

) )
.

Again we must find the isolated solutions t+, t− and y0 of system (10).

From equation x+(t+) = 0 we get that t+ is given in (11), and from
equation x−(−t−) = 0 we obtain that

(13) y0 =
ac+ bd− e(a+bµ)t− (ac+ bd+ b(a+ bµ)(cµ− d)t−)

b(a+ bµ)
(
e(a+bµ)t− − 1

) .

Again we note that if some of the denominators in the expressions of t+ or
y0 is zero, it follows easily that system (8) has no solutions.

Substituting t+ and y0 in equation y+(t+)− y(−t−) = 0 we have that

(14)
2(ac+ bd)

b(a+ bµ)
− 2γ

β
+ (cµ− d)t− coth

(
1

2
(a+ bµ)t−

)
= 0.

Since the function z coth(z) for z > 0 is strictly increasing, and at z = 0
takes the zero value, it follows that equation (14) has at most one solution
for z = 1

2(a + bµ)t− (i.e for t−), and consequently a unique solution for y0
and t+ from (13) and (11), respectively. Obtaining in this way at most one
limit cycle for the discontinuous piecewise linear differential system (1) and
(2), hence Theorem 2 is proved under the assumptions of Case 2.

We note that the discontinuous piecewise linear differential system which
provides the limit cycle of Figure 2 is a particular system of the ones studied
in this Case 2.
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Case 3: Div1 Div2 6= 0. Now the solution (x+(t), y+(t)) of system (1) with
the initial condition (x+(0), y+(0)) = (0, y0) is

x+(t) =
1

(α+ βλ)2
(
tγλ2β2 − tδλβ2 − tαδβ − δβ + tαγλβ

+
(
et(α+βλ) − 1

)
y0(α+ βλ)β − αγ + et(α+βλ)(αγ + βδ)

)
,

y+(t) =
1

(α+ βλ)2
( (
−1 + et(α+βλ)

)
(αγ + βδ)λ

+y0(α+ βλ)
(
α+ et(α+βλ)βλ

)
+ tα(α+ βλ)(δ − γλ)

)
,

and the corresponding solution (x−(t), y−(t)) of system (2) with the initial
condition (x−(0), y−(0)) = (0, y0) is the same than in the previous Case 2.

Defining t+ and t− as before the piecewise linear differential system (1)
and (2) has limit cycles if system (8) has isolated solutions for the unknowns
t+, t− and y0.

We change the parameters α and a by u2 and v2 defined as α = u2 − βλ
and a = −v2 − bµ, respectively. From equation x+(t+) = 0 we get that

eu
2t+ =

β(δ − γλ)u2t+
(y0β + γ)u2 + β(δ − γλ)

+ 1,

and from equation x−(−t−) = 0 we obtain that

ev
2t− =

b(cµ− d)v2t−
cv2 + b (y0v2 − d+ cµ)

+ 1.

We note that if some of the denominators in the expressions of the previous
both exponentials is zero, the present study can be done in a similar and
easier way.

Substituting these two exponentials in equation y+(t+)− y(−t−) = 0 we
have that

u4v4((d− cµ)t− + (δ − γλ)t+) = 0.

From this last equation we obtain that

(15) t+ =
(d− cµ)t−
γλ− δ

> 0.

Isolating y0 from equation x−(−t−) = 0, substituting t+ and y0 in equation
x+(t+) = 0, and changing the variable t− by the variable z through

(16) t− =
z(γλ− δ)
u2(d− cµ)

> 0,

we obtain the equation

(17) c0f0 + c1f1 = 0,

where
c0 = u2

(
b
(
γv2 + dβ − cβµ

)
− cv2β

)
,

c1 = bv2β(δ − γλ),
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and
f0(z) = (ez − 1)

(
ek − 1

)
,

f1(z) = 1 + ek (−z + ez − 1) + ez(z − 1),

where

k =
v2(γλ− δ)
u2(d− cµ)

> 0.

We note that in the particular case that k = 1 equation (17) becomes

c0f0 + c1f1 = (c0 + c1)(e
z − 1)2 = 0,

which has no solutions for z > 0.

Now we shall prove that the functions f0 and f1 form an Extended Com-
plete Chebyshev system if k 6= 1. So, if k 6= 1 the equation (17) can have at
most one zero, and this can be reached. See for more detalls on Chebyschev
system the appendix. In short, if the equation (17) as at most one solution
t−, from it we get a unique value for y0 and t+, and consequently at most a
unique limit cycle for the discontinuous piecewise linear differential system
(1) and (2) under the assumptions of Case 3. This completes the proof of
Theorem 2.

Only remains to show that the functions f0 and f1 form an Extended
Complete Chebyshev system if k 6= 1. Indeed, from equation (15) and since
t+ and t− are positive (by definition), it follows that (d− cµ)(γλ− δ) > 0.
Therefore, from (16) we get that z > 0 and k > 0. Now we change the
variable z by the new variable t through z = log t with t > 1. So, in
function of the new variable t we have

f0(t) = (t− 1)(tk − 1) > 0,

f1(t) = (t− 1)(tk − 1) + (t− tk) log t.

Hence, from Theorem 5 of the appendix, in order to see that the functions
f0 and f1 form an Extended Complete Chebyshev system for t > 1 we only
need to show that the Wronkskian

W (t) =

∣∣∣∣ f0(t) f1(t)
f ′0(t) f ′1(t)

∣∣∣∣
= (t− 1)(tk − 1)(t− tk) + (t(tk − 1)2 − k(t− 1)2tk) log t,

does not vanish for k > 0 and k 6= 1. Since we have that W (t) < 0 if
k ∈ (0, 1), W (t) = 0 if k = 1, and W (t) > 0 if k > 1 (see also Figures 3 and
4, the functions f0 and f1 form an Extended Complete Chebyshev system
if k 6= 1.

4. Appendix Extended Complete Chebyshev system

The functions (f0, . . . , fn) defined on an interval I form an Extended
Chebyshev system if and only if any non–zero linear combination of these
functions has at most n zeros in I taking into account their multiplicities
and this number is reached.
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Figure 3. The graphic of
W (t) when k ∈ (0, 1).

Figure 4. The graphic of
W (t) when k > 1.

The functions (f0, . . . , fn) form an Extended Complete Chebyshev system
if and only if for any k ∈ {0, 1, . . . , n}, (f0, . . . , fk) form an Extended Cheby-
shev system.

Theorem 5. Let f0, . . . , fn be analytic functions defined on an open interval
I ⊂ R. Then (f0, . . . , fn) is an Extended Complete Chebyshev system on I
if and only if for each k ∈ {0, 1, . . . , n} and all y ∈ I the Wronskian

W (f0, . . . , fk)(y) =

∣∣∣∣∣∣∣∣∣
f0(y) f1(y) · · · fk(y)
f ′0(y) f ′1(y) · · · f ′k(y)

...
...

. . .
...

f
(k)
0 (y) f

(k)
1 (y) · · · f

(k)
k (y)

∣∣∣∣∣∣∣∣∣
is different from zero.

For a proof of Theorem 5 see [16].
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