Centers for a 6-parameter family of polynomial vector fields of arbitrary degree

Jaume Llibre ${ }^{\mathrm{a}, *}$, Clàudia Valls ${ }^{\text {b }}$
${ }^{a}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{\text {b }}$ Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais 1049-001, Lisboa, Portugal

Received 24 May 2007
Available online 7 June 2007

Abstract

For all non-negative integers $n_{1}, n_{2}, n_{3}, j_{1}, j_{2}$ and j_{3} with $n_{k}+j_{k}>1$ for $k=1,2,3,\left(n_{k}, j_{k}\right) \neq\left(n_{l}, j_{l}\right)$ if $k \neq l, j_{3}=n_{3}-1$ and $j_{k} \neq n_{k}-1$ for $k=1,2$, we study the center variety of the 6 -parameter family of real planar polynomial vector (\dot{x}, \dot{y}) given, in complex notation, by $\dot{z}=i z+A z^{n_{1}} \bar{z}^{j_{1}}+B z^{n_{2}} \bar{z}^{j_{2}}+C z^{n_{3}} \bar{z}^{j_{3}}$, where $z=x+i y$ and $A, B, C \in \mathbb{C} \backslash\{0\}$. © 2007 Elsevier Masson SAS. All rights reserved.

MSC: primary 34C05; secondary 58F14
Keywords: Centers; Polynomial vector fields; Reversibility

1. Introduction and statement of the main results

One of the main problems in the qualitative theory of real planar differential systems is the determination of centers. A center is a singular point $p \in \mathbb{R}^{2}$ having a neighborhood U such that all the orbits of $U \backslash\{p\}$ are periodic. The notion of center was introduced by Poincaré in [14].

In what follows and without loss of generality we assume that the singular point candidate to be a center is located at the origin of \mathbb{R}^{2}. A non-degenerate center (i.e. a center having eigenvalues of the form $\pm \beta i$ with $\beta \neq 0$). An usual method for looking for a non-degenerate center of a family of planar polynomial vector fields is to calculate the successive coefficients v_{i} of the return map of the vector field about the origin. That is, we choose a segment $\left(0, x_{0}\right]$ on the

[^0]
[^0]: * Corresponding author.

 E-mail addresses: jllibre@mat.uab.es (J. Llibre), cvalls@math.ist.utl.pt (C. Valls).

