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INTEGRABILITY OF REVERSIBLE AND EQUIVARIANT

QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS IN

THE PLANE

JAUME LLIBRE AND CLAUDIA VALLS

Abstract. We study the existence of first integrals for the class of
reversible and equivariant quadratic polynomial differential systems in
the plane. We put special emphasis in the study of the analytic first
integrals.

1. Introduction

For a planar differential system the existence of a first integral determines
completely its phase portrait. However the explicit computation of first
integrals is not an easy task. A first step is to compute those first integrals
in different classes of functions such as the class of analytic functions.

These last years quadratic vector fields have been investigated intensively
as one of the easiest families of nonlinear differential systems, and more
than one thousand papers have been published about these vector fields (see
for instance [2, 8, 10, 9]), but the problem of classifying all the integrable
quadratic vector fields remains open. For more information on the integrable
differential vector fields in dimension 2, see for instance [3].

The reversible and the equivariant differential equations have symmetries
and this is important because a symmetry of a differential equation is a
transformation that sends solutions to solutions simplifying the study of
these differential systems. The equations describing a physical or a bio-
logical system often exhibit symmetries, therefore it is important to study
such classes of systems. Reversible systems have an additional importance
because reversibility has similar implications for the eigenvalues as in the
Hamiltonian systems.

Let φ : R2 → R2 be an involution, that is, φ ◦ φ = Id. We say that a
polynomial vector field X is φ-reversible, if X satisfies

Dφ(p)X(p) = −X ◦ φ(p), for all p ∈ R2,

and we say that X is φ-equivariant, if X satisfies

Dφ(p)X(p) = X ◦ φ(p), for all p ∈ R2.

In this paper we characterize the existence of analytic first integrals for
all φ-reversible and φ-equivariant quadratic polynomial vector fields in the
plane.
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It will be proved in section 2 that it is enough to consider the involution
φ(x, y) = (x,−y). This result is not new (see for instance [6]) but since it is
easy to prove we show it here for completeness.

Since φ(x, y) = (x,−y) it is easy to obtain that the φ-reversible quadratic
polynomial vector fields in R2 have the form

x′ = y(a0 + a1x),

y′ = b0 + b1x+ b2x
2 + b3y

2,
(1)

where a0, a1, b0, b1, b2, b3 ∈ R, and that the φ-equivariant quadratic polyno-
mial vector fields have the form

x′ = a0 + a1x+ a2x
2 + a3y

2,

y′ = (b0 + b1x)y,
(2)

where a0, a1, a2, a3, b0, b1 ∈ R.
Let U be an open subset of R2 such that R2\U has zero Lebesgue measure.

A non-constant function H : U → R is a first integral of the differential
system (1) (respectively (2)) if it is constant on the solutions of system (1)
(respectively (2)) contained in U . When a differential system has a first
integral we say that it is integrable. We say that the first integral H is
analytic when the function H is analytic in U and in this case the system
is called analytically integrable. When U = R2 we say that H is a global
analytic first integral.

The main objective of this paper is to study the existence of analytic first
integrals for systems (1) and (2). We shall see that system (1) is always
analytically integrable, see Theorem 1. For system (2) we shall see that if
a3b1(a1b1 − 2a2b0) = 0 then it is analytically integrable (see Theorems 2,
3 and 4). Finally in Theorem 5 we show that system (2) with a3b1(a1b1 −
2a2b0) ̸= 0 is not globally analytically integrable.

Theorem 1. System (1) is analytically integrable. More precisely:

(a) If a0 = a1 = 0, then a first integral is x.
(b) If b0 = b1 = b2 = b3 = 0, then a first integral is y.

In the rest of the theorem we assume that (a0, a1) ̸= (0, 0) and that (b0, b1, b2,
b3) ̸= (0, 0, 0, 0).

(c) If b3 = 0 and a1 = 0, then a first integral is

y2 − x

3a0
(6b0 + 3b1x+ 2b2x

2). (3)

(d) If b3 = 0 and a1 ̸= 0, then a first integral is

y2 − x(2a1b1 − 2a0b2 + a1b2x)

a21
− G0

a31
log(a0 + a1x), (4)

where G0 = 2(a21b0 − a0a1b1 + a20b2).
(e) If b3 ̸= 0 and a1 = 0, then a first integral is

exp

(
− 2b3

a0
x

)(
2b33y

2 + a20b2 + a0b3(b1 + 2b2x) + 2b23(b0 + b1x+ b2x
2
)
. (5)
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(f) If b3a1 ̸= 0 and (b3 − a1)(2b3 − a1) ̸= 0, then a first integral is

(a0 + a1x)
− 2b3

a1

[
y2 − G1

b3(b3 − a1)(2b3 − a1)

]
, (6)

where G1 = −a21b0 − a20b2 − a0b3(b1 + 2b2x)− 2b23(b0 + b1x+ b2x
2) +

a1(a0b1 + 3b0b3 + 2b1b3x+ b2b3x
2).

(g) If b3a1 ̸= 0, b3 = a1 and b2 = 0, then a first integral is

1

(a0 + a1x)2

[
y2 +

a1b0 + a0b1 + 2a1b1x

a21

]
. (7)

(h) If b3a1 ̸= 0, b3 = a1 and b2 ̸= 0, then a first integral is

1

(a0 + a1x)2
[
a31y

2 −G2 − 2b2(a0 + a1x)
2 log(a0 + a1x)

]
, (8)

where G2 = 3a20b2 − a21(b0 + 2b1x)− a0a1(b1 − 4b2x).
(i) If b3a1 ̸= 0, b3 = a1/2 and a1b1 = 2a0b2, then a first integral is

1

a0 + a1x

[
a31y

2 − 2(a20b2 + a0a1b2x+ a21(−b0 + b2x
2))

]
. (9)

(j) If b3a1 ̸= 0, b3 = a1/2 and a1b1 ̸= 2a0b2, then a first integral is

1

a0 + a1x

[
a31y

2 −G3 − 2(a1b1 − 2a0b2)(a0 + a1x) log(a0 + a1x)
]
, (10)

where G3 = −2(a21b0 − a0a1b1 + a20b2 − a0a1b2x− a21b2x
2).

Theorem 2. System (2) with condition a3 = 0 is analytically integrable.
More precisely:

(a) If a0 = a1 = a2 = 0, then a first integral is x.
(b) If b0 = b1 = 0, then a first integral is y.

In the rest of the theorem we assume that (a0, a1, a2) ̸= (0, 0, 0) and that
(b0, b1) ̸= (0, 0).

(c) If a1 = a2 = 0, then a first integral is

log y − x

2a0
(2b0 + b1x). (11)

(d) If a2 = 0 and a1 ̸= 0, then a first integral is

log y − a1b0 − a0b1
a21

log(a0 + a1x)−
b1
a1
x. (12)

(e) If a2 ̸= 0 and a0 = a21/(4a2), then a first integral is

log y − b1
a2

log(a1 + 2a2x) +
2a2b0 − a1b1
a2(a1 + 2a2x)

. (13)

(f) If a2 ̸= 0 and a0 ̸= a21/(4a2), then a first integral is

log y− b1
2a2

log(a0 + x(a1 + a2x)) +
a1b1 − 2a2b0

a2
√

4a0a2 − a21
arctan

(
a1 + 2a2x√
4a0a2 − a21

)
.

(14)
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Theorem 3. System (2) with conditions a3 ̸= 0 and b1 = 0 is integrable
with first integral y if b0 = 0, and

(−a1 − 2a2x)YS1(S2y) +
√
a2
√
a3y (YS1+1(S2y)− YS1−1(S2y))

(a1 + 2a2x)JS1(S2y) +
√
a2
√
a3y (JS1−1(S2y)− JS1+1(S2y))

, (15)

if b0 ̸= 0, where S1 =
√
a21 − 4a0a2/(2b0), S2 =

√
a2 a3/b0, Ya(z) is the

Bessel function of the second kind, and Ja(z) is the Bessel function of the
first kind.

For more details on the Bessel functions see [1].

Theorem 4. System (2) with conditions a3b1 ̸= 0, and a1b1 = 2a2b0 is
analytically integrable. More precisely:

(a) If a2 = 0, then a first integral is

(b0 + b1x)
2 − a3b1y

2 − 2

b1
(a0b

2
1 − a2b

2
0) log y. (16)

(b) If a2 = b1, then a first integral is

1

y2
[
a0b

2
1 − a2b

2
0 + b1(b0 + b1x)

2 − 2a3b
2
1y

2 log y
]
. (17)

(c) If a2(a2 − b1) ̸= 0, then a first integral is

y
− 2a2

b1

[
a0b1(a2 − b1) + 2a2b0(a2 − b1)x+ a2b1(a2 − b1)x

2 + a2a3b1y
2
]
. (18)

Theorem 5. System (2) with a3b1(a1b1 − 2a2b0) ̸= 0 has no global analytic
first integrals.

Theorems 1, 2, 3, 4 and 5 are proved in sections 4, 5, 6, 7 and 8, respec-
tively.

2. Reversible and equivariant quadratic polynomial vector
fields

We show in this section that in the definition of reversible and equivariant
quadratic polynomial vector fields we can always consider that the involution
φ is given by φ(x, y) = (x,−y). More precisely, we will prove the following
result.

Proposition 1. Let φ : R2 → R2 be a polynomial involution, and let X be
a φ-reversible (respectively φ-equivariant) polynomial vector field of degree
m > 1 in R2. Then φ is conjugated to ψ given by ψ = diag (1,−1).

Proof. We will prove the proposition only for the case in which X is a φ-
reversible polynomial vector field, since the case in which X is φ-equivariant
is completely analogous. We first show that under the assumptions, φ is
linear. Let q be the degree of the polynomial involution φ : R2 → R2. We
will show that q = 1. Indeed since X is a φ-reversible vector field, we have
that Dφ(p)X(p) = −X(φ(p)). This equation implies that if mq = q−1+m,
or equivalently q(m − 1) = m − 1. Taking into account that m ̸= 1 we
conclude that q = 1. Therefore, since φ is linear and it is an involution we
get that detφ = ±1. By the Jordan’s normal form theorem, there is a linear
change of variables h : R2 → R2 such that ψ = h−1φh where ψ is formed by
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not zero eigenvalues λ1 and λ2 satisfying λ1λ2 = ±1. Furthermore, using
that ψ2 = Id we conclude that λ1 = ±1 and λ2 = ±1. Hence we can always
assume that λ1 = 1 and λ2 = −1. This concludes the proof. �

3. Preliminary results

The vector field X associated to the system

x′ = P (x, y), y′ = Q(x, y), (19)

where P and Q are real polynomials in the variables x, y is defined by

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.

We introduce the following auxiliary result due to Poincaré in [7], see also [4]
for a direct proof. Through the paper Z+ will denote the set of non-negative
integers.

Theorem 6. Assume that the eigenvalues λ1 ̸= 0 and λ2 ̸= 0 at some
singular point p of X do not satisfy any resonance condition of the form

λ1k1 + λ2k2 = 0 for k1, k2 ∈ Z+ with k1 + k2 > 0.

Then system (19) has no analytic first integrals defined in a neighborhood
of p.

The following result is due to Li, Llibre and Zhang, see [5].

Theorem 7. Assume that the eigenvalues λ1 and λ2 at some singular point
p of X satisfy that λ1 = 0 and λ2 ̸= 0. Then system (19) has no analytic
first integrals in a neighborhood of p if p is isolated in the set of all singular
points of X.

4. Proof of Theorem 1

It is clear that if a0 = a1 = 0 then x is a polynomial first integral, and if
b0 = b1 = b2 = b3 = 0, then y is a polynomial first integral. So statements
(a) and (b) are proved.

From now on we assume that (a0, a1) ̸= (0, 0) and (b0, b1, b2, b3) ̸= (0, 0, 0,
0).

We rewrite systems (1) into the form

dy

dx
=
b0 + b1x+ b2x

2

y(a0 + a1x)
+

b3y

a0 + a1x
.

Now taking the variable v = y2 we get that the above system becomes the
following linear differential system in the variable v,

v′ =
dv

dx
=

2b3
a0 + a1x

v +
2(b0 + b1x+ b2x

2)

a0 + a1x
. (20)

We consider eight cases which correspond with the eight statements (c)–(j)
of the theorem.

(c) b3 = 0 and a1 = 0. In this case the general solution of system (20) is

v(x) =
x(6b0 + 3b1x+ 2b2x

2)

3a0
+H,
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where H is an integration constant. Hence system (1) under these assump-
tions is integrable with the first integral (3).

(d) b3 = 0 and a1 ̸= 0. In this case this case the general solution of system
(20) is

v(x) =
x(2a1b1 − 2a0b2 + a1b2x)

a21
+H +

G0

a31
log(a0 + a1x),

where H is an integration constant. Hence system (1) under these assump-
tions is integrable with the first integral (4).

(e) b3 ̸= 0 and a1 = 0. In this case the general solution of system (20) is

2b33v(x) = −a20b2−a0b3(b1+2b2x)−2b23

(
b0+x(b1+b2x)−b3 exp

(2b3x
a0

)
H
)
,

where H is a first integral. Hence system (1) is integrable with the first
integral (5).

(f) b3a1 ̸= 0 and (b3 − a1)(2b3 − a1) ̸= 0. The general solution of system
(20) is

v(x) =
G1

b3(b3 − a1)(2b3 − a1)
+ (a0 + a1x)

2b3/a1H,

where H is a first integral. Hence system (1) has the first integral (6).

(g) b3a1 ̸= 0, b3 = a1 and b2 = 0. The general solution of system (20) is

v(x) = −a1b0 + a0b1 + 2a1b1x

a21
+ (a0 + a1x)

2H.

Hence system (1) has the first integral (7).

(h) b3a1 ̸= 0, b3 = a1 and b2 ̸= 0. The general solution of system (20) is

a31v(x) = G2 + a31(a0 + a1x)
2H + 2b2(a0 + a1x)

2 log(a0 + a1x).

Hence system (1) has the first integral (8).

(i) b3a1 ̸= 0, b3 = a1/2 and a1b1 = 2a0b2. In this case the general solution
of system (2) is

v(x) = 2

(
a20b2 + a0a1b2x+ a21(−b0 + b2x

2)

a31

)
+ (a0 + a1x)H.

Hence system (1) has the first integral (9).

(j) b3a1 ̸= 0, b3 = a1/2 and a1b1 ̸= 2a0b2. In this case the general solution
of system (20) is

a31v(x) = G3 + a31(a0 + a1x)H + 2(a1b1 − 2a0b2)(a0 + a1x) log(a0 + a1x).

Hence system (1) has the first integral (10).

5. Proof of Theorem 2

We consider system (2) with a3 = 0. If a0 = a1 = a2 = 0 then x is a
polynomial first integral, and if b0 = b1 = 0 then y is a polynomial first
integral. Therefore statements (a) and (b) hold.
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From now on we assume that (a0, a1, a2) ̸= (0, 0, 0) and that (b0, b1) ̸=
(0, 0). In this case we write system (2) in the form

dx

dy
=
a0 + a1x+ a2x

2

y(b0 + b1x)
. (21)

It is clear that a first integral of system (21) is

H = log y −
∫

b0 + b1x

a0 + a1x+ a2x2
dx. (22)

Now we consider four cases which correspond with the four statements
(c)–(f) of the theorem.

(c) a1 = a2 = 0. In this case, from system (22) we get that H given in (11)
is a first integral.

(d) a2 = 0 and a1 ̸= 0. Again from (22) we get that H given in (12) is a
first integral.

(e) a2 ̸= 0 and a0 = a21/(4a2). From system (22) we obtain that H given in
(13) is a first integral.

(f) a2 ̸= 0 and a0 ̸= a21/(4a2). In this case H given in (14) is a first integral.

6. Proof of Theorem 3

Here b1 = 0. When b0 = 0 it is clear that y is a polynomial first integral.
Now we assume that b0 ̸= 0. In this case we write system (2) in the form

x′(y) =
dx

dy
=
a0 + a1x+ a2x

2 + a3y
2

b0y
.

Solving it we get x(y) = N/D where

N =−
√
a2a3HyJS1−1(S2y)− a1HJS1(S2y)− a1YS1(S2y)

+
√
a2a3y (HJS1+1(S2y)− YS1−1(S2y) + YS1+1(S2y)) ,

D =2a2 (HJS1(S2y) + YS1(S2y)) ,

and where H is a first integral. Hence system (2) is integrable with the first
integral (15).

7. Proof of Theorem 4

We introduce the change of variables (recall that a3b1 ̸= 0)

X = b0 + b1x, Y = y with inverse change x =
X − b0
b1

, y = Y.

With this change of variables, system (2) becomes

X ′ = A0 +A1X +A2X
2 +A3Y

2,

Y ′ = XY
(23)

where

A0 = a0b1 − a1b0 +
a2b

2
0

b1
, A1 = a1 −

2a2b0
b1

, A2 =
a2
b1
, A3 = a3b1.
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Under the assumptions of the theorem, we can rewrite system (23) of the
form

dX

dY
=
A0 +A3Y

2

XY
+
A2X

Y
, (24)

where

A0 =
a0b

2
1 − a2b

2
0

b1
, A2 =

a2
b1
, A3 = a3b1.

We consider three cases which correspond with the three statements (a)–(c)
of the theorem.

(a) a2 = 0. In this case A2 = 0. Computing the general solution of system
(24) and isolating the integration constant H we obtain

H = X2 −A3Y
2 − 2A0 log Y,

which in the original variables is the integral in (16).

(b) a2 = b1. In this case A2 = 1. Again computing the general solution of
system (24) and isolating the integration constant H we obtain

H =
1

Y 2

[
A0 +X2 − 2A3Y

2 log Y
]
,

which in the original variables is the integral in (17).

(c) a2(a2 − b1) ̸= 0. In this case we have A2(A2 − 1) ̸= 0. The integration
constant H of the general solution of system (24) is

H = Y −2A2
[
−A0 +A0A2 −A2X

2 +A2
2X

2 +A2A3Y
2
]
,

which in the original variables is the integral in (18).

8. Proof of Theorem 5

We work with system (23). We consider four different cases.

Case 1: A0 = 0. In this case the origin is a singular point. Its eigenvalues
are 0 and A1 ̸= 0. Since this singular point is isolated (because A3 ̸= 0),
Theorem 7 implies that system (23) has no analytic first integrals.

Case 2: A0 ̸= 0 and A2 = 0. System (23) has the singular points

(X̄1, Ȳ1) =

(
0,

√
−A0

A3

)
, (X̄2, Ȳ2) =

(
0,−

√
−A0

A3

)
, (X̄3, Ȳ3) =

(
−A0

A1
, 0

)
.

The eigenvalues of (X̄3, Ȳ3) are A1 and −A0/A1. Suppose that there exists
k1, k2 ∈ Z+ such that k1λ1 + k2λ2 = 0. Note that by Theorem 6 if such
integers do not exist the theorem is proved. Then λ1 = −αλ2 with α a
positive rational, and hence in particular λ1λ2 = −αλ22 < 0. Since λ1λ2 =
−A0 we must have that A0 is positive.

Moreover, the eigenvalues λ1 and λ2 of (X̄1, Ȳ1) are (A1±
√
A2

1 − 8A0)/2.
Again we must have that λ1λ2 < 0, otherwise the theorem holds by Theorem
6. Note that λ1λ2 = 2A0 > 0, and then we cannot have k1λ1 + k2λ2 = 0.
The theorem is proved in this case.

Case 3: A0A2 ̸= 0 and A2 = A2
1/(4A0). In this case (X̄, Ȳ ) = (−2A0/A1, 0)

is a singular point. Its eigenvalues are 0 and −2A0/A1 ̸= 0. Since this
singular point is isolated (because A3 ̸= 0), Theorem 7 implies that system
(23) has no analytic first integrals.
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Case 4: A0A2(A
2
1 − 4A0A2) ̸= 0. We assume that H = H(X,Y ) is a global

analytic first integral in a neighborhood of Y = 0. We write it as

H =
∑
k≥0

Hk(X)Y k, (25)

where each Hk is an analytic function in the variable X. Without loss of
generality we can assume that H has no constant term, i.e. H0(0) = 0. We
will show by induction that

Hk = 0 for k ≥ 0. (26)

Then clearly from (25) we will obtain that system (23) has no global analytic
first integrals, and the proof of the theorem is done.

Since H is a first integral of system (23) it must satisfy

(A0 +A1X +A2X
2 +A5Y

2)
∑
k≥0

H ′
k(X)Y k +

∑
k≥0

kXHk(X)Y k = 0. (27)

Computing the terms of degree 0 in Y we get that H ′
0(X) = 0, that is, H0

is a constant. Since H has no constant term we obtain that H0 = 0 which
proves (26) for k = 0.

Now assume that (26) is true for k = 0, . . . , ℓ− 1 and we will show it for
k = ℓ. We have that H = Y ℓ

∑
k≥0Hk+ℓY

k. Computing the terms of degree

ℓ in the variable Y in (27) we get that

(A0 +A1X +A2X
2)H ′

ℓ(X) + ℓXHℓ(X) = 0.

Solving this linear equation we get

Hℓ(X) = K(A0 +A1X +A2X
2)

− ℓ
2A2 exp

(
A1ℓ

A2Ã
arctan

(
A1 + 2A2X

Ã

))
,

where Ã =
√

4A0A2 −A2
1 and K ∈ R. Since Hℓ must be a global analytic

function in X, we get that K = 0 and thus Hℓ(X) = 0. This ends the
induction process and the proof of the theorem is completed.
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[3] J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, On the integrability of
two-dimensional flows, J. Differential Equations 157 (1999), 163–182.

[4] S. D. Furta, On non-integrability of general systems of differential equations, Z.
Angew. Math. Phys. 47 (1996), 112–131.

[5] W. Li, J. Llibre and X. Zhang, Local first integrals of differential systems and
diffeomorphisms, Z. Angew. Math. Phys. 54 (2003), 1–21.

[6] J. Llibre and J.C. Medrado, Darboux integrability and reversible quadratic vector
fields, Rocky Mountain J. Math. 35 (2005), 1999–2057.



10 JAUME LLIBRE AND CLAUDIA VALLS
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vreus de Henri Poincaré, I), Gauthiers–Villars, Paris, 1951, pp. 95–114.

[8] J. W. Reyn, A bibliography of the qualitative theory of quadratic sys-
tems of differential equations in the plane, Delf University of Technology,
http://ta.twi.tudelft.nl/DV/Staff/J.W.Reyn.html, 1997.

[9] Y. Yanqian and Others, Theory of Limit Cycles, Transl. Math. Monographs 66,
Amer. Math. Soc., Providence, 1984.

[10] Y. Yanqian, Qualitative Theory of Polynomial Differential Systems, Shanghai Sci-
entific & Technical Publishers, Shanghai, 1995 (in Chinese).
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