Analytic integrability of quadratic-linear polynomial differential systems

JAUME LLIBRE \dagger and CLÀUDIA VALLS \ddagger
\dagger Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain
(e-mail: jllibre@mat.uab.cat)
\ddagger Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais 1049-001, Lisboa, Portugal
(e-mail: cvalls@math.ist.utl.pt)

(Received 5 March 2009 and accepted in revised form 12 August 2009)

Abstract. For the quadratic-linear polynomial differential systems with a finite singular point, we classify the ones which have a global analytic first integral, and provide the explicit expression of their first integrals.

1. Introduction

For a two-dimensional system the existence of a first integral determines completely its phase portrait. For such systems the notion of integrability is based on the existence of a first integral. Then a natural question arises: given a system of ordinary differential equations in \mathbb{R}^{2} depending on parameters, how to recognize the values of such parameters for which the system has a first integral?

The planar integrable systems which are not Hamiltonian, i.e. the systems in \mathbb{R}^{2} that cannot be written as $x^{\prime}=-\partial H / \partial y, y^{\prime}=\partial H / \partial x$ for some function $H: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of class C^{2}, are in general very difficult to detect.

Let P and Q be two real polynomials in the variables x and y, then we say that the system

$$
x^{\prime}=P(x, y), \quad y^{\prime}=Q(x, y),
$$

is a quadratic polynomial differential system if the maximum of the degrees of the polynomials P and Q is two.

Quadratic polynomial differential systems have been investigated intensively, and more than one thousand papers have been published about these systems (see for instance [3, 1517]), but the problem of classifying all the integrable quadratic polynomial differential systems remains open. For more information on integrable differential systems in dimension two, see for instance [5].

