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FIRST INTEGRALS OF DARBOUX TYPE FOR A FAMILY OF
3-DIMENSIONAL LOTKA-VOLTERRA SYSTEMS

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We provide all the first integrals of Darboux type for the system
studied by Leach and Miritzis (J. Nonlinear Math. Phys. 13 (2006), 535–548)
on the classical model of competition between three species considered by May
and Leonard (SIAM J. Appl. Math. 29 (1975), 243–256).

1. Introduction and statement of the main results

In this paper we use the Darboux theory of integrability to study the existence
of first integrals of Darboux type for the model used by May and Leonard [10] for
studying the competition among three species. This model is

Ẋ = X(1−X − aY − bZ),

Ẏ = Y (1− bX − y − aZ),

Ż = Z(1− aX − bY − Z),

(1)

where a, b ∈ R and the dot denotes derivative with respect to the time t.
Doing the change of variables

x = Xe−t, y = Y e−t, z = Ze−t, s = et,

system (1) becomes

x′ = −x(x + ay + bz),

y′ = −y(bx + y + az),

z′ = −z(ax + by + z),

(2)

where a, b ∈ R and here the prime denotes derivative with respect to the new time s.
Leach and Miritzis in [5] proved that system (2) has a first integral when either

a + b = 2, or a = b, but in [5] it is unknown if for other values of the parameters a
and b, system (2) has or not other first integrals. In [8] the authors showed for the
case a+b = −1, system (2) has also a first integral. We also note that the existence
of first integrals for system (2) imply the existence of invariants for system (1).
Here an invariant is a first integral depending on the time.

The known first integrals are

H1(x, y, z) =
xyz

(x + y + z)3
,
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if a + b = 2,

H2(x, y, z) = (xyz)2+a
(
(x− y)(x− z)(y − z)

)−(2a+1)
,

if a = b 6= 1,

H3(x, y, z) =
x

y
and H4(x, y, z) =

x

z
,

if a = b = 1,

H2(x, y, z) and H5(x, y, z) = x2y2 − x2yz − xy2z + x2z2 − xyz2 + y2z2,

if a = b = −1, and finally,
H6(x, y, z) = xyz

if a + b = −1.
Let U ⊂ R3 be an open subset. We say that the non–constant function H : U →

R is a first integral of the polynomial vector field

(3) X =
(− x(x + ay + bz),−y(bx + y + az),−z(ax + by + z)

)
,

on U associated to system (2), if H(x(t), y(t), z(t)) = constant for all values of t
for which the solution (x(t), y(t), z(t)) of X is defined on U . Clearly H is a first
integral of X on U if and only if XH = 0 on U .

When H is a polynomial we say that H is a polynomial first integral.
Our main results on the polynomial integrability of system (2) were obtained in

[8] and are:

Theorem 1. The unique polynomial first integrals of system (2) are
(a) H2(x, y, z) when b = a 6= 1 and either −(2+a)/(2a+1), or −(2a+1)/(2+a)

is a nonnegative integer; and all the polynomial functions in the variable
H2.

(b) H2(x, y, z) and H5(x, y, z) when b = a = −1; and all the polynomial func-
tions in the variables H2 and H5.

(c) H6(x, y, z) = xyz if a + b = −1; and all the polynomial functions in the
variable H6. Note that H6(x, y, z) = H2(x, y, z) when a = b = −1/2.

For proving our main result concerning the existence of first integrals of Darboux
type we shall use the invariant algebraic surfaces of system (2). This is the basis
of the Darboux theory of integrability. The Darboux theory of integrability works
for real or complex polynomial ordinary differential equations. As it is explained
for instance in [6] the study of complex invariant algebraic surfaces is necessary for
obtaining all the real first integrals of a real polynomial differential system.

Let C[x, y, z] be the ring of all polynomials with coefficients in C and variables
x, y and z. We say that h = h(x, y, z) = 0 with h(x, y, z) ∈ C[x, y, z] \ C is an
invariant algebraic surface of the vector field X if it satisfies Xh = Kh for some
polynomial K = K(x, y, z) ∈ C[x, y, z], called the cofactor of h = 0. Note that
K has degree at most 1. The polynomial h is called a Darboux polynomial, and
we also say that K is the cofactor of the Darboux polynomial h. We note that a
Darboux polynomial with zero cofactor is a polynomial first integral.

In the next result obtained in [8] the authors characterize all the irreducible
Darboux polynomials of system (2) with non-zero cofactor. Taking into account
that system (2) is homogeneous, the study of the Darboux polynomials of system
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(2) with nonzero cofactor can be reduced to the study of the homogeneous Darboux
polynomials with nonzero cofactor, for more details see [14].

Theorem 2. The unique Darboux polynomials of system (2) of degree n ≥ 1 with
nonzero cofactor are

(a) xn1yn2zn−n1−n2 , with n1, n2 integers satisfying 0 ≤ n1 + n2 ≤ n, for all
a, b ∈ R.

(b) xn1yn2zn3(x+y+z)n−n1−n2−n3 with n1, n2, n3 integers satisfying 0 ≤ n1 +
n2 + n3 ≤ n, if a + b = 2.

(c) xn1yn2zn3(x−y)n4(y−z)n5(z−x)n−n1−n2−n3−n4−n5 with n1, n2, n3, n4, n5

integers satisfying 0 ≤ n1 + n2 + n3 + n4 + n5 ≤ n, if b = a 6= 1.
(d) P (x, y)n with P any polynomial of degree 1 if a = b = 1.

The integrability of other kind of 3-dimensional Lotka-Volterra systems different
to system (2) has already been studied. See for instance [1, 4, 7, 11, 12, 13].

We say that E = exp(h/g), with g, h ∈ C[x, y, z] coprime and E 6∈ C, is an
exponential factor of the vector field X given in (3) if it satisfies XE = LE for
some polynomial L = L(x, y, z) ∈ C[x, y, z], called the cofactor of E and having
degree at most 1. The equality XE = LE is equivalent to

(4) −x(x + ay + bz)
∂(h/g)

∂x
− y(bx + y + az)

∂(h/g)
∂y

− z(ax + by + z)
∂(h/g)

∂z
= L.

The exponential factors appear when an invariant algebraic surface has multiplicity
larger than 1, for more details see [2] and [9].

A first integral H of system (2) is called of Darboux type if it is of the form

H = fλ1
1 · · · fλp

p Fµ1
1 · · ·Fµq

q ,

where f1, . . . , fp are Darboux polynomials, F1, . . . , Fq are exponential factors and
λj , µk ∈ C for j = 1, . . . , p, k = 1, . . . , q.

It is well known that system (2) when a = b = 1 or a = b = −1 is completely
integrable (i.e. it has two independent first integrals) with the first integrals H3,H4

when a = b = 1, and H2,H5 when a = b = −1. In what follows we do note consider
these two cases.

The following is the main result of this paper.

Theorem 3. The unique first integrals of Darboux type of system (2) except when
a = b = ±1 are of the form H = Gλ exp(G)µ where λ, µ ∈ C and

(a) G = (x + y + z)3/(xyz) if a + b = 2;
(b) G = ((x− y)(y − z)(z − x))2a+1/(xyz)2+a if b = a;
(c) G = xyz if a + b = −1.

In Section 2 we state and prove preliminary results for the homogeneous polyno-
mial differential system (2). In Section 3 we prove Theorem 3 for the case a+ b = 2
and (a, b) 6= ±1. In section 4 we prove Theorem 3 for the case b = a 6= ±1 and
finally, in Section 5 we prove Theorem 3 for the case b 6= a.

2. Preliminaries for system (2)

We start with a result about Darboux theory of integrability that we shall use
in the paper.
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Theorem 4. Suppose that system (2) admits p invariant algebraic curves fi = 0
with cofactors Ki for i = 1, . . . , p and q exponential factors Ej = exp(hj/gj) with
cofactors Lj for j = 1, . . . , q. Then there exist λj , µj ∈ C not all zero such that

p∑

i=1

λiKi +
q∑

j=1

µjLj = 0

if and only if the function fλ1
1 · · · fλp

p Eµ1
1 · · ·Eµq

q is a first integral of system (2).

Let N be the set of positive integers. For n ∈ N we define

Cn = {a, b ∈ R : a = 1− n1, b = 1− n2, n1n2 = n, n1 + n2 ≤ n, n1, n2 ∈ N}.
In [8] the authors proved the following result.

Proposition 5. For system (2) restricted to z = 0 the following statements hold.
(a) The unique polynomial first integrals are

(5) H = x1−by1−a((b− 1)x + (1− a)y)−1+ab

if (a, b) ∈ Cn; and all polynomials in the variable H.
(b) All the irreducible Darboux polynomials with non–zero cofactor are x and y

for all a and b; and additionally (b− 1)x + (1− a)y when a 6= 1 and b 6= 1.

Proposition 6. The following statements hold.
(a) If E = exp(g/h) is an exponential factor for the polynomial system (2) and

h is not a constant polynomial, then h = 0 is an invariant algebraic curve.
(b) Eventually exp(g) can be an exponential factor, coming from the multiplicity

of the infinite invariant straight line.

For a geometrical meaning of the exponential factors and a proof of Proposition
6 see [2].

Let σ : C[x, y, z] → C[x, y, z] be the automorphism

σ(x) = y, σ(y) = z, σ(z) = x.

Proposition 7. If G is an exponential factor for system (2) with cofactor L =
a0 + a1x + a2y + a3z, then F = G · σ(G) · σ2(G) is an exponential factor of system
(2) invariant by σ with cofactor L = a0+α(x+y+z), a0 ∈ C and α = a1+a2+a3 ∈
C \ {0}.
Proof. Since (2) is invariant under σ and σ2, so F = G · σ(G) · σ2(G) is also a
exponential factor of system (2) with cofactor L+σ(L)+σ2(L) = 3a0+α(x+y+z),
a0, α = a1 + a2 + a3 ∈ C. ¤

We denote by N the set of all positive integers.

Remark 8. If the exponential factor eh/g invariant by σ has cofactor L, then
L = σ(L) = σ2(L), and consequently L = a0 + α(x + y + z) using the notation of
Proposition 7.

Proposition 9. System (2) with a = b 6= ±1 restricted to z = x has the Darboux
polynomial f of degree n of the form xm1ym2(x− y)n−m1−m2 with m1, m2 ∈ N and
m1 + m2 ≤ n.
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Proof. We introduce the change of variables (X, Y, Z) = (x, y, z − x). In these
variables system (2) becomes
(6)
X ′ = −X((1+a)X+aY +aZ), Y ′ = −Y (2aX+Y +aZ), Z ′ = −Z(2X+aY +Z).

We consider system (6) restricted to Z = 0. It follows by direct computations that

G =
Y −(1+a)(Y −X)1+2a

X

is a first integral of system (6) restricted to Z = 0. In order that G is a polynomial
we must have 1 + a = m for some non-negative integer m, i.e. a = m − 1 and
−1− 2a also a non-negative integer. But −1− 2a = −1− 2(m− 1) = 1− 2m has
to be a non-negative integer and this is only possible if m = 0. In this case a = −1
and we do not consider this case here. Hence G is never a polynomial.

It also follows by direct computations that X,Y and X − Y are the unique
homogeneous Darboux polynomials of degree one of system (6) restricted to Z = 0.

Let now f be a homogeneous irreducible Darboux polynomial of degree n ≥ 2 of
system (6) restricted to Z = 0. The cofactor of f is of the form K = b0X + b1Y ,
with b0, b1 ∈ C. We assume that either b0 6= 0 or b1 6= 0. Then f satisfies

(7) −X((1 + a)X + aY )
∂f

∂X
− Y (2aX + Y )

∂f

∂Y
= (b0X + b1Y )f.

If we restrict equation (7) to X = 0 and denote by f the restriction of f to X = 0
we get that f 6= 0 (otherwise f would be reducible) and f = f(Y ) is a homogeneous
polynomial of degree n, that is f = α0Y

n with α0 ∈ C \ {0}. On the other hand
f is a homogeneous Darboux polynomial of degree n of system (6) restricted to
X = Z = 0, that it satisfies

−Y 2 df

dY
= b1Y f, i.e. f = α0Y

−b1 , α0 ∈ C.

Therefore equating the two expressions for f we get b1 = −n. In a similar way,
restricting to Y = 0 we get b0 = −n. Thus K = b0X + b1yY = −n(X + Y ) and (7)
becomes

(8) −X((1 + a)X + aY )
∂f

∂x
− Y (2aX + Y )

∂f

∂Y
= −n(X + Y )f.

Now we introduce the variables (x1, y1) = (X, X − Y ). Then system (6) restricted
to Z = 0 becomes

x′1 = −x1((2a + 1)x1 + ay1), y′1 = −y1((a + 2)x1 − y1).

Let f̂ = f̂(x1, y1) = f(X, Y ). Now we denote by f̃ = f̃(y1) = f̂(0, y1). Then f̃
satisfies (8) restricted to x1 = 0, i.e,

y2
1

df̃

dy1
= −y1f̃ , that is f̃ =

α

y
, α ∈ C.

Since f̃ is a homogeneous polynomial of degree n ≥ 2 we get a contradiction. This
concludes the proof of the proposition. ¤

Lemma 10. For an exponential factor E = exp(h/g) invariant by σ, the polynomial
h satisfies h = σ(h) and the polynomial g has the form

(a) (xyz)m(x + y + z)l with m, l ∈ N, if a + b = 2;
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(b) (xyz)m((x− y)(y − z)(z − x))l with m, l ∈ N if a = b 6= 1;
(c) (xyz)m with m ∈ N for any other value of a and b.

Proof. The exponential factor E = exp(h/g) satisfies σ(E) = E, i.e.

exp(σ(h/g)) = exp(σ(h)/σ(g)) = exp(h/g).

Since h and g are coprime this implies that σ(h) = h and σ(g) = g. We consider
different cases.
Case 1: a + b = 2. In this case it follows from Theorems 1 and 2 that

g(x, y, z) = xn1yn2zn3(x + y + z)n4 = yn1zn2xn3(x + y + z)n4 ,

= zn1xn2yn3(x + y + z)n4 .

Therefore n1 = n2 = n3 = m and n4 = l. This completes the proof of the lemma
in this case.
Case 2: a = b 6= 1. It follows from Theorems 1 and 2 that

g(x, y, z) = xn1yn2zn3(x− y)n4(y − z)n5(z − x)n6

= yn1zn2xn3(y − z)n4(z − x)n5(x− y)n6

= zn1xn2yn3(z − x))n4(x− y)n5(y − z)n6 .

Thus n1 = n2 = n3 = m and n4 = n5 = n6 = l. This completes the proof of the
lemma in this case.

Case 3. a 6= b and a+b 6= 2. Again from Theorems 1 and 2 g(x, y, z) = xn1yn2zn3 .
Proceeding as in the above two cases we obtain that n1 = n2 = n3 = m. ¤
Lemma 11. The exponential factors of the form eh invariant by σ have cofactor
zero.

Proof. Let L be the cofactor of eh. From Proposition 7 the exponential factor
eh+σ(h)+σ2(h) has cofactor 3L = 3a0 + α(x + y + z). Since the exponential factor
satisfies equation (4), taking in it x = y = z = 0 we get that a0 = 0.

Now taking x = y = 0 in (4) and denoting by h the restriction of h to x = y = 0
we have that

−z2 dh

dz
= αz, that is h = C − α log |z|, C ∈ C.

Since h must be a polynomial we have that α = 0. Therefore, L = 0. ¤

3. Proof of Theorem 3 when a + b = 2 except a = b = 1

We divide the proof of Theorem 3 with a + b = 2 except a = b = 1 into different
partial results.

Proposition 12. System (2) with a + b = 2 except a = b = 1 has no exponential
factor E invariant by σ with cofactor L = a0 + α(x + y + z) with α 6= 0.

Proof. Let E be an exponential factor invariant by σ. By Lemma 10(a) it has the
form E = exp(h/((xyz)m(x + y + z)l)) with σ(h) = h and h ∈ C[x, y, z]. It follows
from Lemma 11 that m 6= 0 or l 6= 0, otherwise α = 0. Then h satisfies

− x(x + ay + (2− a)z)
∂h

∂x
− y((2− a)x + y + az)

∂h

∂y
− z(ax + (2− a)y + z)

∂h

∂z

+ (3m + l)(x + y + z)h = (a0 + α(x + y + z))(xyz)m(x + y + z)l,

(9)



INTEGRABILITY OF A FAMILY OF 3-DIMENSIONAL LOTKA-VOLTERRA SYSTEMS. 7

where we have simplified the common factor exp(h/((xyz)m(x + y + z)l)) and mul-
tiplied by (xyz)m(x + y + z)l. We consider different cases.
Case 1: m 6= 0. In this case h is coprime with xyz. Taking z = 0 in (9) and
denoting by h the restriction of h to z = 0 we have that h 6= 0 and satisfies

− x(x + ay)
∂h

∂x
− y((2− a)x + y)

∂h

∂y
+ (3m + l)(x + y)h = 0.(10)

That is h is a Darboux polynomial of system (2) restricted to z = 0. By Proposition
5(b) we have that h must be of the form h = α0x

n1yn2(x + y)n3 with α0 ∈ C \ {0}.
Then imposing that it satisfies (10) we get

(11) −n1(x + ay)− n2((2− a)x + y)− n3(x + y) = −(3m + l)(x + y),

that is

−n1 − (2− a)n2 − n3 = −(3m + l), −an1 − n2 − n3 = −(3m + l),

i.e.,
−n1 − (2− a)n2 = −an1 − n2,

or equivalently,
(a− 1)n1 = (1− a)n2.

Since a 6= 1 and n1, n2 ∈ N∪ {0} we get that n1 = n2 = 0. From (11) n3 = 3m + l.
Hence h = α0(x+ y)3m+l with α0 ∈ C \ {0}. Using the Newton’s binomial formula,
we can write h as

h = α0(x + y)3m+l + zg1 = α0(x + y + z)3m+l + zg2

for some polynomial gk = gk(x, y, z) for k = 1, 2. Since h is invariant by σ, using
that h = σ(h) = σ2(h), we have that g2 can be written in the three equivalent
forms

zg2 = xσ(g2) = yσ2(g2), and hence h = α0(x + y + z)3m+l + xyzf

for some polynomial f = f(x, y, z). Then

E = exp
(

h

(xyz)m(x + y + z)l

)
= exp

(
α0

(x + y + z)3m

(xyz)m

)
G,

with

G = exp
(

f

(xyz)m−1(x + y + z)l

)
.

Since (x + y + z)3m/(xyz)m is a first integral of system (2) we get that G and E
satisfy the same equation (9) with h replaced by f and m replaced by m− 1. Then
proceeding m− 1 times for G as we did for E we get that

E = exp
( m∑

j=0

αj
(x + y + z)3(m−j)

(xyz)m−j
+

(xyz)T
(x + y + z)l

)
,

with αj ∈ C. Then from (9) since (x + y + z)3/(xyz) is a first integral of system
(2) when b = 2− a, we get

xyz
(
− x(x + ay + (2− a)z)

∂T

∂x
− y((2− a)x + y + az)

∂T

∂y
− z(ax + (2− a)y + z)

∂T

∂z

+ (l − 3)(x + y + z)T
)

= (a0 + α(x + y + z))(x + y + z)l.

(12)
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This equality implies that α = 0, a contradiction.
Case 2: m = 0. Then l 6= 0 and h satisfies

− x(x + ay + (2− a)z)
∂h

∂x
− y((2− a)x + y + az)

∂h

∂y
− z(ax + (2− a)y + z)

∂h

∂z

+ l(x + y + z)h = (a0 + α(x + y + z))(x + y + z)l.

Evaluating this equation on x = y = 0 and denoting by h the restriction of h to
x = y = 0, we have that h satisfies

−z2 dh

dz
+ lzh = (a0 + αz)zl.

So we obtain that
h = zl

(
C +

a0

z
− α log |z|

)
.

Since h must be a polynomial we have that α = 0, a contradiction. This concludes
the proof of the proposition. ¤

Lemma 13. If system (2) with a+b = 2 except when a = b = 1 has an exponential
factor invariant by σ with cofactor L = 0, then exp((x + y + z)3/(xyz)) is an
exponential factor.

Proof. From (9) and since a0 = α = 0 the exponential factor E = exp(h/((xyz)m(x+
y + z)l)) satisfies

− x(x + ay + (2− a)z)
∂h

∂x
− y((2− a)x + y + az)

∂h

∂y
− z(ax + (2− a)y + z)

∂h

∂z

+ (3m + l)(x + y + z)h = 0.

(13)

Hence h is a Darboux polynomial invariant by σ of system (2) with a + b = 2,
except when a = b = 1. In view of Theorem 2 it must be of the form h =
α0(xyz)n1(x + y + z)n2 , with α0 ∈ C \ {0}. Substituting h in (13) we obtain that

3n1 + n2 = 3m + l i.e., n2 = l + 3(m− n1).

Substituting h in E we get that E =
(
exp((x + y + z)3/(xyz))

)m−n1 and the proof
of the lemma is completed. ¤

Proof of Theorem 3(a). Assume that H is a first integral of Darboux type. First
we consider that H is invariant by σ. Therefore the Darboux polynomials and the
exponential factors which appear in the expression of H are also invariant by σ.
Then, from Theorems 4, 1 and 2 and Proposition 12, H can be written as

H = (xyz)λ1(x + y + z)λ2Jµ, λ1, λ2, µ ∈ C,

with J = exp(h/g) an exponential factor invariant by σ with cofactor L = a0. Then
we have

−(3λ1 + λ2)(x + y + z) + µa0 = 0.

Therefore we get that λ2 = −3λ1 and µa0 = 0. If a0 = 0 then J is an exponential
factor invariant by σ with L = 0. By Lemma 13 we get that J = exp((x + y +
z)3/(xyz)) and H =

(
(x + y + z)3/(xyz)

)λ1
Jµ. If µ = 0 then H =

(
(x + y +

z)3/(xyz)
)λ1 . This completes the proof of the theorem in this case.
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Now we assume that the first integral of Darboux type H is not invariant by σ.
Then Hσ(H)σ2(H) is another first integral which is invariant by σ, and hence from
the first part of this proof this first integral is of the form (x + y + z)3/(xyz)Jµ/λ,
with J = exp((x + y + z)3/(xyz)). That is

(14) Hσ(H)σ2(H) = (x + y + z)3/(xyz)Jµ/λ.

Clearly there exists α > 0 such that either Jα divides H, σ(H) or σ2(H). Since J
is invariant by σ it must divide H, σ(H) and σ2(H), then

H = Jµ/(3λ)H1, σ(H) = Jµ/(3λ)σ(H1), σ2(H) = Jµ/(3λ)σ2(H1),

where H1 is not invariant by σ. In view of (14) and since x + y + z is invariant by
σ we have that either (x+ y + z)/x divides either H1 or σ(H1) or σ2(H1). Without
loss of generality we can assume that divides H1. Then

H =
x + y + z

x
Jµ/(3λ)H2, σ(H) =

x + y + z

y
Jµ/(3λ)σ(H2),

σ2(H) =
x + y + z

z
Jµ/(3λ)σ2(H2).

(15)

Therefore, from (14) and (15) we have that in fact H = (x + y + z)Jµ/(3λ)/x, a
contradiction with the fact that H is a first integrals. This completes the proof of
the theorem. ¤

4. Proof of Theorem 3 when b = a 6= ±1

We introduce some auxiliary results that we shall use in the proof.

Lemma 14. Let T = T (x, y, z) be a polynomial of degree 6l satisfying

− x(x + ay + az)
∂T

∂x
− y(ax + y + az)

∂T

∂y
− z(ax + ay + z)

∂T

∂z

+ 3(a + 1)l(x + y + z)T =
α

3
(x + y + z)(xyz(x− y)(x− z)(y − z))l, α ∈ C, l ≥ 1.

(16)

Then α = 0.

Proof. Let T = T (x, y) = T (x, y, 0). Then T satisfies (16) restricted to z = 0, that
is

−x(x + ay)
∂T

∂x
− y(ax + y)

∂T

∂y
+ 3(a + 1)l(x + y)T = 0.

Then T is either zero or a Darboux polynomial of system (2) restricted to z = 0
and with cofactor −3(a + 1)l(x + y). We want to show that in this last case is not
possible. We proceed by contradiction. In view of Proposition 5(b) we have

T = α0x
n1yn2(x− y)6l−n1−n2 , α0 ∈ C \ {0},

and the cofactor is3

K = −3(a + 1)l(x + y) = −6l(x + y)− (a− 1)(n2x + n1y).

Using that a 6= 1 we get n1 = n2 = 3l. Therefore T = α0x
3ly3l with α0 ∈ C \ {0}.

Since T is invariant by σ, we get

T = α0x
3ly3l + zT1 = α0y

3lz3l + xσ(T1) = α0z
3lx3l + yσ2(T1),
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that is

(17) T = α0x
3ly3l + α0y

3lz3l + α0z
3lx3l + xyzS,

where S = S(x, y, z) is a polynomial of degree 6l − 3.

Now if we restrict (16) to z = x ad we denote by T̂ the restriction of T to z = x,
we have

−x((1 + a)x + ay)
∂T̂

∂x
− y(2ax + y)

∂T̂

∂y
+ 3(a + 1)l(2x + y)T̂ = 0,

i.e., T̂ is either zero or is a Darboux polynomial of system (2) restricted to z = x
and with cofactor K = −3l(a + 1)(2x + y). In this second case we will arrive to a
contradiction. Indeed, by Proposition 9 we get

T̂ = α1x
n1yn2(x− y)6l−n1−n2 ,

and the cofactor is

K = −6l(1 + a)x− 6ly − (a− 1)n2x− (a− 1)n1y.

Then equating the two cofactors we obtain

(a− 1)n2x = 0 and (a− 1)n1y = 3l(a− 1)y,

that is, since a 6= 1, we get n2 = 0 and n1 = 3l. Then T̂ = α1x
3l(x− y)3l, and thus

T = α1x
3l(x − y)3l + (z − x)T1, where T1 = T1(x, y, z) is a polynomial of degree

6l − 1. Then since T is invariant by σ we get

T = α1x
3l(x− y)3l + (z − x)T1 = α1y

3l(y − z)3l + (x− y)σ(T1)

= α1z
3l(z − x)3l + (y − z)σ2(T1),

that implies

(18) T = α1x
3l(x− y)3l +α1y

3l(y− z)3l +α1z
3l(z−x)3l +(x− y)(y− z)(z−x)T3,

where T3 = T3(x, y, z) is a polynomial of degree 6l − 3. Equating (17) and (18)
with z = 0 and y = x we get

α0x
6l = α1x

6l, that is α1 = α0,

Now evaluating them on z = y = 0 we get

0 = α1x
6l that is α1 = 0 and hence α0 = 0,

a contradiction. Hence T = T̂ = 0. Therefore T is divisible by z. Since T is
invariant by σ and σ2 we get that T is divisible by xyz. Moreover, T must be
divisible by x− z and again since it is invariant by σ and σ2 we get that it must e
divisible by (x− y)(y − z)(z − x). Therefore

T = xyz(x− y)(y − z)(z − x)S,

and S 6= 0 is a polynomial of degree 6(l − 1) satisfying

− x(x + ay + az)
∂S

∂x
− y(ax + y + az)

∂S

∂y
− z(ax + ay + z)

∂S

∂z

+ 3(a + 1)(l − 1)(x + y + z)S =
α

3
(x + y + z)

(
xyz(x− y)(y − z)(z − x)

)l−1
.
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Then proceeding l− 1 times for S as we did for T , we obtain that T = α2

(
xyz(x−

y)(x− z)(y − z)
)l with α2 ∈ C \ {0} and satisfying

α(x + y + z) = 0.

Then α = 0. This concludes the proof of the lemma. ¤

Proposition 15. System (2) with b = a 6= ±1 has no exponential factors invariant
by σ with cofactor L = a0 + α(x + y + z) with α 6= 0.

Proof. Let E be an exponential factor of system (2) with b = a 6= ±1 invariant by
σ. In this case by Lemma 10(b) E = exp(h/((xyz)m((x− y)(y − z)(z − x))l) with
σ(h) = h and h ∈ C[x, y, z] that satisfies

− x(x + ay + az)
∂h

∂x
− y(ax + y + az)

∂h

∂y
− z(ax + ay + z)

∂h

∂z

+ ((2a + 1)m + (2 + a)l)(x + y + z)h

= (a0 + α(x + y + z))(xyz)m((x− y)(y − z)(z − x))l,

(19)

where we have simplified the common factor exp(h/((xyz)m((x−y)(y−z)(z−x))l))
and multiplied by (xyz)m((x− y)(y − z)(z − x))l.

We write h =
∑

j≥1 hj , where each hj is a homogeneous polynomial of degree j.
Then computing the terms of degree 3(m + l) + 1 in (19) we have

− x(x + ay + az)
∂h3(m+l)

∂x
− y(ax + y + az)

∂h3(m+l)

∂y
− z(ax + ay + z)

∂h3(m+l)

∂z

+ ((2a + 1)m + (2 + a)l)(x + y + z)h3(m+l)

=
α

3
(x + y + z)(xyz)m((x− y)(y − z)(z − x))l.

(20)

We note that m2 + l2 6= 0 otherwise the result follows from Lemma 11 and that
h3(m+l) 6= 0 since otherwise the result holds immediately from (20). We consider
different cases.
Case 1: m > l. In this case we have that m 6= 0. Now if we restrict (20) to z = 0
and denote by h3(m+l) = h3(m+1)(x, y) = h3(m+l)(x, y, 0) we get

− x(x + ay)
∂h3(m+l)

∂x
− y(ax + y)

∂h3(m+l)

∂y
+ ((2a + 1)m + (2 + a)l)(x + y)h3(m+l)

= 0.

That is h3(m+l) is either 0 or a Darboux polynomial of system (2) restricted to z = 0
and with cofactor −((2a + 1)m + (2 + a)l)(x + y). We will show by contradiction
that this last case is not possible. Indeed, in view of Proposition 5(b) we have

h3(m+l) = α0x
n1yn2(x− y)3(m+l)−n1−n2 , α0 ∈ C \ {0},

and the cofactor is

K = −3(l + m)(x + y)− (a− 1)(n2x + n1y).

Equating the two cofactors and since a 6= 1 we get n2 = n1 = l + 2m. Then
3(m + l) − n1 − n2 = l − m < 0 which implies that h3(m+l) is not a polynomial,
a contradiction. Therefore h3(m+l) = 0, and since h3(m+l) is invariant by σ we get
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that h3(m+l) = xyzg, where g = g(x, y, z) is a homogeneous polynomial of degree
3(m + l − 1) and invariant by σ that satisfies after simplifying by xyz,

− x(x + ay + bz)
∂g

∂x
− y(bx + y + az)

∂g

∂y
− z(ax + by + z)

∂g

∂z

+ ((2 + a)l + (2a + 1)(m− 1))(x + y + z)g

=
α

3
(x + y + z)(xyz)m−1((x− y)(x− z)(y − z))l.

If m− 1 > l, proceeding for g as we did for h3(m+l) we get that g = (xyz)f , where
f = f(x, y, z) is a homogeneous polynomial of degree 3(m + l − 2) invariant by
σ. Proceeding inductively m − l − 1 times we have h3(m+l) = α0(xyz)m−lT , with
α0 ∈ C and T = T (x, y, z) a polynomial of degree 6l and satisfying (16). Then by
Lemma 14 we get α = 0.
Case 2: m = l. In this case, we are under the assumptions of Lemma 14 with h = T
and thus α = 0.
Case 3: m < l. We have that l 6= 0. Now if we restrict (20) to z = x and denote
by ĥ3(m+l) the restriction of h3(m+l) to z = x we obtain

− x((1 + a)x + ay)
∂ĥ3(m+l)

∂x
− y(2ax + y)

∂ĥ3(m+l)

∂y

+ ((2a + 1)m + (2 + a)l)(2x + y)ĥ3(m+l) = 0.

Then either ĥ3(m+l) = 0 or ĥ3(m+l) is a Darboux polynomial of system (2) restricted
to z = x and with cofactor K = −((2a + 1)m + (2 + a)l)(x + y). We will show that
this last case is not possible. Hence, in view of Proposition 9 we have

ĥ3(m+l) = α1x
n1yn2(x− y)3(m+l)−n1−n2 , α1 ∈ C \ {0},

and the cofactor is

K = −(3l + 3al + 3m + 3am− n2 + an2)x− (3l + 3m− n1 + an1)y.

Equating the two cofactors we get n1 = l + 2m and n2 = m − l. Since m < l we
have that ĥ3(m+l) is not a polynomial, a contradiction. Therefore, ĥ3(m+l) = 0 and
thus h3(m+l) must be divisible by z−x. Since h3(m+l) is invariant by σ we get that
it is in fact of the form

h3(m+l) = (x− y)(y − z)(z − x)g,

where g = g(x, y, z) is a homogeneous polynomial of degree 3(m+l−1) and invariant
by σ that satisfies

− x(x + ay + az)
∂g

∂x
− y(ax + y + az)

∂g

∂y
− z(ax + ay + z)

∂g

∂z

+ ((2 + a)(l − 1) + (2a + 1)m)(x + y + z)g

=
α

3
(x + y + z)(xyz)m((x− y)(y − z)(z − x))l−1.

If l−1 > m, proceeding for g as we did for h3(m+l) we obtain g = (x−y)(y−z)(z−x)f
where f = f(x, y, z) is a homogeneous polynomial of degree 3(m + l − 2) invariant
by σ. Proceeding inductively l −m − 1 times we have h3(m+l) = α1

(
(x − y)(y −

z)(z − x)
)l−m

T with α1 ∈ C and T = T (x, y, z) a polynomial of degree 6m and
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satisfying (16) replacing l by m. Then by Lemma 14 we get that α = 0. This
concludes the proof of the proposition. ¤

Lemma 16. If system (2) with b = a 6= ±1, has an exponential factor E invariant
by σ with cofactor L = 0, then E = exp((x− y)(y − z)(z − x))2a+1/(xyz)2+a).

Proof. By Lemma 10(b) the exponential factor E = exp(h/((xyz)m((x − y)(y −
z)(z − x))l)) satisfies

− x(x + ay + bz)
∂h

∂x
− y(bx + y + az)

∂h

∂y
− z(ax + by + z)

∂h

∂z

+ ((2 + a)l + (2a + 1)m)(x + y + z)h = 0.

In view of Theorem 2(c) we obtain

h = (xyz)n1((x− y)(y − z)(z − x))n2 ,

with cofactor

−((2 + a)n2 + (2a + 1)n1)(x + y + z) = −((2 + a)l + (2a + 1)m)(x + y + z).

That is E = exp(((x− y)(y − z)(z − x))n2−l/(xyz)m−n1), with

(2 + a)n2 + (2a + 1)n1 = (2 + a)l + (2a + 1)m.

Then if a 6= −2, n2 − l = (2a + 1)(m − n1)/(2 + a) and E = exp((x − y)(y −
z)(z − x))2a+1/(xyz)2+a)m−n1 . If a = −2 then n1 = m and consequently E =
exp((x− y)(y − z)(z − x))n2−l. In short the proposition is proved. ¤

Proof of Theorem 3(b). Proceeding in a similar way as in the proof of Theorem
3(a) we first assume that the first integral of Darboux type is invariant by σ. From
Theorems 4, 1 and 2 and Proposition 12, if system (2) has a Darboux first integral
H (that again can be considered invariant by σ) then

H = (xyz)λ1((x− y)(y − z)(z − x))λ2Jµ, λ1, λ2, µ ∈ C,

with J = exp(h/g) an exponential factor invariant by σ with cofactor L = a0. Then
we have

(21) −((2 + a)λ2 + (2a + 1)λ1)(x + y + z) + µa0 = 0.

Therefore we get that (2 + a)λ2 + (2a + 1)λ1 = 0 and µa0 = 0. If a0 = 0 then
J is an exponential factor invariant by σ with L = 0. By Lemma 16 we get that
J = exp((x− y)(y − z)(z − x))2a+1/(xyz)2+a) and

H =
(

((x− y)(y − z)(z − x))2a+1

(xyz)2+a

)λ1

Jµ.

If µ = 0 then

H =
(

((x− y)(y − z)(z − x))2a+1

(xyz)2+a

)λ1

.

Now the same arguments that we did in the proof of Theorem 3(a) would allow
to show that the unique first integrals of Darboux type of system (2) are invariant
by σ. This completes the proof of the theorem. ¤
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5. Proof of Theorem 3 when a + b 6= 2 and b 6= a

We introduce some auxiliary results.

Proposition 17. System (2) with a + b 6= 2 and b 6= a has no exponential factors
E invariant by σ with cofactor L = a0 + α(x + y + z) with α 6= 0.

Proof. By Lemma 10(c) E = exp(h/(xyz)m) with σ(h) = h and h ∈ C[x, y, z] and
satisfies

− x(x + ay + bz)
∂h

∂x
− y(bx + y + az)

∂h

∂y
− z(ax + by + z)

∂h

∂z
+

m(1 + a + b)(x + y + z)h = (a0 + α(x + y + z))(xyz)m,
(22)

where we have simplified the common factor exp(h/(xyz)m) and multiplied by
(xyz)m. We have m 6= 0, otherwise the result follows directly from Lemma 11. We
consider different cases.
Case 1: a + b + 1 = 0. In this case we have

− x(x + ay − (1 + a)z)
∂h

∂x
− y(−(1 + a)x + y + az)

∂h

∂y
− z(ax− (1 + a)y + z)

∂h

∂z

= (a0 + α(x + y + z))(xyz)m.

(23)

Now taking z = 0 in (23) and denoting by h = h(x, y) = h(x, y, 0) we have that

−x(x + ay)
∂h

∂x
+ y(−(1 + a)x + y)

∂h

∂y
= 0,

that is, h = 0 or h is a polynomial first integral of system (2) restricted to z = 0.
Since h is coprime with xyz, we get that h 6= 0 and thus it is a Darboux polynomial
of system (2) restricted to z = 0. By Proposition 5(a) we have that a = 1 − n1,
b = 1− n2 with n1, n2 ∈ N, but then 0 = a + b + 1 = 3− n1 − n2, i.e. n1 + n2 = 3.
By Proposition 5(a) the first integral is H = xn2yn1((b − 1)x + (1 − a)y)n−n1−n2

and n ≥ 3 with n1n2 = n and n1 + n2 = 3, a contradiction. Hence this case is not
possible.
Case 2: a 6= 1, b 6= 1 and 1 + a + b 6= 0. We write h =

∑
j≥1 hj , where each hj is

a homogeneous polynomial of degree j. Computing the terms of degree 3m + 1 in
(22) we have

− x(x + ay + bz)
∂h3m

∂x
− y(bx + y + az)

∂h3m

∂y
− z(ax + by + z)

∂h3m

∂z
+

m(1 + a + b)(x + y + z)h3m = α(x + y + z)(xyz)m.
(24)

Now if we restrict (24) to z = 0 and denote by h3m the restriction of h3m to z = 0
we obtain

−x(x + ay)
∂h3m

∂x
− y(bx + y)

∂h3m

∂y
+ m(1 + a + b)(x + y)h3m = 0.

That is h3m is either 0 or a Darboux polynomial of system (2) restricted to z = 0
and with cofactor −m(1 + a + b)(x + y). We will show that this last case is not
possible. In view of Proposition 5(b) we have

h3m = α0x
n1yn2((b− 1)x + (1− a)y)3m−n1−n2 , α0 ∈ C \ {0},
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and the cofactor is

K = ((1− b)n2 − 3m)x + ((1− a)n1 − 3m)y.

Then equating the cofactors we get

n1 =
m(a + b− 2)

a− 1
= m +

m(b− 1)
a− 1

, n2 =
m(a + b− 2)

b− 1
= m +

m(a− 1)
b− 1

.

Note that
n1

n2
=

b− 1
a− 1

> 0.

In order that h3m be a polynomial we must have n1 + n2 ≤ 3m. Then

3m ≥ n1 + n2 = 2m + m
( b− 1

a− 1
+

a− 1
b− 1

)
,

that is

m ≥ m
( (b− 1)2 + (a− 1)2

(b− 1)(a− 1)

)
i.e. (b− 1)(a− 1) ≥ (b− 1)2 + (a− 1)2,

a contradiction since a 6= 1 and b 6= 1. Then h3m = 0 and thus h3m must be divisible
by z. Since h3m is invariant by σ we get that h3m = xyzg, where g = g(x, y, z) is
a homogeneous polynomial of degree 3(m− 1) and invariant by σ. It satisfies after
simplifying by xyz,

− x(x + ay + bz)
∂g

∂x
− y(bx + y + az)

∂g

∂y
− z(ax + by + z)

∂g

∂z

+ (m− 1)(1 + a + b)(x + y + z)g =
α

3
(x + y + z)(xyz)m−1.

Proceeding for g as we did for h3m we get that g = (xyz)f , where f = f(x, y, z) is a
homogeneous polynomial of degree 3(m−2) invariant by σ. Proceeding inductively
m − 2 times we have h3m = α0(xyz)m, with α0 ∈ C. Introducing it in (24) we
obtain that

0 = α(x + y + z), that is α = 0.

Case 3: a = 1, b 6= 1 and 2 + b 6= 0. In this case we have

− x(x + y + bz)
∂h

∂x
− y(bx + y + z)

∂h

∂y
− z(x + by + z)

∂h

∂z
+

m(2 + b)(x + y + z)h = (a0 + α(x + y + z))(xyz)m.
(25)

Now taking z = 0 in (25) and denoting by h = h(x, y) = h(x, y, 0) we have that

−x(x + y)
∂h

∂x
− y(bx + y)

∂h

∂y
+ m(2 + b)(x + y)h = 0,

that is, h = 0 or h is a Darboux polynomial of system (2) restricted to z = 0. Since
h is coprime with xyz, we get that h 6= 0 and thus it is a Darboux polynomial
of system (2) restricted to z = 0 with a = 1, b + 2 6= 0 and with cofactor K =
−m(2+b)(x+y). In view of Proposition 5(b) it must be of the form h = α0x

n1yn2 ,
α0 ∈ C \ {0}. The cofactor is

K = −(n1 + n2b)x− (n1 + n2)y.

Equating the two cofactors K for h we get

n1 + n2 = m(2 + b) n1 + n2b = m(2 + b).
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That is
n2(b− 1) = 0 i.e., n2 = 0 and n1 = m(2 + b).

Therefore h = α0x
m(2+b) + zg for some polynomial g = g(x, y, z). Since h is

invariant by σ we have

h = α0x
m(2+b) + zg = α0y

m(2+b) + xσ(g) = α0z
m(2+b) + yσ2(g), α0 ∈ C.

In particular, on z = 0 we obtain

α0x
m(2+b) = yσ2(g),

which implies α0 = 0, a contradiction. Therefore this case is not possible.
Case 4: b = 1, a 6= 1 and 2+a 6= 0. Proceeding as in Case 2 we have that this case
is not possible. ¤

Proof of Theorem 3(c). We first assume that the first integral of Darboux type is
invariant by σ. We can consider that a + b 6= 2 and b 6= a. We separate the proof
into different cases.
Case 1: a+ b+1 = 0. We first claim that if E is an exponential factor invariant by
σ with cofactor L = 0, then E = exp(xyz)µ for some constant µ. By Lemma 10(c)
we have E = exp(h/((xyz)m) and from (22) it satisfies

−x(x + ay + bz)
∂h

∂x
− y(bx + y + az)

∂h

∂y
− z(ax + by + z)

∂h

∂z
= 0.

Then in view of Theorem 1(c) we have that h is a polynomial in the variable xyz.
Therefore E = exp((xyz))µ, and the claim is proved.

From Theorems 4, 1 and 2 and Proposition 17, if system (2) has a Darboux first
integral invariant bby σ H then

H = (xyz)λ1Jµ, λ, µ ∈ C
with J = exp(h/g) an exponential factor invariant by σ with cofactor L = a0. Then
we have µa0 = 0. If a0 = 0 then J is an exponential factor invariant by σ with
L = 0. By the above explanation we have J = exp(xyz) and H = (xyz)λ1Jµ. If
µ = 0 then H = (xyz)λ1 .
Case 2: a + b + 1 6= 0. In this case we first show that there are no exponential
factors invariant by σ with cofactor L = 0. Indeed, by Lemma 10(c) we have
E = exp(h/((xyz)m) and satisfies

− x(x + ay + bz)
∂h

∂x
− y(bx + y + az)

∂h

∂y
− z(ax + by + z)

∂h

∂z
+

m(1 + a + b)(x + y + z)h = 0.

In view of Theorem 2(a) we obtain h = (xyz)n1 , with cofactor

−n1(1 + a + b)(x + y + z) = −m(1 + a + b)(x + y + z).

That is E = exp(constant), which is not possible.
From Theorems 4, 1 and 2 and Proposition 17, if system (2) has a Darboux first

integral H (that again can be considered invariant by σ) then

H = (xyz)λ1Jµ, λ, µ ∈ C
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with J = exp(h/g) an exponential factor invariant by σ with cofactor L = a0. We
have

(26) (1 + a + b)λ1(x + y + z) + µa0 = 0.

Therefore we get λ1 = 0 and µa0 = 0. If a0 = 0 then J is an exponential factor
invariant by σ with L = 0 and by the explanation above this is not possible. Then
µ = 0 and H is constant, a contradiction. Hence this case is not possible.

Now the same arguments that we did in the proof of Theorem 3(a) would allow
to show that the unique first integrals of Darboux type of system (2) are invariant
by σ. This completes the proof of the theorem. ¤
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