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ON THE DARBOUX INTEGRABILITY
OF THE PAINLEVÉ II EQUATIONS

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. In this paper we prove the non–existence of Darboux first integrals
for the Painlevé II equations

ẋ = y − z

2
− x2, ẏ = α +

1

2
+ 2xy, ż = 1

for all values of α ∈ C \ {αn : n = 2, 4, . . .}. These αn are real and larger than
−1/2.

1. Introduction and statement of the main results

The Painlevé equations are Hamiltonian systems that depend on parameters
and whose solutions give rise to the so-called Painlevé transcendents. The Painlevé
transcendents are solutions to certain nonlinear second-order ordinary differential
equations in the complex plane whose only movable singularities are ordinary poles
and which cannot be integrated in terms of other known functions or transcendents.

In this paper we study the Darboux integrability of the Painlevé II equations
which can be written in the form (see [2, 3, 4] for details):

ẋ = y − z

2
− x2, ẏ = α +

1
2

+ 2xy, ż = 1, ẇ =
y

2

with the Hamiltonian

H =
1
2
y2 −

(
x2 +

z

2

)
y −

(
α +

1
2

)
x + w.

Here the parameter α is complex. Using H we can eliminate the variable w making

w = H − 1
2
y2 +

(
x2 +

z

2

)
y +

(
α +

1
2

)
x,

and study the integrability of the system

(1) ẋ = y − z

2
− x2, ẏ = α +

1
2

+ 2xy, ż = 1.

These systems were previously studied by Morales in [3] (see Corollary 1) where
the author proved:

Theorem 1 (Morales’ result). For α ∈ Z system (1) is not integrable by means of
rational first integrals.
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We define for each positive even integer n ≥ 2 the value αn as the zero of

(α + 1
2 )n

∏n
2−1
j=0 (n− 2j)

∏n
2
i=1(4i)

−Dn/2 = 0,

where Dn/2 are positive real numbers defined in the proof of Proposition 5. We
improve Morales’ result as follows.

Theorem 2. For all α ∈ C \ {αn : n = 2, 4, . . .} system (1) is not integrable by
means of a Darboux first integral.

Theorem 2 is proved in section 5.
We note that a rational first integral is a very particular case of a first integral

of Darboux type (see (5) for its definition).

Theorem 3. The following holds for system (1).
(a) If α = −1/2, the unique irreducible Darboux polynomial with non-zero co-

factor is y. Its cofactor is 2x.
(b) If α ∈ C \ {αn : n = 2, 4, . . .} and α 6= −1/2, system (1) has no irreducible

Darboux polynomials with non-zero cofactor.
(c) Assume α ∈ C \ {αn : n = 2, 4, . . .}.

(c.1) System (1) has no polynomial first integrals.
(c.2) The exponential factors ez, ez2/2 and e2yx2+(2α+1)x−y2+zy are the unique

ones for system (1) having cofactors 1, z and y, respectively.

Theorem 3 is proved in section 4.
In sections 2 and 3 we present basic definitions, notations, some preliminary and

auxiliary results.

2. Preliminary results

Consider a polynomial differential system

(2) ẋ = P1(x, y, z), ẏ = P2(x, y, z), ż = P3(x, y, z),

where Pi = Pi(x, y, z) ∈ R[x, y, z] are polynomials of degree at most two and its
associated vector field is

(3) X = P1
∂

∂x
+ P2

∂

∂y
+ P3

∂

∂z
.

Let U ⊂ R3 be an open subset. We say that the non–constant function H : U →
R is a first integral of the polynomial vector field (3) on U associated to sys-
tem (2), if H(x(t), y(t), z(t)) = constant for all values of t for which the solution
(x(t), y(t), z(t)) of X is defined on U . Clearly H is a first integral of X on U if and
only if XH = 0 on U . When H is a polynomial we say that H is a polynomial first
integral.

Let h = h(x, y, z) ∈ C[x, y, z] be a nonconstant polynomial. We say that h = 0
is an invariant algebraic surface of the vector field X if it satisfies Xh = Kh for
some polynomial K = K(x, y, z) ∈ C[x, y, z], called the cofactor of h = 0. Note
that K has degree at most 1. The polynomial h is called a Darboux polynomial,
and we also say that K is the cofactor of the Darboux polynomial h. We note that
a Darboux polynomial with zero cofactor is a polynomial first integral.
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Let g, h ∈ C[x, y, z] be coprime. We say that a nonconstant function E = eh/g

is an exponential factor of the vector field X if it satisfies XE = LE for some
polynomial L = L(x, y, z) ∈ C[x, y, z], called the cofactor of E and having degree
at most 1. Note that this relation is equivalent to

(4) P1
∂(g/h)

∂x
+ P2

∂(g/h)
∂y

+ P3
∂(g/h)

∂z
= L.

For a geometric and algebraic meaning of the exponential factors see [1].
A first integral G of system (2) is called of Darboux type if it is of the form

(5) G = fλ1
1 · · · fλp

p Eµ1
1 · · ·Eµq

q ,

where f1, . . . , fp are Darboux polynomials, E1, . . . , Eq are exponential factors and
λj , µk ∈ C for j = 1, . . . , p, k = 1, . . . , q.

For a proof of the next proposition see [1].

Proposition 4. The following statements hold.
(a) If E = eg/h is an exponential factor for the polynomial differential system

(2) and h is not a constant polynomial, then h = 0 is an invariant algebraic
surface.

(b) Eventually eg can be an exponential factor, coming from the multiplicity of
the infinite invariant plane.

3. Auxiliary result

The next result plays a key role in the proof of our two theorems.

Proposition 5. Assume α ∈ C \ {αn : n = 2, 4, . . . , }. Then system (1) has no
first integrals which are polynomials in the variable x, analytic in the variable z and
have a decomposition in powers in the variable y.

Proof. Let g = g(x, y, z) be a first integral of system (1) which is polynomial in the
variable x, analytic in the variable z and have a decomposition in powers of the
variable y. Then g is not a constant and satisfies

(6)
(
y − z

2
− x2

)∂g

∂x
+

(
α +

1
2

+ 2xy
)∂g

∂y
+

∂g

∂z
= 0.

Since g is a polynomial in the variable x, we rewrite it as

(7) g(x, y, z) =
n∑

j=0

gj(y, z)xj ,

where each gj are functions in the variables y, z. We have that equation (6) becomes

−
n∑

j=0

jgj(y, z)xj+1 + 2
n∑

j=0

y
∂gj(y, z)

∂y
xj+1 +

n∑

j=0

∂gj(y, z)
∂z

xj

+
n∑

j=0

(
α +

1
2

)∂gj(y, z)
∂y

xj +
n∑

j=0

j
(
y − z

2

)
gj(y, z)xj−1 = 0.

(8)

Now we will show by induction that for l = 0, . . . , [n/2],

(9) gn−2l(y, z) =
(−1)l

∏l
i=1(4i)

K(z)y
n
2 +l

l−1∏

j=0

(n− 2j) + l.o.t.(y),
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where l.o.t.(y) means terms with lower power in the variable y, [·] denotes the
integer part function of a real number, K(z) is a function in the variable z and we
have taken the convention that

∏0
i=1 · = 1 and

∏−1
j=0 · = 1. Furthermore, we will

also show by induction that for l = 0, . . . , [(n− 1)/2],

(10) gn−2l−1(y, z) = (−1)l+1ClK
′(z)y

n
2 +l + l.o.t.(y),

where Cl are positive constants for each l = 0, . . . , [(n− 1)/2].
Computing the terms of degree n + 1 in x in (8) we get

(11) −ngn(y, z) + 2y
∂gn(y, z)

∂y
= 0 that is gn(y, z) = K(z)yn/2,

where K(z) is a function in the variable z. This proves (9) for l = 0. Now computing
the terms of degree n in x in (8) we obtain

(12) −(n−1)gn−1(y, z)+2y
∂gn−1(y, z)

∂y
+K ′(z)yn/2 +

(
α+

1
2

)n

2
K(z)yn/2−1 = 0.

Solving this linear differential equation we obtain

gn−1(y, z) = K1(z)y(n−1)/2 −K ′(z)yn/2 +
n(1 + 2α)

4
K(z)yn/2−1

= −K ′(z)yn/2 + l.o.t(y),

where K1 is some function in the variable z. This proves (10) for l = 0 with C0 = 1.
Now we proceed by induction. We assume that (9) and (10) are true for l =

0, . . . , ` and we will show it for ` + 1.
Computing the terms of degree n− 2`− 1 in (8) we get that

0 = −(n− 2`− 2)gn−2`−2 + 2y
∂gn−2`−2

∂y
+ (−1)`+1C`K

′′(z)y
n
2 +` + l.o.t(y)

+
(
y − z

2

)
(n− 2`)

( (−1)`K(z)y
n
2 +`

∏`−1
j=0(n− 2j)

∏`
i=1(4i)

+ l.o.t(y)
)

+
(
α +

1
2

)((n

2
+ `

)
(−1)`+1ClK

′(z)y
n
2 +`−1 + l.o.t(y)

)

= −(n− 2`− 2)gn−2`−2 + 2y
∂gn−2`−2

∂y
+ (n− 2`)

(−1)`K(z)y
n
2 +`+1

∏`−1
j=0(n− 2j)

∏`
i=1(4i)

+ l.o.t(y)

= −(n− 2`− 2)gn−2`−2 + 2y
∂gn−2`−2

∂y
+

(−1)`K(z)y
n
2 +`+1

∏`
j=0(n− 2j)

∏`
i=1(4i)

+ l.o.t(y).

Then solving this linear differential equation we conclude that

gn−2`−2 =
−(−1)`K(z)

4(` + 1)
∏`

i=1(4i)
y

n
2 +`+1

∏̀

j=0

(n− 2j) + l.o.t.(y)

=
(−1)`+1K(z)∏`+1

i=1(4i)
y

n
2 +`+1

∏̀

j=0

(n− 2j) + l.o.t.(y),

which proves (9) for l = ` + 1.
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Now computing the terms of degree n− 2`− 2 in (8) we get that

0 = −(n− 2`− 3)gn−2`−3 + 2y
∂gn−2`−3

∂y
+

(−1)`+1

∏`+1
i=1(4i)

K ′(z)y
n
2 +`+1

∏̀

j=0

(n− 2j) + l.o.t(y)

+
(
y − z

2

)
(n− 2`− 1)

(
(−1)`+1C`K

′(z)y
n
2 +` + l.o.t(y)

)

+
(
α +

1
2

)((n

2
+ ` + 1

) (−1)`+1

∏`+1
i=1(4i)

K(z)y
n
2 +`

∏̀

j=0

(n− 2j) + l.o.t(y)
)

= −(n− 2`− 3)gn−2`−3 + 2y
∂gn−2`−3

∂y
+ (−1)`+1K`K

′(z)y
n
2 +`+1 + l.o.t(y),

where

K` =

∏`
j=0(n− 2j)
∏`+1

i=1(4i)
+ (n− 2`− 1)C` > 0.

Then solving this linear differential equation we obtain that

gn−2`−3 = (−1)`+2C`+1K
′(z)yn/2+`+1 + l.o.t.(y),

where C`+1 = K`/(4` + 5). This proves (10) for l = ` + 1. Hence (9) and (10) are
proved. Now computing the terms of degree 0 in x in (8) we get

(13)
∂g0

∂z
+

(
α +

1
2

)∂g0

∂y
+

(
y − z

2

)
g1 = 0.

Now we distinguish two cases.
Case 1: n is odd. Using (9) and (10) with ` = (n− 1)/2 we get that (13) becomes

(−1)
n−1

2

∏n−3
2

j=0 (n− 2j)
∏n−1

2
i=1 (4i)

K(z)y
2n+1

2 + l.o.t(y) = 0,

which yields K(z) = 0. Hence gn = 0 for n ≥ 1 and then, from (7), g = g(y, z).
This implies, from (6), that

(
α +

1
2

+ 2xy
)∂g

∂y
+

∂g

∂z
= 0.

Since g does not depend on x, this identity implies that
∂g

∂y
=

∂g

∂z
= 0. Therefore

g = constant, a contradiction with the fact that g is a first integral.
Case 2: n is even. In this case using (9) with ` = n/2 and (10) with ` = (n− 2)/2
we get that (13) becomes

(−1)
n
2

∏n−2
2

j=0 (n− 2j)
∏n

2
i=1(4i)

K ′(z)yn + l.o.t(y) + (−1)
n−2

2 +1Cn−2
2

K ′(z)y
n
2 + n−2

2 +1 + l.o.t(y)

= (−1)
n
2 K ′(z)yn

(∏n−2
2

j=0 (n− 2j)
∏n

2
i=1(4i)

+ Cn−2
2

)
+ l.o.t(y) = 0.

Since ∏n−2
2

j=0 (n− 2j)
∏n

2
i=1(4i)

+ Cn−2
2

> 0,

we get that K ′(z) = 0 that is K(z) = γn, where γn ∈ C.
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Now we will show by induction with respect to l that for n ≥ 2 and l =
1, 2, . . . , [n/2],

(14) gn−2l(y, z) =
(−1)l

∏l
i=1(4i)

γny
n
2 +l

l−1∏

j=0

(n− 2j)+ (−1)l+1γnDlzy
n
2 +l−1 +l.o.t.(y),

where Dl are positive constants. Note that (14) provides an additional term in (9).
Furthermore, for l = 0, 1, . . . , [(n− 1)/2],

(15) gn−2l−1(y, z) = (−1)lEl(z)y
n−1

2 +l + l.o.t.(y),

where El(z) are functions in the variable z for each l = 0, 1, . . . , [(n − 1)/2]. Note
that equation (15) improves (10), because we know that the apparent dominant
term in (10) is zero.

We proved in (11) that

(16) gn(y, z) = γnyn/2.

Now from (12) we get

−(n− 1)gn−1(y, z) + 2y
∂gn−1(y, z)

∂y

(
α +

1
2

)n

2
γnyn/2−1 = 0.

Solving this linear equation we obtain

gn−1(y, z) = K1(z)y(n−1)/2 +
n(1 + 2α)

4
γnyn/2−1

= K1(z)y(n−1)/2 + l.o.t(y),

where K1 is some function in the variable z. This proves (15) for l = 0 and with
E1(z) = K1(z).

Now computing the terms of degree n− 1 in x in (8) we obtain

−(n− 2)gn−2(y, z) + 2y
∂gn−2(y, z)

∂y
+ nγny

n
2 +1 − n

2
zγny

n
2 + l.o.t(y) = 0.

Solving this linear equation we obtain

gn−2(y, z) = −n

4
γny

n
2 +1 + D1zγny

n
2 + l.o.t(y),

where D1 = n/4 > 0. This proves (14) for l = 1.
Now we shall use the induction hypothesis. We assume that (14) is true for

l = 1, 2, . . . , ` and (15) is true for l = 0, 1, . . . , ` and we will show them for ` + 1.
Computing the terms of degree n− 2`− 1 in x of (8) we get that

0 = −(n− 2`− 2)gn−2`−2 + 2y
∂gn−2`−2

∂y
+ (−1)`E′

`(z)y
n−1

2 +` + l.o.t(y)

+ (y − z/2)(n− 2`)
( (−1)`γny

n
2 +`

∏`−1
j=0(n− 2j)

∏`
i=1(4i)

+ (−1)`+1Dlγnzy
n
2 +`−1 + l.o.t(y)

)

= −(n− 2`− 2)gn−2`−2 + 2y
∂gn−2`−2

∂y
+

(−1)`γny
n
2 +`+1

∏`
j=0(n− 2j)

∏`
i=1(4i)

+ (−1)`+1γnF`+1zy
n
2 +` + l.o.t(y),
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where

F`+1 = (n− 2`)
(∏`−1

j=0(n− 2j)

2
∏`

i=1(4i)
+ D`

)
> 0.

Then solving this linear equation we conclude that

gn−2`−2 =
(−1)`+1γnyn/2+`+1

∏`+1
i=1(4i)

∏̀

j=0

(n− 2j) + (−1)`+2D`+1γnzyn/2+` + l.o.t.(y),

where D`+1 = F`+1/(2(2` + 1)) > 0. Hence equation (14) is proved for l = ` + 1.
Now computing the terms of degree n− 2`− 2 in x of (8) we obtain

0 = −(n− 2`− 3)gn−2`−3 + 2y
∂gn−`−3

∂y
+ (−1)`D`+1γny

n
2 +` + l.o.t(y)

+ (n− 2`− 1)(−1)`E`(z)y
n+1

2 +` + l.o.t(y)

= −(n− 2`− 3)gn−2`−3 + 2y
∂gn−`−3

∂y
+ (n− 2`− 1)(−1)`E`(z)y

n+1
2 +` + l.o.t(y).

Then solving this linear equation we conclude that

gn−2`−3 = (−1)`+1E`+1(z)y
n+1

2 +` + l.o.t.(y),

where E`+1(z) = (n − 2` − 1)E`(z)/(4(` + 1)). This proves (15) for l = ` + 1. In
short, the expressions of (14) and (15) are proved.

Now using (14) with ` = n/2 and (15) with ` = (n − 2)/2, we get that (13)
becomes

(−1)
n
2 +1γnDn/2y

n−1 +
(α + 1

2 )(−1)
n
2 γnnyn−1

∏n
2−1
j=0 (n− 2j)

∏n
2
i=1(4i)

+ (−1)
n−2

2 E(n−2)/2(z)y
2n−1

2 + l.o.t(y)

= (−1)
n−2

2 E(n−2)/2(z)y
2n−1

2 + (−1)
n
2 γnyn−1

(
−Dn/2 +

(α + 1
2 )n

∏n
2−1
j=0 (n− 2j)

∏n
2
i=1(4i)

)

+ l.o.t(y) = 0.

(17)

Since Dn/2 > 0 and α ∈ C \ {αn : n = 2, 4, . . .}, we get that

−Dn/2 +
(α + 1

2 )n
∏n

2−1
j=0 (n− 2j)

∏n
2
i=1(4i)

6= 0.

Therefore from (17) we obtain γn = 0 for any n ≥ 2 even. Thus, from (16) we
obtain that gn = 0 for all n ≥ 2 even. Since gn = 0 for all n ≥ 1 from (7) yields
g = g0(y, z). It follows from (6) that

(
α +

1
2

+ 2xy
)∂g0

∂y
+

∂g0

∂z
= 0,

which yields
∂g0

∂y
=

∂g0

∂z
= 0. Then g = const a contradiction with the fact that g

is a first integral. ¤
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4. Proof of Theorem 3

We will separate the proof of Theorem 3 into different propositions.

Corollary 6. Assume α ∈ C \ {αn : n = 2, 4, . . .}. Then system (1) has no
polynomial first integrals.

Proof. It follows directly from Proposition 5. ¤
Proposition 7. Assume α = −1/2. Then the unique irreducible Darboux polyno-
mial with non–zero cofactor of system (1) is y. Its cofactor is 2x.

Proof. It follows by direct computations that the unique irreducible Darboux poly-
nomial of degree one of system (1) with non–zero cofactor is y. Its cofactor is 2x.
Now we shall prove that it is the only irreducible Darboux polynomial.

Assume that f is an irreducible Darboux polynomial of system (1) with non-zero
cofactor of degree n ≥ 2. Then it satisfies

(18)
(
y − z

2
− x2

)∂f

∂x
+ 2xy

∂f

∂y
+

∂f

∂z
= (α0 + α1x + α2y + α3z)f,

where (α0, α1, α2, α3) ∈ C4 \ {(0, 0, 0, 0)}. First we shall prove that α2 = α3 = 0.
We assume that α2 6= 0 or α3 6= 0 and we will arrive to a contradiction. We write
f in sum of its homogeneous parts as follows:

(19) f =
n∑

j=0

fj(x, y, z),

where each fj is a homogenous polynomial of degree j. Without loss of generality
we can assume that fn 6= 0. Computing the terms of degree n+1 in (18) we obtain

(20) −x2 ∂fn

∂x
+ 2xy

∂fn

∂y
= (α1x + α2y + α3z)fn.

So we have that fn must be divisible by x. We write fn as fn = xlgl where 1 ≤ l ≤ n
and gl is a homogenous polynomial of degree n− l which is not divisible by x and
satisfies, after simplifying by xl,

(21) −x2 ∂gl

∂x
+ 2xy

∂gl

∂y
= ((α1 + l)x + α2y + α3z)gl.

If l = n then gn is a constant, and from (21) we get ((α1 + x)x + α2y + α3z)gn =
0. Since α2 or α3 is non–zero, we obtain gn = 0, and consequently fn = 0, a
contradiction. So we can assume l < n. Again by (21) we have that gl must be
divisible by x, which is not possible. Hence, α2 = α3 = 0.

In short equation (18) can be written in the form

(22)
df

dt
(x, y, z) = (α0 + α1x)f(x, y, z),

where the derivative is evaluated along a solution of system (1). We write

(23) f(x, y, z) = g(x, y, z)eα0zyα1/2.

Then g is a polynomial in the variable x and satisfies
df

dt
(x, y, z) =

dg

dt
(x, y, z)eα0zyα1/2 + g(x, y, z)

(
α0 + α1x)eα0zyα1/2

=
(dg

dt
(x, y, z) + (α0 + α1x)g(x, y, z)

)
eα0zyα1/2.

(24)
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Since
df

dt
(x, y, z) = (α0 + α1x)f(x, y, z) = (α0 + α1x)g(x, y, z)eα0zyα1/2,(25)

from (24) and (25) we get that

dg

dt
(x, y, z)eα0zyα1/2 = 0 that is

dg

dt
(x, y, z) = 0.

In other words, either g is a constant λ ∈ C, or g = g(x, y, z) is a first integral
of system (1) which is a polynomial in the variable x. By Proposition 5 (with
α = −1/2) this last case is not possible. Hence from equation (23) we conclude
that

f(x, y, z) = λeα0zyα1/2.

Since f is a polynomial we must have α0 = 0 and α1/2 = m where m is a non–
negative integer. Furthermore m 6= 0, otherwise the cofactor of f would be zero.
Then

f(x, y, z) = λym, λ ∈ C, m ∈ N \ {0},
in contradiction with the fact that f is an irreducible polynomial of degree greater
or equal two. This completes the proof of the proposition. ¤

Proposition 8. Assume that α ∈ C \ {αn : n = 2, 4, . . .} and α 6= −1/2. Then,
system (1) has no irreducible Darboux polynomial with non–zero cofactor.

Proof. It follows by direct computations that under the assumptions, system (1)
has no Darboux polynomial of degree one. Now we shall prove that system (1) has
no Darboux polynomials with non-zero cofactor of degree greater than or equal to
two.

Assume that f is an irreducible Darboux polynomial of system (1) with non-zero
cofactor of degree n ≥ 2. Then it satisfies

(26)
(
y − z

2
− x2

)∂f

∂x
+

(
α +

1
2

+ 2xy
)∂f

∂y
+

∂f

∂z
= (α0 + α1x + α2y + α3z)f,

where (α0, α1, α2, α3) ∈ C4 \{(0, 0, 0, 0)}. We separate the proof of this proposition
into different parts.

First we prove that α2 = α3 = 0. For this we assume that α2 6= 0 or α3 6= 0, and
we write f in sum of its homogeneous parts as

∑n
j=0 fj(x, y, z), where each fj is

a homogeneous polynomial of degree j. Without loss of generality we can assume
that fn 6= 0. Computing the terms of degree n + 1 we obtain (20), and the same
arguments of the proof of Proposition 6 imply that α2 = α3 = 0.

Now we have that equation (18) can be written in the form (22), where the
derivative is evaluated along a solution of system (1). We write f as in (23). Then
g is a polynomial in the variable x and satisfies

df

dt
(x, y, z) =

dg

dt
(x, y, z)eα0zyα1/2 + g(x, y, z)

(
α0 + α1x +

α1(α + 1
2 )

2y

)
eα0zyα1/2

=
(dg

dt
(x, y, z) + (α0 + α1x +

α1(α + 1/2)
2y

)g(x, y, z)
)
eα0zyα1/2.

(27)
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From (25) and (27) we get that

dg

dt
(x, y, z)eα0zyα1/2 =

α1(α + 1
2 )

2y
g(x, y, z)eα0zyα1/2,

that is
dg

dt
(x, y, z) =

α1(α + 1/2)
2y

g(x, y, z),

and g = g(x, y, z) is a polynomial in the variable x.
Now proceeding as in the proof of Proposition 5 (note that if we expand g

as powers of the variable x as in (7) we have that
∑n

j=0
α1(α+ 1

2 )

2y gj(y, z)xj when

compared with
∑n

j=0
dgj

dz (y, z)xj will always belong to the l.o.t.(y), and hence it
does not play any role because it does not interfere in the arguments used in the
proof of Proposition 5). In short, we get that g = g0(y, z) and it satisfies

(
α +

1
2

+ 2xy
)∂g0

∂y
+

∂g0

∂z
=

α1(α + 1
2 )

2y
g0.

Since g0 does not depend on x we get that ∂g0/∂y = 0 that is g = g(z). Now we
consider two cases.

Case 1: α1 6= 0. In this case since g does not depend on y we get that ∂g/∂z = 0
and then g = 0. Therefore (23) imply that f = 0, in contradiction with the fact
that f is a Darboux polynomial of degree greater than or equal to two.

Case 1: α1 = 0. In this case since g does not depend on y we get that ∂g/∂z = 0
and then g = constant = λ. Therefore (23) imply that f = λ eα0z. Since f must
be a polynomial we get α0 = 0 a contradiction with the fact that the cofactor f is
different from zero. ¤

As usual N denotes the set of positive integers.

Proposition 9. Assume that α = −1/2. Then the unique exponential factors of
system (1) are ez, ez2/2 and e2yx2−y2+zy with cofactors 1, z and y, respectively.

Proof. It follows from Proposition 4 that we can write

E = eg/yn1 with n1 ∈ N ∪ {0} and (g, y) = 1,

where g is a polynomial satisfying

(28)
(
y − z

2
− x2

)∂g

∂x
+ 2xy

∂g

∂y
+

∂g

∂z
− 2n1xg = (β0 + β1x + β2y + β3z)yn1 ,

where βi ∈ C for i = 0, 1, 2, 3, and where we have simplified by the common factor
E. We consider two cases

Case 1: n1 ∈ N. In this case restricting (28) to y = 0 and denoting ḡ = g|y=0,
we get

(29) −
(z

2
+ x2

)∂ḡ

∂x
+

∂ḡ

∂z
= 2n1xḡ.

Hence ḡ is either zero or a Darboux polynomial of system (1) restricted to y = 0.
Since g and y are coprime, we have that ḡ 6= 0. We expand ḡ in sum of its homo-
geneous parts as ḡ =

∑n
j=0 ḡj(x, z), where each ḡj is a homogeneous polynomial of

degree j. Computing the terms of degree n + 1 in (29) we get

−x2 ∂ḡn

∂x
= 2n1xḡn.
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Solving this partial differential equation we get that ḡn = K(z)x−2n1 where K is
a function of z. Since ḡn must be a polynomial we must have K(z) = 0 and thus
ḡn = 0. Therefore ḡ = 0 which is not possible.

Case 2: n1 = 0. In this case g satisfies

(30)
(
y − z

2
− x2

)∂g

∂x
+ 2xy

∂g

∂y
+

∂g

∂z
= β0 + β1x + β2y + β3z,

where βi ∈ C for i = 0, 1, 2, 3. We define G = Ee−β0z−β3z2/2. Then using that
dE

dt
= E

dg

dt
and (30), we get

dG

dt
=

dE

dt
e−β0z−β3z2/2 − (β0 + β3z)Ee−β0z−β3z2/2

= (β0 + β1x + β2y + β3z)Ee−β0z−β3z2/2 − (β0 + β3z)Ee−β0z−β3z2/2

= (β1x + β2y)G,

where the derivative is evaluated along a solution of system (1). Setting G =
eg−β0z−β3z2/2 = eh(x,y,z) we have that

dh

dt
= β1x + β2y.

That is

(31)
(
y − z

2
− x2

)∂h

∂x
+ 2xy

∂h

∂y
+

∂h

∂z
= β1x + β2y.

If we expand h as h =
∑n

j=0 hj(y, z)xj and proceeding as in the proof of Proposition
5 with n ≥ 4 we get that hn = K(z)yn/2 where K(z) is a function in the variable z.
Since hn must be a polynomial we conclude that n must be even. Again proceeding
as in the proof of Proposition 5 we get that hn = 0 (note that since n ≥ 4 then
n − 1 ≥ 3 and then when computing h0 and h1 we get that the left-hand side of
equation (31) would be of the form

(−1)n/2+1γnDn/2y
n−1 + (−1)n/2−1E(n−2)/2(z)yn−1/2 + l.o.t(y),

while the right hand side of this equation will be in that case β2y which has degree
one in the variable y. Since n ≥ 4 even, this implies that γn = 0 and then hn = 0).
Hence we have that

h(x, y, z) = h0(y, z) + h1(y, z)x + h2(y, z)x2.

Furthermore we have that h must satisfy
(
y − z

2
− x2

)(
2h2(y, z)x + h1(y, z)

)
+ 2xy

(∂h0

∂y
+

∂h1

∂y
x +

∂h2

∂y
x2

)

+
(∂h0

∂z
+

∂h1

∂z
x +

∂h2

∂z
x2

)
= β1x + β2y.

(32)

Then computing the coefficient of x3 in (32) we get

−2h2(y, z) + 2y
∂h2

∂y
(y, z) = 0 that is h2 = K(z)y,

where K(z) is a polynomial in the variable z. Now computing the coefficient of x2

in (32) we obtain

−h1(y, z) + 2y
∂h1

∂y
(y, z) + K ′(z)y = 0, that is h1 = −K ′(z)y,
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where we have used that h1 must be a polynomial in the variables y, z.
Now computing the coefficient of x in (32) we get

(33)
(
y − z

2

)
2K(z)y + 2y

∂h0

∂y
−K ′′(z)y = β1.

Since the left-hand side of (33) is divisible by y we get that β1 = 0. Then after
simplifying by y we obtain that

(34) h0 = K1(z)− K(z)
2

y2 +
K(z)z

2
y +

K ′′(z)
2

y,

where K1(z) is a polynomial in the variable z.
Now computing the coefficient of x0 in (32) we get

(35) −3
2
K ′(z)y2 +

K(z)
2

y + K ′
1(z) + K ′(z)zy +

K ′′′(z)
2

y = β2y.

Computing the terms in (35) that do not depend on y we obtain that K ′
1(z) = 0.

That is K1(z) is a constant that we take the constant zero, because it only affects
the exponential eh(x,y,z) in a constant. Thus K1(z) = 0. Now after simplifying
equation (35) by y we get

(36) −3
2
K ′(z)y +

K(z)
2

+ K ′(z)z +
K ′′′(z)

2
= β2.

The coefficient of y in (36) yields K ′(z) = 0. Therefore K(z) = γ a constant. Hence
equation (36) becomes

−γ

2
= β2 that is γ = −2β2.

This yields
h = β2

(
2yx2 − y2 + zy

)
.

So g = h + β0z + β3z
2/2 = β2

(
2yx2 − y2 + zy

)
+ β0z + β3z

2/2. This concludes the
proof of the proposition. ¤

Proposition 10. Assume α ∈ C \ {αn : n = 2, 4, . . .} and α 6= −1/2. Then the
unique exponential factors of system (1) are ez, ez2/2 and e2yx2+(2α+1)x−y2+zy with
cofactors 1, z and y, respectively.

Proof. Proceeding in an analogous way to the proof of Case 2 of Proposition 9,
considering E = eg, G = Ee−β0z−β3z2/2 and G = eh, we obtain that h is of the
form h = h0(y, z) + h1(y, z)x + h2(y, z)x2 and satisfies

(
y − z

2
− x2

)(
2h2(y, z)x + h1(y, z)

)
+

(
α +

1
2

+ 2xy
)(∂h0

∂y
+

∂h1

∂y
x +

∂h2

∂y
x2

)

+
(∂h0

∂z
+

∂h1

∂z
x +

∂h2

∂z
x2

)
= β1x + β2y.

(37)

Computing the coefficient of x3 in (37) and proceeding as in the proof of Case 2
of Proposition 9 we get h2 = K(z)y, where K(z) is a polynomial in the variable z.
Now computing the coefficient of x2 in (37) we obtain

−h1(y, z) + 2y
∂h1

∂y
(y, z) +

(
α +

1
2

)
K(z) + K ′(z)y = 0,
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that is h1 =
(
α + 1

2

)
K(z) −K ′(z)y, where we have used that h1 must be a poly-

nomial in the variables y, z.
Now computing the coefficient of x in (37) we get

(38)
(
y − z

2

)
2K(z)y + 2y

∂h0

∂y
−K ′′(z)y = β1,

which is equation (33). Thus β1 = 0 and h0 is of the form (34).
Now computing the coefficient of x0 in (37) we get

(39) −3
2
K ′(z)y2 +

K(z)
2

y + K ′
1(z) + K ′(z)zy +

K ′′′(z)
2

y +
(
α +

1
2

)K ′′(z)
2

= β2y.

Computing the coefficient of y2 in (39) we get K ′(z) = 0. Thus K(z) = γ ∈ C and
(39) becomes

γ

2
y + K ′

1(z) = β2y, that is γ = 2β2 and K ′
1(z) = 0.

Again we take K1(z) = 0. This yields

h = β2

(
2yx2 + (2α + 1)x− y2 + zy

)
.

So g = h + β0z + β3z
2/2 = β2

(
2yx2 + (2α + 1)x − y2 + zy

)
+ β0z + β3z

2/2. This
concludes the proof of the proposition. ¤

Proof of Theorem 3. Statement (c.1) follows from Corollary 6. Statement (a) fol-
lows from Proposition 7. Proposition 8 shows statement (b). Finally, statement
(c.2) follows from Propositions 9 and 10. ¤

5. Proof of Theorem 2

The proof of Theorem 2 will be done by contradiction. Assume that G is a first
integral of system (1) of Darboux type. We distinguish between two cases.
Case 1: α = −1/2. From the definition of Darboux first integral in (5), and taking
into account Theorem 3 G must be of the form

G = yλ1eµ1zeµ2z2/2eµ3(2yx2−y2+yz), λ1, µ1, µ2, µ3 ∈ C.

Since G is a first integral of system (1) it must satisfy

0 =
(
y − z

2
− x2

)∂G

∂x
+ 2xy

∂G

∂y
+

∂G

∂z
= (2λ1x + µ1 + µ2z + µ3y)G.

Hence

2λ1x + µ1 + µ2z + µ3y = 0, that is λ1 = µ1 = µ2 = µ3 = 0.

Therefore G is a constant in contradiction with the fact that G is a first integral.
Case 2: α ∈ C \ {αn : n = 2, 4, . . .} and α 6= −1/2. From the definition of Darboux
first integral and taking into account Theorem 3 G must be of the form

G = eµ1zeµ2z2/2eµ3(2yx2+(2α+1)x−y2+yz), µ1, µ2, µ3 ∈ C.

Since G is a first integral of system (1) it must satisfy

0 =
(
y − z

2
− x2

)∂G

∂x
+

(
α +

1
2

+ 2xy
)∂G

∂y
+

∂G

∂z
= (µ1 + µ2z + µ3y)G.

Hence
µ1 + µ2z + µ3y = 0, that is µ1 = µ2 = µ3 = 0.
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Therefore G is a constant in contradiction with the fact that G is a first integral.
This completes the proof of Theorem 2.
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ses points critiques fixes, Arkiv. Mat. Astron. Fys. 18 (1922), 1–89.

[3] J.J. Morales, A remark about the Painlevé transcendents. Théories asymptotiques et
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