

Bull. Sci. math. 132 (2008) 40-53

www.elsevier.com/locate/bulsci

Centers for a 6-parameter family of polynomial vector fields of arbitrary degree

Jaume Llibre^{a,*}, Clàudia Valls^b

^a Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain ^b Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais 1049-001, Lisboa, Portugal

Received 24 May 2007

Available online 7 June 2007

Abstract

For all non-negative integers n_1, n_2, n_3, j_1, j_2 and j_3 with $n_k + j_k > 1$ for k = 1, 2, 3, $(n_k, j_k) \neq (n_l, j_l)$ if $k \neq l$, $j_3 = n_3 - 1$ and $j_k \neq n_k - 1$ for k = 1, 2, we study the center variety of the 6-parameter family of real planar polynomial vector (\dot{x}, \dot{y}) given, in complex notation, by $\dot{z} = iz + Az^{n_1} \bar{z}^{j_1} + Bz^{n_2} \bar{z}^{j_2} + Cz^{n_3} \bar{z}^{j_3}$, where z = x + iy and $A, B, C \in \mathbb{C} \setminus \{0\}$.

© 2007 Elsevier Masson SAS. All rights reserved.

MSC: primary 34C05; secondary 58F14

Keywords: Centers; Polynomial vector fields; Reversibility

1. Introduction and statement of the main results

One of the main problems in the qualitative theory of real planar differential systems is the determination of *centers*. A *center* is a singular point $p \in \mathbb{R}^2$ having a neighborhood U such that all the orbits of $U \setminus \{p\}$ are periodic. The notion of center was introduced by Poincaré in [14].

In what follows and without loss of generality we assume that the singular point candidate to be a center is located at the origin of \mathbb{R}^2 . A *non-degenerate* center (i.e. a center having eigenvalues of the form $\pm\beta i$ with $\beta \neq 0$). An usual method for looking for a non-degenerate center of a family of planar polynomial vector fields is to calculate the successive coefficients v_i of the return map of the vector field about the origin. That is, we choose a segment $(0, x_0]$ on the

* Corresponding author. *E-mail addresses:* jllibre@mat.uab.es (J. Llibre), cvalls@math.ist.utl.pt (C. Valls).

0007-4497/\$ – see front matter $\,$ © 2007 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.bulsci.2007.06.002