

Available online at www.sciencedirect.com

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 344 (2008) 574-578

www.elsevier.com/locate/jmaa

Integrability of a SIS model

Jaume Llibre^{a,*}, Clàudia Valls^b

^a Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
 ^b Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais 1049-001, Lisboa, Portugal

Received 2 January 2008

Available online 8 March 2008

Submitted by P.G.L. Leach

Abstract

We prove that the classical model of an infectious disselve, which never kills and which does not induce autoimmunity, is integrable. This model can be written as x' = -bxy - mx + cy + mk, y' = bxy - (m + c)y with parameters $b, c, k, m \in \mathbb{R}$. We provide the explicit expression of its first integrals and of the set of all its invariant algebraic curves. © 2008 Elsevier Inc. All rights reserved.

Keywords: Darboux integrability; SIS equation; Darboux polynomials; Invariant algebraic curves; Exponential factors

1. Introduction

In this paper we consider a simple epidemiological model which is a particular case of the classical SIS model introduced by Kernack and McKendrick in [7] and which is given by the following differential equation (see [2] for details):

$$x' = -bxy - mx + cy + mk, \qquad y' = bxy - (m + c)y,$$
(1)

where $b, c, k, m \in \mathbb{R}$ and the prime indicates derivative with respect to the time. We note that x = x(t) is the susceptible component of the population, y = y(t) is the infected component of the population, mk is the constant birth rate, m is the proportionate death rate, b is the infectivity coefficient of the typical Lotka–Volterra interaction term, and c is the recovery coefficient. We note that the disease is assumed to be nonfatal so that the standard term removing deceased infectaves -ay in reference [2] is omitted.

Of course the polynomial differential system (1) is defined in the whole plane \mathbb{R}^2 . We only consider the differential system (1) with $b \neq 0$ and $m \neq 0$, because if b = 0 the system is linear and it can be solved explicitly, and if m = 0, then the system has the invariant straight line y = 0 of singular points and doing a rescaling of the time variable it becomes again linear. Moreover these two cases, b = 0 or m = 0, have no interest as SIS models.

⁶ Corresponding author.

0022-247X/\$ – see front matter $\, @$ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2008.03.007

E-mail addresses: jllibre@mat.uab.cat (J. Llibre), cvalls@math.ist.utl.pt (C. Valls).