FORMAL AND ANALYTIC INTEGRABILITY OF THE BELOUSOV–ZHABOTINSKII SYSTEM

JAUME LLIBRE¹ AND CLÀUDIA VALLS²

ABSTRACT. The well-known Belousov–Zhabotinskii system can be written as $\dot{x} = s(x + y - qx^2 - xy)$, $\dot{y} = s^{-1}(-y + fz - xy)$ and $\dot{z} = w(x - z)$. Here we study the first integrals of the Belousov– Zhabotinskii system that can be described by formal power series.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The Belousov–Zhabotinskii system (see [1]):

(1) $\dot{x} = s(x + y - qx^2 - xy)$, $\dot{y} = s^{-1}(-y + fz - xy)$, $\dot{z} = w(x - z)$, is one of the most interesting and best understood dynamical oscillators, where x, y, z are real variables, and s, f, q, w are real parameters. This system has been intensively investigated as a dynamical system (see for instance [3, 4, 8, 12, 13, 14]).

The associated vector field of the Belousov–Zhabotinskii system is

$$X = s(x + y - qx^{2} - xy)\frac{\partial}{\partial x} + s^{-1}(-y + fz - xy)\frac{\partial}{\partial y} + w(x - z)\frac{\partial}{\partial z}.$$

Let U be an open subset of \mathbb{R}^3 and let $g: U \to \mathbb{R}$ be a C^1 function. Then g is a *first integral* of system (1) if it is not a constant function and satisfies

$$Xg = s(x+y-qx^2-xy)\frac{\partial g}{\partial x} + s^{-1}(-y+fz-xy)\frac{\partial g}{\partial y} + w(x-z)\frac{\partial g}{\partial z} = 0.$$

Therefore, the function g is constant over the solutions of the Belousov– Zhabotinskii system (1) contained in U.

In this paper a formal first integral g = g(x, y, z) of system (1) is a non-constant formal power series in the variables x, y and z satisfying Xg = 0. Note that if the power series is convergent in an open subset U of \mathbb{R}^3 , then the analytic function defined by it is a first integral in Uof system (1).

¹⁹⁹¹ Mathematics Subject Classification. 34C05, 34A34, 34C14.

Key words and phrases. formal integrability, analytic integrability, Belousov–Zhabotinskii system.