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SYMMETRIC PERIODIC ORBITS FOR THE COLLINEAR

CHARGED 3-BODY PROBLEM

JAUME LLIBRE1 AND DURVAL J. TONON2

Abstract. In this paper we study the existence of periodic symmetric
orbits of the 3-body problem when each body possess mass and an elec-
tric charge. The main technique applied in this study is the continuation
method of Poincaré.

1. Introduction

One of the most relevant objects to study in the theory of dynamical
systems is the n-body problem and many work has been done for under-
standing its dynamics. Thus the study of its periodic orbits is one of the
main objectives. In this paper we focus the attention on the periodic orbits
of the 3-body problem when the three bodies are collinear and charged.

Recently many distinct techniques and methods have been used to prove
the existence of periodic orbits for the n-body problem, for example, averag-
ing theory, numerical analysis, Melnikov functions, normal forms, variational
methods, among others. One of the first analytical studies of the existence
of periodic orbits for the n-body problem was done by Poincaré in [13], and
we apply his method to study the symmetric periodic orbits of the charged
collinear 3-body problem.

There exists a large literature studying the existence of periodic solutions
of the n-body problem, see [10] and [11] for example. More precisely, if
we restrict our attention to the 3-body problem, Hénon in [8] has studied
numerically the existence and stability of a class of symmetric rectilinear
periodic orbits of the general problem of three bodies. In [2] the authors
studied, numerically, families of symmetric periodic orbits for the collinear
3-body problem when the two non-central masses are equal. In [9] the
singularity generated by the triple collision of bodies of the collinear 3-body
problem is studied.

In [5] the authors studied the symmetric periodic orbits by the continu-
ation method of Poincaré of the collinear 3-body problem when the bodies
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do not have electric charges. In the present paper we allow that the bodies
posses electric charges.

The continuation method of Poincaré was originally presented in [13] and
this method consists in given a periodic solution for the system with a pa-
rameter equal to zero and it provides conditions for extending this solution
to small values of the parameter. For more details about this method see
for example [6].

The organization of this paper is as follows. In Section 2 the equations
that model the dynamic of the collinear charged 3-body problem are de-
scribed, in Section 3 we present the main results, and in Section 4 we study
the symmetries of the periodic solutions of this system. The study of sym-
metric periodic orbits for the parameter µ = 0 are done in Section 5, and
in Section 6 we apply the continuation method of Poincaré to extend the
periodic solution obtained in previous section for µ = 0 to small and positive
values of the parameter µ. A brief conclusion and some comments compar-
ing the periodic orbits of the charged with the ones of the uncharged system
are presented in Section 7.

2. Equations of motion of the collinear charged 3-body
problem

The charged n-body problem studies the dynamics of n particles with
a positive mass and an electrostatic charge of any sign, moving under the
influence of the respective Newtonian and Coulombian forces. There exist
many studies for particular values of n, in [7] it is considered the charged
rhomboidal four-body problem, in [1] the charged isosceles 3-body prob-
lem, in [4] the restricted charged four body problem and in [12] the central
configurations of the charged 3-body problem, among others.

In this paper we study the charged collinear 3-body problem. Taking
conveniently the units of mass and charges we can assume, without loss of
generality, that the gravitational constant and the Coulomb’s constant are
equal to one. The particles posses masses m1,m2 and m3 with charges q1, q2
and q3 in the position x1, x2, x3 ∈ R, respectively.

The differential equations that governs the motion are given by

miẍi = ∇xiU,

for i = 1, 2, 3 where

U(x1, x2, x3) =
λ12

d(x1, x2)
+

λ13
d(x1, x3)

+
λ23

d(x2, x3)
,

the symbol ∇xiU denotes the gradient of U with respect to xi, λij = mimj−
qiqj for i, j = 1, 2, 3 and i 6= j, and d(xi, xj) denotes the Euclidean distance
between the points xi and xj .
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We denote the masses and electric charges of the bodies b1, b2 and b3 by
m1 = µ(1 − ν), m2 = 1 − µ, m3 = µν and λ1 = µα, λ2 = µ2β, λ3 = µγ,
respectively, where 0 ≤ µ < 1, 0 < ν < 1 and α, β, γ ∈ R. We assume that
the three bodies are in position xi such that 0 < x1 < x2 < x3, see Figure
1.

x1 x2 x3

m1 = µ(1− ν) m2 = 1− µ m3 = µν

Figure 1. Position of the bodies in the collinear case.

Consider the change of coordinates given by z1 = x2−x1 and z2 = x3−x2,
that denotes the distance between x2 and x1 and x3 and x2. Then the kinetic
T and the potential U energies of the 3-body problem are given by

T (z1, z2) =
1

2
(µ(1− ν)(1− µ(1− ν))ż21 + 2µ2ν(1− ν)ż1ż2

+µν(1− µν)ż22 + C2),

U(z1, z2) = −
(
λ12
z1

+
λ13

z1 + z2
+
λ23
z2

)
,

where C = m1q̇1+m2q̇2+m3q̇3 is the linear momentum. With this notation
we have that if λij > 0 then the resultant force between the particles i and
j is attractive, and if λij < 0 then its repulsive. Without loss of generality
we suppose that C = 0, i.e. the center mass is in rest. Writing L = T − U
and denoting the new variables by

p1 =
∂L

∂ż1
and p2 =

∂L

∂ż2
,

we obtain the Hamiltonian H of the system given by

(1)

H =
p21(−z1)z2(µν − 1)(z1 + z2)

2(µ− 1)µ(ν − 1)z1z2(z1 + z2)

−2(µ− 1)µ2(ν − 1)((z1 + z2)(γz1 + αz2) + βµz1z2)

2(µ− 1)µ(ν − 1)z1z2(z1 + z2)

+
p1p2
µ− 1

− p22(µ(ν − 1) + 1)

2(µ− 1)µν
.
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Associated to the Hamiltonian (1) we have the system

(2)

dz1
dt

=
p1

µ− µν
+
p2 − p1
µ− 1

,

dz2
dt

=
p1 − p2
µ− 1

+
p2
µν
,

dp1
dt

= µ

(
− α
z21
− βµ

(z1 + z2)2

)
,

dp2
dt

= µ

(
− βµ

(z1 + z2)2
− γ

z22

)
.

By the rescaling of the variables z1 = µ2z̃1, z2 = µ2z̃2, t = µ3t̃ system (2)
becomes

(3)

dz1
dt

= µ

(
p1

µ− µν
+
p2 − p1
µ− 1

)
,

dz2
dt

=
µ(p1 − p2)
µ− 1

+
p2
ν
,

dp1
dt

= − α
z21
− βµ

(z1 + z2)2
,

dp2
dt

= − βµ

(z1 + z2)2
− γ

z22
,

where we omit the tilde in the variables. The Hamiltonian associated to
system (3) is given by

H =
1

2

(
− p21
ν − 1

− µ(p1 − p2)2

µ− 1
+
p22
ν
− 2α

z1
− 2βµ

z1 + z2
− 2γ

z2

)
.

Similarly to the case of the uncharged particles system (3) possess one sin-
gularity at z1 = 0, that corresponds to a binary collision between m1 and
m2, another at z2 = 0 which corresponds to the collision between m2 and
m3, and finally one at z1 + z2 = 0 which represents a triple collision. Doing
a Levi-Civita transformation, see [9], given by

z1 = ξ21 , z2 = ξ22 , p1 =
η1
2ξ1

, p2 =
η2
ξ2

and dt = 4ξ21ξ
2
2ds,
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the trajectories of the collinear charged 3-body problem (3) in the new co-
ordinates are the solution of the system

(4)

dξ1
ds

=
ξ2(η1ξ2(1− µν) + η2µ(ν − 1)ξ1)

(µ− 1)(ν − 1)
,

dξ2
ds

=
ξ1(η1µνξ2 + η2ξ1(µ(−ν) + µ− 1))

(µ− 1)ν
,

dη1
ds

=
−η1η2µνξ2

(
ξ21 + ξ22

)2
+ η22ξ1(µ(ν − 1) + 1)

(
ξ21 + ξ22

)2
(µ− 1)ν

(
ξ21 + ξ22

)2
+

8(µ− 1)νξ1

(
βµξ42 + γ

(
ξ21 + ξ22

)2
+ hξ22

(
ξ21 + ξ22

)2)
(µ− 1)ν

(
ξ21 + ξ22

)2 ,

dη2
ds

= η21ξ2

(
µ(ν − 1) + µ− 1

(µ− 1)(ν − 1)

)
− η1η2µξ1

µ− 1

+8ξ2

(
α+

βµξ41

(ξ21+ξ22)
2 + hξ21

)
,

on the energy level H = h for some constant h. System (4) is a Hamiltonian
system with a Hamiltonian G given by

G =
1

2
ξ21ξ

2
2

(
− 8α

ξ21
− 8βµ

ξ21 + ξ22
− 8γ

ξ22
− η21

(ν − 1)ξ21

−µ(η2ξ1 − η1ξ2)2

(µ− 1)ξ21ξ
2
2

+
η22
νξ22
− 8h

)
,

with G = 0 if and only if H = h. Note that system (4) is analytic except
when ξ21 + ξ22 = 0, that corresponds to the triple collision.

We study the periodic orbits of the collinear charged 3-body problem with
binary collisions between m1,m2 and m2,m3. Considering these periodic
solutions, our objective is study the periodic solutions of system (4) for
µ > 0 sufficiently small, satisfying the energy relation G = 0, more precisely
we are interested in the symmetric periodic orbits of system (4). In this way
will be necessary to study the symmetries involving this system.

3. Statements of the main results

Consider the involutions

S1(ξ1, ξ2, η1, η2, s) = (−ξ1, ξ2, η1,−η2,−s),
S2(ξ1, ξ2, η1, η2, s) = (ξ1,−ξ2,−η1, η2,−s),
S3(ξ1, ξ2, η1, η2, s) = (ξ1, ξ2,−η1,−η2,−s).

A solution ϕ(s) = (ξ1(s), ξ2(s), η1(s), η2(s)) of the differential equation is
invariant under the symmetry Si if Si(ϕ(s)) is also a solution of differential
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equation for i = 1, 2, 3. We say that ϕ(s) is Si symmetric if Si(ϕ(s)) = ϕ(s).
For more details, see Section 4.

The periodic solutions of the differential equation that governs the dy-
namic of the collinear charged 3-body can be simultaneously S1 and S2
symmetric, see Section 4. These kind of periodic solutions will be called
S12-symmetric periodic solutions. In analogous way, we have S13- and S23-
periodic solutions.

Our results on the S12-symmetric periodic solutions for small and positive
values of µ are given in the next theorem.

Theorem 1. Consider ν ∈ (0, 1), α > 0, γ > 0, h = h1 + h2 < 0 and p
and q odd positive integers. Then the S12-symmetric periodic solutions of
the charged 3-body problem (4) for µ = 0 and with the initial conditions

(a) ξ1(0) = 0, ξ2(0) =
√
−γ/h2, η1(0) =

√
8α(1− ν), η2(0) = 0,

(b) or ξ1(0) =
√
−α/h1, ξ2(0) = 0, η1(0) = 0, η2(0) =

√
8γν,

where h1 =

(
pα

qγ

) 2
3

h2

(
1− ν
ν

) 1
3

, can be continued to a µ-parameter family

of S12-symmetric periodic orbits of the charged 3-body problem (4) for µ > 0
and small.

For the periodic solutions having S13-symmetry we obtain the next result.

Theorem 2. Consider ν ∈ (0, 1), α > 0, γ > 0, h = h1 + h2 < 0, p is odd,
q is even positive integers, and either (p+ q − 1)/2 is even or (p+ q − 1)/2
is odd and αγ 6= −8(1− ν)h32. Then the S13-symmetric periodic solutions of
the charged 3-body problem (4) for µ = 0 with initial conditions

(a) ξ1(0) = 0, ξ2(0) =
√
−γ/h2, η1(0) =

√
8α(1− ν), η2(0) = 0,

(b) or ξ1(0) =
√
−α/h1, ξ2(0) =

√
−γ/h2, η1(0) = 0, η2(0) = 0,

where h1 =

(
pα

qγ

) 2
3

h2

(
1− ν
ν

) 1
3

, can be continued to a µ-parameter family

of S13-symmetric periodic orbits of the charged 3-body problem (4) for µ > 0
and small.

Finally for the S23-symmetric periodic solutions, we get:

Theorem 3. Consider ν ∈ (0, 1), α > 0, γ > 0, h = h1 + h2 < 0, p is even
and q is odd positive integers. Then the S23-symmetric periodic solutions of
the charged 3-body problem (4) for µ = 0 with initial conditions

(a) ξ1(0) =

√
α

−h1
, ξ2(0) = 0, η1(0) =

√
8α(1− ν), η2(0) =

√
8γν,

(b) or ξ1(0) =

√
α

−h1
, ξ2(0) =

√
γ

−h2
, η1(0) = 0, η2(0) = 0,
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where h1 =

(
pα

qγ

) 2
3

h2

(
1− ν
ν

) 1
3

, can be continued to a µ-parameter family

of S23-symmetric periodic orbits of the charged 3-body problem (4) for µ > 0
and small.

4. Symmetries of system (4)

The results obtained in this section are similar to the ones given in [5] for
the collinear uncharged three-body system. Consider the involutions

Id : (ξ1, ξ2, η1, η2, s) 7→ (ξ1, ξ2, η1, η2, s),

S1 : (ξ1, ξ2, η1, η2, s) 7→ (−ξ1, ξ2, η1,−η2,−s),
S2 : (ξ1, ξ2, η1, η2, s) 7→ (ξ1,−ξ2,−η1, η2,−s),
S3 : (ξ1, ξ2, η1, η2, s) 7→ (ξ1, ξ2,−η1,−η2,−s),
S4 : (ξ1, ξ2, η1, η2, s) 7→ (−ξ1,−ξ2,−η1,−η2, s),
S5 : (ξ1, ξ2, η1, η2, s) 7→ (−ξ1, ξ2,−η1, η2, s),
S6 : (ξ1, ξ2, η1, η2, s) 7→ (ξ1,−ξ2, η1,−η2, s),
S7 : (ξ1, ξ2, η1, η2, s) 7→ (−ξ1,−ξ2, η1, η2,−s).

A solution ϕ(s) = (ξ1(s), ξ2(s), η1(s), η2(s)) of system (4) is invariant un-
der the symmetry Si if Si(ϕ(s)) is also a solution of system (4) with i ∈
{1, . . . , 7}. We say that ϕ(s) is Si-symmetric if Si(ϕ(s)) = ϕ(s).

Note that the set {Id, S1, . . . , S7} with the usual composition forms an
abelian group isomorphic to Z2 ×Z2 ×Z2. This kind of symmetries usually
appear in Hamiltonian systems, see for example [3] and [14]. Note that the
symmetries S1, S2 and S3 generate the other ones. In fact,

S4 = S1 ◦ S2, S5 = S1 ◦ S3, S6 = S2 ◦ S3, S7 = S1 ◦ S2 ◦ S3.

Here we only consider the symmetric periodic orbits with respect to the
symmetries S1, S2 and S3. The periodic solutions of system (4) can be
simultaneously S1 and S2 symmetric. These kind of periodic solutions will
be called S12-symmetric periodic solutions. In analogous way we have the
S13- and the S23-periodic solutions. Using similar arguments to the ones
presented in [3] we can prove the following propositions.

Proposition 1. Consider ϕ(s) a solution of system (4). The following
statements hold.

(a) A solution ϕ(s) is a S12-symmetric periodic solution of period S if
and only if either ξ1(s0) = η2(s0) = 0 and ξ2(s0 + S/4) = η1(s0 +
S/4) = 0 and there is no s ∈ (s0, s0 +S/4) such that ξ2(s) = η1(s) =
0, or ξ2(s0) = η1(s0) = 0 and ξ1(s0 + S/4) = η2(s0 + S/4) = 0 and
there is no s ∈ (s0, s0 + S/4) such that ξ1(s) = η2(s) = 0.
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(b) A solution ϕ(s) is a S13-symmetric periodic solution of period S if
and only if either ξ1(s0) = η2(s0) = 0 and η1(s0 + S/4) = η2(s0 +
S/4) = 0 and there is no s ∈ (s0, s0 +S/4) such that η1(s) = η2(s) =
0, or η1(s0) = η2(s0) = 0 and ξ1(s0 + S/4) = η2(s0 + S/4) = 0 and
there is no s ∈ (s0, s0 + S/4) such that ξ1(s) = η2(s) = 0.

(c) A solution ϕ(s) is a S23-symmetric periodic solution of period S if
and only if either ξ2(s0) = η1(s0) = 0 and η1(s0 + S/4) = η2(s0 +
S/4) = 0 and there is no s ∈ (s0, s0 +S/4) such that η1(s) = η2(s) =
0 or, η1(s0) = η2(s0) = 0 and ξ2(s0 + S/4) = η1(s0 + S/4) = 0 and
there is no s ∈ (s0, s0 + S/4) such that ξ2(s) = η1(s) = 0.

Furthermore the next result, proved in [5], shows that there are no sym-
metric periodic solutions having more than two symmetries.

Proposition 2. There are no periodic solutions of system (4) which are
simultaneously Si-symmetric for i = 1, 2, 3.

5. Symmetric periodic orbits of system (4) for µ = 0

System (4) with µ = 0 is

(5)

dξ1
ds

=
η1ξ

2
2

1− ν
,

dξ2
ds

=
η2ξ

2
1

ν
,

dη1
ds

= ξ1

(
8γ − η22

ν
+ 8hξ22

)
,

dη2
ds

=
η21ξ2
ν − 1

+ 8ξ2
(
α+ hξ21

)
with Hamiltonian G given by

G =
1

2
ξ22

(
−8α− η21

ν − 1

)
+

1

2
ξ21ξ

2
2

(
−8γ

ξ22
+

η22
νξ22
− 8h

)
.

In coordinates (z1, z2, p1, p2) the Hamiltonian H, for µ = 0, is given by

H = H1(z1, p1) +H2(z2, p2)

where H1(z1, p1) =
1

2

(
p21

1− ν
− 2α

z1

)
and H2(z2, p2) =

1

2

(
p22
ν
− 2γ

z2

)
. Ob-

serve that the flow of system (5) on the energy level H = h is given by the
flow of the Hamiltonian H1(z1, p1) on the energy level H1 = h1, and by the
flow of the Hamiltonian H2(z2, p2) on the energy H2 = h2 with h = h1 +h2.
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In the Levi-Civita coordinates the Hamiltonians H1 and H2 are given by

(6)

H1(ξ1, η1) = − α
ξ21
− η21

8(ν − 1)ξ21
= h1,

H2(ξ2, η2) =
η22

8νξ22
− γ

ξ22
= h2.

Consider the solution ϕ(s) = (ξ1(s), ξ2(s), η1(s), η2(s)) of system (5) sat-
isfying the energy condition G = 0 (or equivalently H = h) and we define
the new times σ and τ as follows

(7)

dσ

ds
= ξ22 , or equivalently

dt

dσ
= 4ξ21 ,

dτ

ds
= ξ21 , or equivalently

dt

dτ
= 4ξ22 .

Note that (ξ1, η1) satisfies the system of differential equations

(8)

dξ1
dσ

=
η1

1− ν
,

dη1
dσ

= 8h1ξ1,

and (ξ2, η2) satisfies the system of differential equations

(9)

dξ2
dτ

=
η2
ν
,

dη2
dτ

= 8h2ξ2.

Therefore considering the new times σ and τ the functions G1 = G/ξ22 and
G2 = G/ξ21 are

G1 =
8α(ν − 1) + η21 + 8h1(ν − 1)ξ21

2(1− ν)
,

G2 =
η22 − 8ν

(
γ + h2ξ

2
2

)
2ν

.

These two functions are the Hamiltonians of system (8) and (9) respectively.
Our objective now is to study the periodic solutions of systems (8) and (9).
Thus, fixing h1 < 0 we can integrate system (8) directly with the initial
conditions ξ1(0) = ξ10 and η1(0) = η10, obtaining the solution (ξ1(σ), η1(σ))
given by

(10)
ξ1(σ) = ξ10 cos (ω1σ) +

η10
ω1(1− ν)

sin (ω1σ) ,

η1(σ) = η10 cos (ω1σ)− ξ10ω1(1− ν) sin (ω1σ) ,
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where ω1 =

√
−8h1
1− ν

. Note that solution (10) is a periodic solution of system

(8) with period σ = 2π/ω1. Assuming that solution (10) satisfies the energy
relation G1 = 0 we obtain the following relationship between the initial
conditions ξ10 and η10:

(11) −4α+
η210

2− 2ν
− 4h1ξ

2
10 = 0.

Moreover by the parametrization of the time given in (7) we obtain the
period of this solution in terms of the time t, i.e.

T1(h1, α, ν) =

∫ σ

0
4ξ21(σ)dσ =

√
2(1− ν)πα

h1
√
−h1

.

Similarly fixing h2 < 0 we can integrate system (9) with the initial conditions
ξ2(0) = ξ20 and η2(0) = η20, getting the solution (ξ2(τ), η2(τ)) given by

(12)
ξ2(τ) = −ξ20 cos (ω2τ) +

η20
ω2ν

sin (ω2τ) ,

η2(τ) = η20 cos (ω2τ) + ξ20ω2ν sin (ω2τ) ,

where ω2 =

√
−8h2
ν

. Solution (12) is periodic with period τ = 2π/ω2.

Assuming that solution (12) satisfies the energy relation G2 = 0, the initial
conditions ξ20 and η20 satisfy the equation

(13)
η220 − 8ν

(
γ + h2ξ

2
20

)
2ν

= 0,

and by (7) the period of solution (12) in time t is given by

T2(h2, γ, ν) =

∫ τ

0
4ξ22(τ)dτ =

πγ
√
−2νh2
h22

.

In the following we summarize the relationship between the times σ, τ, t and
s:

Time σ τ t s
Period σ∗ = pσ τ∗ = qτ T = pT1(h1, α, ν) = qT2(h2, γ, ν) S∗ = s(T )

Period/4 σ∗/4 τ∗/4 T/4 S∗/4

Table 1. Period of the solution ϕ(s) of (5).

Proposition 3. Consider the periodic solutions (ξ1(σ), η1(σ)) the (ξ2(τ), η2(τ))
of systems (8) and (9) with periods σ and τ , satisfying the energy conditions
G1 = 0 and G2 = 0, respectively. Assume that the functions σ(s) and τ(s)
given in (7) satisfy σ(0) = τ(0) = 0 and there is no s ∈ R such that
ξ1(σ(s)) = ξ2(τ(s)) = 0. Then the following statements holds.
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(a) The solution ϕ(s) = (ξ1(σ(s)), ξ2(τ(s), η1(σ(s), η2(τ(s)) of system
(5) with initial condition ξ1(0) = ξ10, ξ2(0) = ξ20, η1(0) = η10, η2(0) =
η20 satisfies the energy relation G(ξ10, ξ20, η10, η20) = 0.

(b) If h1 =

(
pα

qγ

) 2
3

h2

(
1− ν
ν

) 1
3

for some p, q ∈ N coprime, then ϕ(s)

is a periodic solution of system (5).
(c) Let s(t) be the inverse function of

t(s) =

∫ s

0
4ξ21(θ)ξ22(θ)dθ.

For the h1 given in (b) the period and the quarter of period in times
σ, τ, t and s are given in Table 1.

Proof. The proof of the statement (a) follows by the definition of (ξ1(σ), η1(σ)),
(ξ2(τ), η2(τ)) together with the fact that the initial conditions satisfy the
equations (11) and (13).

Note that when we consider the time t the periodic solutions (ξ1(σ), η1(σ))
and (ξ2(τ), η2(τ)) possess periods T1(h1, α, ν) and T2(h2, γ, ν), respectively.
Therefore, there exist a periodic solution of system (5) because

(14) pT1(h1, α, ν) = qT2(h2, γ, ν),

for some p, q ∈ N coprime. Solving equation (14) we obtain the expression
given in statement (b). Note that the time t = T/4 corresponds to the time
σ = σ∗/4, and similarly for the times τ = τ∗/4 and s = S∗/4. Furthermore
system (8) is invariant under the symmetry

(ξ1, η1, σ) 7→ (−ξ1, η1,−σ).

Therefore the function ξ1 satisfies ξ1(σ) = −ξ1(−σ), i.e., ξ21(σ) is an even
function. Therefore the period of ξ21 is given by σ/2 and we get

T1 =

∫ σ

0
4ξ21(σ)dσ = 2

∫ σ/2

0
4ξ21(σ)dσ = 4

∫ σ/4

0
4ξ21(σ)dσ.

On the other hand we have

t(σ∗/4) =

∫ pσ/4

0
4ξ21(σ)dσ = p

∫ σ/4

0
4ξ21(σ)dσ = p

T1
4

=
T

4
.

Therefore the time t = T/4 corresponds to the time σ = σ∗/4. Analogously
we get that t = T/4 corresponds to the time τ = τ∗/4 and statement (c) is
proved. �

Observe that by statement (c) of Proposition 3 we have that dt/ds > 0
when there are no collisions, and zero in the binary collisions. Therefore the
inverse function s = s(t) exists always that the system has no triple collision,
and it is differentiable if there is no binary collisions. As in the uncharged
case studied in [5], page 128, the number p in Proposition 3 represents the
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number of binary collisions between m1 and m2, and the number q the
binary collisions between the particles m2 and m3.

We stress that the main objective of this paper is to analyse the peri-
odic orbits of system (4) satisfying the energy relation G = 0. So the next
proposition provides the initial conditions in order to prove that the solu-
tions of system (4) are symmetric. Consider the initial conditions given in
Proposition 3.

Proposition 4. The following statements hold.

(a) If p and q are odd then the solution ϕ(s) given in Proposition 3 with
initial conditions

either ξ10 = 0, ξ∗20 =

√
γ

−h2
, η∗10 =

√
8α(1− ν), η20 = 0,

or ξ∗10 =

√
α

−h1
, ξ20 = 0, η10 = 0, η∗20 =

√
8γν,

is a S12-symmetric periodic solution.
(b) If p is odd and q is even then the solution ϕ(s) given in Proposition

3 with initial conditions

either ξ∗10 = 0, ξ∗20 =

√
γ

−h2
, η∗10 =

√
8α(1− ν), η∗20 = 0,

or ξ∗10 =

√
α

−h1
, ξ∗20 =

√
γ

−h2
, η∗10 = 0, η∗20 = 0,

is a S13-symmetric periodic solution.
(c) If p is even and q is odd then the solution ϕ(s) given in Proposition

3 with initial conditions

either ξ∗10 =

√
α

−h1
, ξ∗20 = 0, η∗10 = 0, η∗20 =

√
8γν,

or ξ∗10 =

√
α

−h1
, ξ∗20 =

√
γ

−h2
, η∗10 = 0, η∗20 = 0,

is a S23-symmetric periodic solution.

Proof. Consider the solution ϕ(s) = (ξ1(σ(s)), ξ2(τ(s)), η1(σ(s)), η2(τ(s))) of
system (4). The proof follows evaluating ϕ(s) at times s = 0 and s = S∗/4,
as given in Table 1. �

Remark 1. Note that the Levi-Civita transformation duplicates the number
of orbits. Hence it is sufficient to consider the positive square roots of the
initial conditions given in Proposition 4.
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6. The continuation method and the symmetric periodic
solutions

For the initial conditions provided in Proposition 4 we have S12-, S13-,
S23-symmetric periodic orbits for system (4) when µ = 0. To provide sym-
metric periodic orbits for small positive values of µ we apply the continuation
method of Poincaré.

6.1. S12-symmetric periodic solutions. By Proposition 4 the solution
ϕ(s; ξ10, ξ20, η10, η20, (α, β, γ, ν, µ)) of system (4) for µ = 0 is a S12-symmetric
if the initial conditions satisfies

(a) either ξ1(0) = 0, ξ2(0) = ξ∗20, η1(0) = η∗10, η2(0) = 0;
(b) or ξ1(0) = ξ∗10, ξ2(0) = 0, η1(0) = 0, η2(0) = η∗20;

for fixed values of α, β, γ, ν and h.

6.1.1. Case (a). By statement (a) of Proposition 1 we have that the solu-
tion ϕ is a S12-symmetric periodic solution of the charged collinear 3-body
problem with period S satisfying the energy condition G = 0 if and only if

ξ2(S/4; ξ20, η10, (α, β, γ, µ)) = 0,

η1(S/4; ξ20, η10, (α, β, γ, µ)) = 0,

G(ξ20, η10, (α, β, γ, µ)) = 0.

The solution of the last equation in terms of η10 is given by

η10 =

√
8α(1− µ)(1− ν)

1− µν
.

Thus the solution ϕ(s; 0, ξ20, η10, 0, (α, β, γ, ν, µ)) is a S12-symmetric periodic
solution of system (4) that satisfies G = 0 if and only if

(15)
ξ2(S/4; ξ20, (α, β, γ, µ)) = 0,

η1(S/4; ξ20, (α, β, γ, µ)) = 0.

Statement (a) of Proposition 4 provides additional information on the initial
conditions and on the numbers p and q, see Table 1, for these symmetric
periodic solutions. Thus if p = 2m+1, q = 2k+1, S = S∗ = s(pT1(h1, α)) =

s(qT2(h2, γ)), ξ20 =

√
γ

−h2
and η10 =

√
8α(1− ν), with m and k positive

integers, then ϕ(s; 0, ξ20, η10, 0, (α, β, γ, ν, 0)) is a S12-symmetric solution of
system (4) for µ = 0 and the energy level H = h = h1 + h2 satisfies the

condition h1 =

(
pα

qγ

) 2
3

h2

(
1− ν
ν

) 1
3

given in statement (b) of Proposition

3. Our objective now is to extend this solution to µ > 0 and small. Applying
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the Implicit Function Theorem to system (15) in a neighbourhood of a known
solution we have that if

(16)

∣∣∣∣∣∣∣
∂ξ2
∂s

∂ξ2
∂ξ20

∂η1
∂s

∂η1
∂ξ20

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
s = S∗/4
ξ20 = ξ∗20
µ = 0

6= 0,

then there exist unique analytic functions ξ20 = ξ20(µ) and S = S(µ) defined
for µ ≥ 0 sufficiently small that satisfy

(i) ξ20(0) = ξ∗20 and S(0) = S∗,
(ii) and ϕ(s; 0, ξ20, η10, 0, µ) is a S12-symmetric periodic solution of (4)

with period S = S(µ) satisfying the energy condition G = 0.

Note that the derivatives ∂ξ2/∂s and ∂η1/∂s are obtained evaluating the
right hand of system (4) for µ = 0, s = S∗/4 and with the initial conditions
(0, ξ∗20, η10, 0). So

∂ξ2
∂s

∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

=
1

ν
η2ξ

2
1

∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

= (−1)k
α

h∗1

√
8γ

ν
6= 0,

and
∂η1
∂s

∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

= 8h2ξ2| s = S∗/4
ξ20 = ξ∗20
µ = 0

= 0.

Therefore it remains to calculate ∂η1/∂ξ20 evaluated at s = S∗/4, ξ20 = ξ∗20
and µ = 0. We obtain this value derivating the solution of system (5)

η1(σ(s); 0, ξ20, η10, 0),

with respect to the variable ξ20, where the initial conditions ξ1(0) = 0, ξ2(0) =
ξ20, η1(0) = η10, η2(0) = 0 satisfy the energy relation G = 0. So

∂η1(σ(s); 0, ξ20, η10, 0, 0)

∂ξ20

∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

=

(
∂η1
∂σ

∂σ(s)

∂ξ20
+
∂η1
∂ξ20

)∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

.

By (7) we get the relationship between ξ20, τ and σ

ξ21(σ)dσ = ξ22(τ)dτ.

Integrating this equation and assuming that σ(0) = 0 and τ(0) = 0 we
obtain the relation between σ(s) and τ(s), i.e.

(17)

α(1− µ)

h21(1− µν)

(√
−2h1(1− ν) sin(2ω1σ(s))− 8h1σ(s)

)
−ξ220

(
−
√

2ν sin(2ω2τ(s))√
−h2

+ 8τ(s)

)
= 0,
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where ω1 =

√
−8h1
1− ν

, ω2 =

√
−8h2
ν

, h2 = − γ

ξ220
and h1 = h−h2. Derivating

implicitly equation (17) with respect to the variable ξ20 we obtain(
∂σ(s)

∂ξ20

)∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

=
πqh1

√
−h2γν

4
√

2α (−h2)3/2
.

From (8) and (10) we get(
∂η1
∂σ

)∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

= (−1)m+18
√
−αh1,

and (
∂η1
∂ξ20

)∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

= (−1)m+1πh1q
√
−2γνh1

h2
√
α

.

So (
∂η1(σ(s); 0, ξ20, η10, 0, 0)

∂ξ20

)∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

= (−1)m+1 2πh1q
√
−2γνh1

h2
√
α

.

Finally the determinant (16) is given by

(−1)k+m(2k + 1)
8πγ
√
−αh1
h2

.

Therefore we conclude that the determinant is zero if and only if αγ = 0.

6.1.2. Case (b). As in the previous case, from the second part of statement
(a) of Proposition 1 we have that the solution ϕ is a S12-symmetric periodic
solution with period S satisfying the energy condition G = 0 if and only if

ξ1(S/4; ξ10, η20, (α, β, γ, µ)) = 0,

η2(S/4; ξ10, η20, (α, β, γ, µ)) = 0,

G(ξ10, η20, (α, β, γ, µ)) = 0.

The solution of G = 0 in terms of η20 is given by

η20 =

√
8γν(1− µ)√
µν − µ+ 1

.

So the solution ϕ(s; ξ10, 0, 0, η20, (α, β, γ, ν, µ)) is a S12-symmetric periodic
solution of system (4) that satisfies G = 0 if and only if

(18)
ξ1(S/4; ξ10, (α, β, γ, µ)) = 0,

η2(S/4; ξ10, (α, β, γ, µ)) = 0.

Again by statement (a) of Proposition 4 we obtain the initial conditions and
the numbers p and q to have symmetric periodic solutions (see Table 1),
i.e. p = 2m + 1, q = 2k + 1, S = S∗ = s(pT1(h1, α)) = s(qT2(h2, γ)), ξ∗10 =
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α

−h1
, η∗20 =

√
8γν, for µ = 0 and the energy level H = h = h1 + h2

satisfies the condition h1 =

(
pα

qγ

) 2
3

h2

(
1− ν
ν

) 1
3

given in statement (b)

of Proposition 3. As in the previous case applying the Implicit Function
Theorem to system (22) in a neighborhood of a known solution we have
that if

(19)

∣∣∣∣∣∣∣
∂ξ1
∂s

∂ξ1
∂ξ10

∂η2
∂s

∂η2
∂ξ10

∣∣∣∣∣∣∣∣∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

6= 0,

then there exist unique analytic functions ξ10 = ξ10(µ) and S = S(µ) defined
for µ ≥ 0 sufficiently small that satisfies

(i) ξ10(0) = ξ∗10 and S(0) = S∗,
(ii) and ϕ(s; ξ10, 0, 0, η20, µ) is a S12-symmetric periodic solution of sys-

tem (4) with period S = S(µ) satisfying the energy condition G = 0.

In the same way as we work in the previous case we obtain

∂ξ1
∂s

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

= (−1)2k+m
γ

h2

√
8α

1− ν
6= 0,

and
∂η2
∂s

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

= 0.

So it remains to calculate ∂η2/∂ξ10 evaluated at s = S∗/4, ξ10 = ξ∗10 and µ =
0. This derivative is obtained derivating the solution η2(τ(s); ξ10, 0, 0, η20, 0)
of system (5) evaluated in ξ10 = ξ∗10, ξ2(0) = 0, η1(0) = 0, η2(0) = η20, s =
S∗/4 and satisfying the energy relation G = 0. Then

∂η2(τ(s); ξ10, 0, 0, η20, 0)

∂ξ10

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

=

(
∂η2
∂τ

∂τ(s)

∂ξ10
+
∂η2
∂ξ10

)∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

.

As in the previous case we obtain(
∂η2(τ(s); ξ10, 0, 0η20, 0)

∂ξ10

)∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

= (−1)k
h2pπ

h1

√
−8αh2(1− ν)

γ
,

and the determinant (19) is given by

(−1)k+m+1 8pπα

h1

√
−γh2 .

Therefore we conclude that this determinant is zero if and only if αγ = 0
and Theorem 1 is proved.
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6.2. S13-symmetric periodic orbits. By Proposition 4 the solution ϕ(s; ξ10,
ξ20, η10, η20, (α, β, γ, ν, µ)) of system (4) for µ = 0 is a S13-symmetric if the
initial conditions satisfies

(a) either ξ1(0) = 0, ξ2(0) = ξ∗20, η1(0) = η∗10, η2(0) = 0;
(b) or ξ1(0) = ξ∗10, ξ2(0) = ξ∗20, η1(0) = 0, η2(0) = 0;

for fixed values of α, β, γ, ν and h.

6.2.1. Case (a). By statement (b) of Proposition 1 we have that the solu-
tion ϕ is a S13-symmetric periodic solution of the charged collinear 3-body
problem with period S satisfying the energy condition G = 0 if and only if

η1(S/4; ξ20, η10, (α, β, γ, µ)) = 0,

η2(S/4; ξ20, η10, (α, β, γ, µ)) = 0,

G(ξ20, η10, (α, β, γ, µ)) = 0.

Solving the last equation in terms of η10 we obtain

η10 =

√
8α(1− µ)(1− ν)

1− µν
.

Then the solution ϕ(s; 0, ξ20, η10, 0, (α, β, γ, ν, µ)) is a S12-symmetric periodic
solution of system (4) that satisfies G = 0 if and only if

(20)
η1(S/4; ξ20, (α, β, γ, µ)) = 0,

η2(S/4; ξ20, (α, β, γ, µ)) = 0.

Statement (b) of Proposition 4 provides the initial conditions and numbers p
and q, see Table 1 in order that these periodic orbits are symmetric, i.e. p =

2m + 1, q = 2k, S = S∗ = s(pT1(h1, α)) = s(qT2(h2, γ)), ξ20 =

√
γ

−h2
and

η10 =
√

8α(1− ν), withm and k positive integers, then ϕ(s; 0, ξ20, η10, 0, (α, β,
γ, ν, 0)) is a S13-symmetric solution for system (4) for µ = 0. Moreover, the

energy levelH = h = h1+h2 satisfies the condition h1 =

(
pα

qγ

) 2
3

h2

(
1− ν
ν

) 1
3

given in statement (b) of Proposition 3. Our objective now is to extend this
solution for µ > 0 and small. Applying the Implicit Function Theorem in
system (20) in a neighborhood of a known solution we have that if

(21)

∣∣∣∣∣∣∣
∂η1
∂s

∂η1
∂ξ20

∂η2
∂s

∂η2
∂ξ20

∣∣∣∣∣∣∣∣∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

6= 0,

then there exist unique analytic functions η20 = η20(µ) and S = S(µ) defined
for µ ≥ 0 sufficiently small that satisfies
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(i) η20(0) = 0 and S(0) = S∗,
(ii) and ϕ(s; 0, ξ20, η10, 0, µ) is a S13-symmetric periodic solution of sys-

tem (4) with period S = S(µ) satisfying the energy condition G = 0.

As in the previous case we get that

∂η1
∂s

∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

= (−1)2k+m
8γ

h2

√
−αh1 6= 0,

and
∂η2
∂s

∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

= (−1)k+2m+1 8α

h1

√
−γh2 6= 0.

Now we have to calculate the other two derivatives ∂η1/∂ξ20 and ∂η2/∂ξ20
evaluated at s = S∗/4, ξ20 = ξ∗20 and µ = 0. We obtain these values
derivating the solutions η1(σ(s); 0, ξ20, η10, 0) and η2(τ(s); 0, ξ20, η10, 0) of
system (5) with respect to the variable ξ20, where the initial conditions
ξ1(0) = 0, ξ2(0) = ξ20, η1(0) = η10, η2(0) = 0 satisfy the energy relation
G = 0. So

∂η1(σ(s); 0, ξ20, η10, 0)

∂ξ20

∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

=

(
∂η1
∂σ

∂σ(s)

∂ξ20
+
∂η1
∂ξ20

)∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

is
(−1)m+14h21

h2
(1− ν)

√
−αh1[πq

√
2γν + 4γ

∂τ

∂s
(
√
−γ/h2)],

and

∂η2(τ(s); 0, ξ20, η10, 0)

∂ξ20

∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

=

(
∂η2
∂τ

∂τ(s)

∂ξ20
+
∂η2
∂ξ20

)∣∣∣∣ s = S∗/4
ξ20 = ξ∗20
µ = 0

is

(−1)k16
√
−γh2

∂τ

∂s
(
√
−γ/h2).

Therefore determinant (21) is given by

(−1)k+m16πqγ

√
2ανh1
h2

.

Hence we conclude that the determinant is zero if and only if αγ = 0.

6.2.2. Case (b). From the second part of statement (b) of Proposition 1 the
solution ϕ is a S13-symmetric periodic solution with period S satisfying the
energy condition G = 0 if and only if

ξ1(S/4; ξ10, ξ20, (α, β, γ, µ)) = 0,

η2(S/4; ξ10, ξ20, (α, β, γ, µ)) = 0,

G(ξ10, ξ20, (α, β, γ, µ)) = 0.
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Therefore the solution of the equation G = 0 in terms of ξ20 is given by

ξ20 =

√
αh2 − h1(γ + βµ) +

√
(αh2)2 + 2h1h2α(γ − βµ) + h21(γ + βµ)2

2h1h2
.

So the solution ϕ(s; ξ10, 0, 0, η20, (α, β, γ, ν, µ)) is a S13-symmetric periodic
solution of system (4) that satisfies G = 0 if and only if

(22)
ξ1(S/4; ξ10, (α, β, γ, µ)) = 0,

η2(S/4; ξ10, (α, β, γ, µ)) = 0.

Again by statement (b) of Proposition 4 we have the initial conditions and
the numbers p and q (see Table 1) in order to the solutions are symmetric,
i.e. p = 2m + 1, q = 2k, S = S∗ = s(pT1(h1, α)) = s(qT2(h2, γ)), ξ∗10 =√

α

−h1
, η∗20 =

√
8γν, for µ = 0. Furthermore the energy level H = h =

h1+h2 satisfies the condition h1 =

(
pα

qγ

) 2
3

h2

(
1− ν
ν

) 1
3

given in statement

(b) of Proposition 3. As in the previous case applying the Implicit Function
Theorem to system (22) in a neighbourhood of a known solution we have
that if

(23)

∣∣∣∣∣∣∣
∂ξ1
∂s

∂ξ1
∂ξ10

∂η2
∂s

∂η2
∂ξ10

∣∣∣∣∣∣∣∣∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

6= 0,

then there exist unique analytic functions ξ10 = ξ10(µ) and S = S(µ) defined
for µ ≥ 0 sufficiently small that satisfy

(i) ξ10(0) = ξ∗10 and S(0) = S∗,
(ii) and ϕ(s; ξ10, 0, 0, η20, µ) is a S13-symmetric periodic solution of sys-

tem (4) with period S = S(µ) satisfying the energy condition G = 0.

Analogously to the previous case we obtain

∂ξ1
∂s

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

= (−1)2k+m
γ

h2

√
8α

1− ν
6= 0,

and
∂η2
∂s

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

= 0.

So it remains to calculate ∂η2/∂ξ10 evaluated at s = S∗/4, ξ10 = ξ∗10 and µ =
0. This derivative is obtained by derivating the solution η2(τ(s); ξ10, ξ20, 0, 0, 0)
of system (5) evaluated in ξ10 = ξ∗10 and s = S∗/4 with initial conditions

ξ10 = ξ10, ξ2(0) = ξ20, η1(0) = 0, η2(0) = 0
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satisfying the energy relation G = 0. Then

∂η2(τ(s); ξ10, ξ20, 0, 0, 0)

∂ξ10

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10

=

(
∂η2
∂τ

∂τ(s)

∂ξ10
+
∂η2
∂ξ10

)∣∣∣∣ s = S∗/4
ξ10 = ξ∗10

.

As in the previous case we obtain that

∂η2(τ(s); ξ10, ξ20, 0, 0, 0)

∂ξ10

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10

is
(−1)kpπ

2γh1
((−1)k+mαγ −

√
−8αγ(1− ν)h32 ),

and determinant (23) is given by

(−1)k+m+1

√
2pπα

h1h2
((−1)k+mγ

√
α/(1− ν) +

√
−8γh32 ) .

Therefore we conclude that this determinant is zero if and only if either
αγ = 0, or k +m is odd and αγ = −8(1− ν)h32. So, Theorem 2 is proved.

6.3. S23-symmetric periodic solutions. By Proposition 4 the solution
ϕ(s; ξ10, ξ20, η10, η20, (α, β, γ, ν, µ)) of system (4) for µ = 0 is a S23-symmetric
if the initial conditions satisfy

(a) either ξ1(0) = ξ∗10, ξ2(0) = 0, η1(0) = 0, η2(0) = η∗20;
(b) or ξ1(0) = ξ∗10, ξ2(0) = ξ∗20, η1(0) = 0, η2(0) = 0;

for fixed values of α, β, γ, ν and h.

6.3.1. Case (a). By the statement (c) of Proposition 1 we have that the
solution ϕ is a S23-symmetric periodic solution of the charged collinear 3-
body problem with period S satisfying the energy condition G = 0 if and
only if

ξ1(S/4; ξ10, η20, (α, β, γ, µ)) = 0,

η2(S/4; ξ10, η20, (α, β, γ, µ)) = 0,

G(ξ20, η10, (α, β, γ, µ)) = 0.

Solving the last equation in terms of η10 we obtain

η20 =

√
8γν(1− µ)

1− µ+ µν
.

So the solution ϕ(s; ξ10, 0, 0, η20, (α, β, γ, ν, µ)) is a S23-symmetric periodic
solution of system (4) satisfying G = 0 if and only if

(24)
ξ1(S/4; ξ10, (α, β, γ, µ)) = 0,

η2(S/4; ξ10, (α, β, γ, µ)) = 0.
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Statement (c) of Proposition 4 provides the initial conditions and the num-
bers p and q, see Table 1 in order to the periodic orbits be symmetric. More
precisely, if p = 2m, q = 2k + 1, S = S∗ = s(pT1(h1, α)) = s(qT2(h2, γ)),

ξ∗10 =

√
α

−h1
and η∗20 =

√
8γν, with m and k positive integers, then

ϕ(s; ξ∗10, 0, 0, η∗20, (α, β, γ, ν, 0)) is a S23-symmetric solution for system (4)
for µ = 0. Moreover the energy level H = h = h1 +h2 satisfies the condition

h1 =

(
pα

qγ

) 2
3

h2

(
1− ν
ν

) 1
3

given in statement (c) of Proposition 3. Our

objective now is extend this solution for µ > 0 and small. Applying the
Implicit Function Theorem in system (24) in a neighbourhood of a known
solution we have that if∣∣∣∣∣∣∣

∂ξ1
∂s

∂ξ1
∂ξ10

∂η2
∂s

∂η2
∂ξ10

∣∣∣∣∣∣∣∣∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

6= 0,

then there exist unique analytic functions η10 = η10(µ) and S = S(µ) defined
for µ ≥ 0 sufficiently small that satisfy

(i) η10(0) = 0 and S(0) = S∗,
(ii) and ϕ(s; ξ10, 0, 0, η20, µ) is a S23-symmetric periodic solution of sys-

tem (4) with period S = S(µ) satisfying the energy condition G = 0.

We have

∂ξ1
∂s

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

= 0,

and

∂η2
∂s

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

= (−1)k+1 8α

h1

√
−γh2 6= 0.

So we have to calculate the derivative ∂ξ1/∂ξ10 evaluated at s = S∗/4, ξ10 =
ξ∗10 and µ = 0. As in the previous cases we obtain that

∂ξ1(σ(s); ξ10, 0, 0, η20)

∂ξ10

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

=

(
∂ξ1
∂σ

∂σ(s)

∂ξ10
+

∂ξ1
∂ξ10

)∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

is (−1)m+1. Now determinant (23) is

(−1)m+k 8α

h1

√
−γh2 .

Therefore we conclude that the determinant is zero if and only if αγ = 0.
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6.3.2. Case (b). From the second part of statement (c) of Proposition 1 the
solution ϕ is a S23-symmetric periodic solution with period S satisfying the
energy condition G = 0 if and only if

ξ1(S/4; ξ10, ξ20, (α, β, γ, µ)) = 0,

ξ2(S/4; ξ10, ξ20, (α, β, γ, µ)) = 0,

G(ξ10, ξ20, (α, β, γ, µ)) = 0.

The solution of the equation G = 0 in terms of ξ20 is given by

ξ20 =

√
αh2 − h1(γ + βµ) +

√
(αh2)2 + 2h1h2α(γ − βµ) + h21(γ + βµ)2

2h1h2
.

So the solution ϕ(s; ξ10, ξ20, 0, 0, (α, β, γ, ν, µ)) is a S23-symmetric periodic
solution of system (4) that satisfies G = 0 if and only if

(25)
ξ1(S/4; ξ10, (α, β, γ, µ)) = 0,

ξ2(S/4; ξ10, (α, β, γ, µ)) = 0.

Again by statement (c) of Proposition 4 we have the initial conditions and
the numbers p and q (see Table 1) to have symmetric periodic solutions.
That is, p = 2m, q = 2k + 1, S = S∗ = s(pT1(h1, α)) = s(qT2(h2, γ)), ξ∗10 =√

α

−h1
, ξ∗20 =

√
γ

−h2
, for µ = 0. Furthermore the energy level H = h =

h1+h2 satisfies the condition h1 =

(
pα

qγ

) 2
3

h2

(
1− ν
ν

) 1
3

given in statement

(c) of Proposition 3. As in the previous case applying the Implicit Function
Theorem to system (25) in a neighborhood of a known solution we have that
if

(26)

∣∣∣∣∣∣∣
∂ξ1
∂s

∂ξ1
∂ξ10

∂ξ2
∂s

∂ξ2
∂ξ10

∣∣∣∣∣∣∣∣∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

6= 0,

then there exist unique analytic functions ξ10 = ξ10(µ) and S = S(µ) defined
for µ ≥ 0 sufficiently small that satisfies

(i) ξ10(0) = ξ∗10 and S(0) = S∗,
(ii) and ϕ(s; ξ10, ξ20, 0, 0, µ) is a S23-symmetric periodic solution of sys-

tem (4) with period S = S(µ) satisfying the energy condition G = 0.

Working as in the previous cases we get

∂ξ1
∂s

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

= 0,
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and

∂ξ2
∂s

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
µ = 0

= (−1)k
√

8α

h1

√
γ

ν
.

So it remains to calculate ∂ξ1/∂ξ10 evaluated at s = S∗/4, ξ10 = ξ∗10 and µ =
0. This derivative is obtained derivating the solution ξ1(σ(s); ξ10, ξ20, 0, 0, 0)
of system (5) evaluated at ξ10 = ξ∗10 and s = S∗/4 with initial conditions

ξ10 = ξ10, ξ2(0) = ξ20, η1(0) = 0, η2(0) = 0

satisfying the energy relation G = 0. Then

∂ξ1(σ(s); ξ10, ξ20, 0, 0, 0)

∂ξ10

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10

=

(
∂ξ1
∂σ

∂σ(s)

∂ξ10
+
∂σ1
∂ξ10

)∣∣∣∣ s = S∗/4
ξ10 = ξ∗10

.

As the previous case, we obtain

∂ξ1(σ(s); ξ10, ξ20, 0, 0, 0)

∂ξ10

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10

is (−1)m, and determinant (26) is given by

(−1)k+m
α

h1

√
8γ

ν
.

Therefore we conclude that this determinant is zero if and only if αγ = 0.
This completes the proof of Theorem 3.

7. Concluding remarks

In this paper we study the periodic solutions of the collinear charged
3-body problem which are S12-, S13- and S23- symmetric. Applying the
continuation method of Poincaré we obtain that six families of symmetric
periodic orbits can be extend from µ = 0 to small positive values of µ. In [5]
it was studied a similar problem, but in that paper the bodies are uncharged
and applying the continuation method of Poincaré only three families of
periodic orbits can be extended from µ = 0 to µ small and positive.

If we consider that families the values of the charges q1, q2, q3 tends to zero
then, for each symmetry Sij considered, we observe that one of the families
of periodic orbits converge continuously to one of the families of periodic
orbits given in [5], and the other one the continuation method cannot be
applied because the determinant of the partial derivatives of the system is
zero. In fact, the expression of the charges qi in terms of the parameters
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α, β, γ, µ, ν are given by

q1(α, β, γ, µ, ν) =

µ((µ− 1)(ν − 1)− α)

√
−β + (1− ν)ν

α− µν + µ+ ν − 1√
γ + (µ− 1)ν

,

q2(α, β, γ, µ, ν) =

√
(α− µν + µ+ ν − 1)(γ + (µ− 1)ν)

−β + (1− ν)ν
,

q3(α, β, γ, µ, ν) = −µ
√
γ + (µ− 1)ν

√
− β + (ν − 1)ν

α− µν + µ+ ν − 1
.

The charges q1, q2 and q3 are zero for the value of parameters α = α∗ =
(µ− 1)(ν − 1), β = β∗ = (1− ν)ν and γ = γ∗ = ν(1− µ). Considering these
values of parameters, we have that determinant (16) is

(−1)k+m+1 8πν(2k + 1)
√
−h1(1− ν)

h2
,

which is distinct of zero and therefore it is possible to perform the continu-
ation method of Poincaré. With the values of parameters α∗, β∗ and γ∗ the
initial conditions given in statement (a) of Theorem 1 are ξ2(0) =

√
−ν/h2

and η1(0) =
√

8(ν − 1) that coincide with the initial conditions of the S12-
symmetric periodic solution given in Theorem 5.1 of [5].

However for statement (b) of Theorem 1 the determinant (19) with the
parameters α∗, β∗ and γ∗ is zero. The same happens for the others periodic
symmetric orbits with symmetries S13- and S23-.
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Brazil.

E-mail address: djtonon@ufg.br


