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LIOUVILLIAN FIRST INTEGRALS FOR GENERALIZED
RICCATI POLYNOMIAL DIFFERENTIAL SYSTEMS

JAUME LLIBRE1 AND CLÀUDIA VALLS2

Abstract. We characterize the generalized Riccati polynomial differential systems
of the form x′ = y, y′ = a(x)y2+b(x)y+c(x), where a(x), b(x) and c(x) are arbitrary
polynomials that have a Liouvillian first integrals.

1. Introduction and statement of the main results

A classical problem in the qualitative theory of planar differential equations de-
pending on parameters is to characterize the existence or non–existence of first inte-
grals in function of these parameters.

Let x and y be complex variables. We consider the system

(1) x′ = y, y′ = a(x)y2 + b(x)y + c(x),

where a(x), b(x) and c(x) are C1 functions on x and the prime denotes derivative with
respect to the time t that can be either real or complex. In fact, if a(x)c(x) ̸≡ 0 these
systems are called generalized Riccati differential systems, if a(x) ̸≡ 0 and c(x) ≡ 0
they are linear differential systems, and if a(x) ≡ 0 they are generalized Lienard
differential systems.

Our interest is on the generalized Riccati polynomial differential systems , i.e. when
the functions a(x), b(x) and c(x) are polynomials and we want to study its Liouvillian
integrability.

The vector field associated to system (1) is

X = y
∂

∂x
+ (a(x)y2 + b(x)y + c(x))

∂

∂y
.

The main objectives of this paper is to characterize the Liouvillian first integrals
of the generalized Ricatti polynomial differential systems.

Let U ⊂ C2 be an open set. We say that the non-constant function H : U → C is
a first integral of the polynomial vector field X on U if H(x(t), y(t)) is constant for
all values of t for which the solution (x(t), y(t)) of X is defined on U . Clearly H is a
first integral of X on U if and only if XH = 0 on U .

We recall that a Liouvillian first integral is a first integral H which is a Liouvillian
function, that is, roughly speaking which can be obtained “by quadratures” of ele-
mentary functions. For a precise definition see [4]. The study of the Liouvillian first
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integrals is a classical problem of the integrability theory of the differential equations
which goes back to Liouville, see for details again [4].

For studyng of the existence of Liouvillian first integrals we need to study the
so-called Darboux polynomials and exponential factors of the Riccati polynomial
differential systems of the second kind.

Let h = h(x, y) ∈ C[x, y] \ C. As usual C[x, y] denotes the ring of all complex
polynomials in the variables x and y. We say that h = 0 is an invariant algebraic
curve of the vector field X associated to the Riccati polynomial differential system
(1) if it satisfies

y
∂h

∂x
+ (a(x)y2 + b(x)y + c(x))

∂h

∂y
= Kh,

the polynomial K = K(x, y) ∈ C[x, y] is called the cofactor of h = 0 and has degree
at most

(2) n = max{2 + deg a(x), 1 + deg b(x), deg c(x)} − 1.

When h = 0 is an invariant algebraic curve we also say that h is a Darboux polynomial
of the Riccati polynomial differential system. Note that a polynomial first integral is
a Darboux polynomial with zero cofactor.

An exponential factor E of system (1) is a function of the form E = exp(g/h) ̸∈ C
with g, h ∈ C[x, y] satisfying (g, h) = 1 and

∂E

∂x
y +

∂E

∂y
(a(x)y2 + b(x)y + c(x)) = LE,

for some polynomial L = L(x, y) of degree at most n given in (2), called the cofactor
of E.

The existence of exponential factors exp(g/h) is due to the fact that the multiplicity
of the invariant algebraic curve h = 0 is larger than 1, for more details see [1, 3] .

Proposition 1. The following statements hold.

(i) If E = exp(g/h) is an exponential factor for the polynomial system (1) and h
is not a constant polynomial, then h = 0 is an invariant algebraic curve.

(ii) Eventually eg can be exponential factors, coming from the multiplicity of the
infinite invariant straight line.

For a geometrical meaning of the exponential factors and a proof of Proposition 1
see [3].

A non-constant function R : U → C is an integrating factor of the polynomial
vector field X on U , if one of the following three equivalent conditions holds

∂(RP )

∂x
= −∂(RQ)

∂y
, div (RP,RQ) = 0, XR = −R div (P,Q),

on U where P = y and Q = a(x)y2 + b(x)y + c(x). As usual the divergence of the
vector field X is given by

div (P,Q) =
∂P

∂x
+

∂Q

∂y
.
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In [1] the next result is proved.

Theorem 2. Suppose that the polynomial vector field X of degree m defined in C2

admits p invariant algebraic curves fi = 0 with cofactors Ki, for i = 1, . . . , p and q
exponential factors Ej = exp(gj/hj) with cofactors Lj, for j = 1, . . . , q. Then there
exist λi, µj ∈ C not all zero such that

p∑
i=1

λiKi +

q∑
j=1

µjLj = −div (P,Q),

if and only if the function of Darboux type

fλ1
1 · · · fλp

p Eµ1

1 · · ·Eµq
q

is an integrating factor of the vector field X.

The proof of the following result is given in [2, 4].

Theorem 3. The polynomial differential system (1) has a Liouvillian first integral
if and only if it has an integrating factor of Darboux type.

The following is the first main result of this paper. Its proof follows by direct
computations.

Theorem 4. The following holds for the generalized Riccati polynomial differential
systems (1) :

(a) Assume b(x) ≡ 0 then

y2

2
exp

(
− 2

∫
a(x) dx

)
−
∫

c(x) exp
(
− 2

∫
a(u) du

)
dx

is a Liouvillian first integral.

(b) Assume b(x) ̸≡ 0, c(x) = κa(x) and b(x) = κ1a(x) with κ, κ1 ∈ C, then
(b.1) if κ = κ2

1/4 we have that∫
a(x) dx− κ1

κ1 + 2y
− log(κ1 + 2y)

is a Liouvillian first integral;
(b.2) if κ ̸= κ2

1/4 we have that∫
a(x) dx− 1

2
log(y2 + κ1y + κ) +

κ1√
4κ− κ2

1

arctan
( κ1 + 2y√

4κ− κ2
1

)
is a Liouvillian first integral.

From now on we consider the case in which b(x) ̸≡ 0 and c(x)/a(x) ̸∈ C, or b(x) ̸≡ 0
and b(x)/a(x) ̸∈ C.

Theorem 5. The generalized Riccati polynomial differential systems (1) with either
b(x) ̸≡ 0 and c(x)/a(x) ̸∈ C, or b(x) ̸≡ 0 and b(x)/a(x) ̸∈ C have no Liouvillian first
integrals.

The proof of Theorem 5 is given in Section 2.
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2. Proof of Theorem 5

For proving Theorem 5 we first characterize the Darboux polynomials (either with
zero or with nonzero cofactor) of the generalized Ricatti polynomial differential sys-
tems.

Theorem 6. The generalized Riccati polynomial differential systems (1) with either
b(x) ̸≡ 0 and c(x)/a(x) ̸∈ C, or b(x) ̸≡ 0 and b(x)/a(x) ̸∈ C, have no Darboux
polynomials.

We separate the proof of Theorem 6 in several steps.

Lemma 7. The generalized Riccati polynomial differential systems (1) have no poly-
nomial first integrals.

Proof. We proceed by contradiction. Let H be a polynomial first integral of system
(1), that is

(3) y
∂H

∂x
+ (a(x)y2 + b(x)y + c(x))

∂H

∂y
= 0.

We write H as a polynomial in the variable y, i.e.

H(x, y) =
m∑
j=0

hj(x)y
j, where hj(x) is a polynomial in the variable x.

Without loss of generality we can assume that hm(x) ̸= 0.

Computing the coefficient of degree m+ 1 in the variable y in (3) we get that

h′
m(x) +ma(x)hm(x) = 0, that is hm(x) = C exp

(
−m

∫
a(x) dx

)
̸= 0.

Since hm(x) is a polynomial, we must havem = 0 because a(x) ̸≡ 0. ThenH = h0(x).
In view of (3) we get that H satisfies

H ′(x) = 0, that is H(x) ∈ C,
a contradiction with the fact that H is a polynomial first integral. �

Lemma 7 states that the generalized Riccati polynomial differential systems (1)
have no Darboux polynomials with zero cofactor.

The proof of the following proposition is well-known and can be found in [1].

Proposition 8. We suppose that h ∈ C[x, y] and let h = hn1
1 · · ·hnr

r be its factoriza-
tion in irreducible factors over C[x, y]. Then for a polynomial system (1) h = 0 is an
invariant algebraic curve with cofactor Kh if and only if hi = 0 is an invariant alge-
braic curve for each i = 1, . . . , r with cofactor Khi

. Moreover K = n1Kh1+· · ·+nrKhr .

In view of Proposition 8 to study the Darboux polynomials with non-zero cofactor
it is enough to study the irreducible ones.

Lemma 9. Let h = h(x, y) be an irreducible Darboux polynomial of the generalized
Riccati polynomial differential system (1) with cofactor K ̸= 0. Then K = mb(x) +
n′(x)− n(x)a(x) +ma(x)y with m a non-negative integer and n ∈ C[x].
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Proof. The cofactor K of any irreducible Darboux polynomial of the generalized
Riccati polynomial differential system (1), has degree at most n (see (2)). We write
it as K(x, y) =

∑n
j=0Kj(x)y

j, where Kj = Kj(x) is a polynomial in the variable x

and has at most degree n − j. Since h is a Darboux polynomial of system (1) with
cofactor K it satisfies

(4) y
∂h

∂x
+ (a(x)y2 + b(x)y + c(x))

∂h

∂y
=

(
n∑

j=0

Kj(x)y
j

)
h.

We write h as a polynomial in the variable y, i.e. h(x, y) =
∑m

j=0 hj(x)y
j, where each

hj(x) is a polynomial in the variable x. Without loss of generality we can assume
that hm(x) ̸= 0.

Assume n ≥ 2. Computing the coefficient of yn+m in (4) we get

0 = Kn(x)hm(x) that is Kn(x) = 0.

So n ∈ {0, 1} and consequently K = K0(x) + yK1(x).

Now computing the coefficient of ym+1 in (4) we get

h′
m(x) +ma(x)hm(x) = hm(x)K1(x),

that is h′
m(x) + (ma(x) −K1(x))hm(x) = 0. Hence, hm(x) = C exp

(
−
∫
(ma(x) −

K1(x)) dx
)
with C ∈ C\{0}. Using that hm(x) ̸= 0 and that it must be a polynomial,

we have K1(x) = ma(x) with m a non-negative integer and hm(x) = C. Now,
computing the coefficient of ym in (4) we get

h′
m−1(x) + (m− 1)a(x)hm−1(x) +mb(x)hm(x) = ma(x)hm−1(x) +K0(x)hm(x).

Then since hm(x) = C,

h′
m−1(x)− a(x)hm−1(x) = C(K0(x)−mb(x)).

Therefore we have a linear system. Solving it we get

hm−1(x) = C1e
∫
a(x) dx + Ce

∫
a(x) dx

∫
(K0(x)−mb(x))e−

∫
a(u) du dx.

Since hm−1(x) ∈ C[x], we deduce that C1 = 0 and

K0(x)−mb(x) = n′(x)− n(x)a(x),

with n ∈ C[x] and hm−1(x) = Cn(x). This completes the proof. �
Proposition 10. The generalized Riccati polynomial differential systems (1) with
either b(x) ̸≡ 0 and c(x)/a(x) ̸∈ C, or b(x) ̸≡ 0 and b(x)/a(x) ̸∈ C have no irreducible
Darboux polynomials with non-zero cofactor K.

Proof. We write the generalized Riccati polynomial differential system (1) as the
differential equation

(5) y
dy

dx
= a(x)y2 + b(x)y + c(x), y = y(x).
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Then, using Lemma 9 the Darboux polynomial h = h(x, y) = h(x, y(x)) satisfies

y
dh

dx
= y

∂h

∂x
+

∂h

∂y
(a(x)y2 + b(x)y + c(x)) = (mb(x) + n′(x)− n(x)a(x) +ma(x)y)h,

where m is a non-negative integer, or equivalently

log h = K +

∫
mb(x) + n′(x)− n(x)a(x) +ma(x)y

y
dx, where K ∈ C.

Hence
(6)

h = h(x, y(x)) = C exp

(∫
mb(x) + n′(x)− n(x)a(x) +ma(x)y

y
dx

)
, C ∈ C\{0}.

Now we write

(7) a(x)y2+ b(x)y+c(x) = (y+Γ1(x))(a(x)y+Γ2(x)) = (a(x)y+Γ̃1(x))(y+Γ̃2(x)),

where

(8) Γ1(x) =
b(x)

2a(x)
−
√
b(x)2 − 4a(x)c(x)

2a(x)
, Γ2(x) =

b(x)

2
+

√
b(x)2 − 4a(x)c(x)

2
,

and Γ̃1(x) = a(x)Γ1(x), Γ̃2(x) = Γ2(x)/a(x). We consider different cases.

Case 1: Γ1(x) = κ ∈ C. In this case, from (8) we have that

b(x)

2a(x)
−
√
b(x)2 − 4a(x)c(x)

2a(x)
= κ, i.e. b(x)−

√
b(x)2 − 4a(x)c(x) = 2κa(x),

which yields
c(x) = κ(b(x)− κa(x)).

Then, again from (8) we get

Γ2(x) = b(x)− κa(x).

Hence, it follows from (5) and (7) that

y
dy

dx
= (y + κ)(a(x)y + Γ2(x)), that is

a(x)y + Γ2(x)

y
=

dy/dx

y + κ
=

d

dx
log(y + κ),

which implies that (6) becomes

h = C exp

(∫
mb(x) + n′(x)− n(x)a(x)−mΓ2(x) +m(a(x)y + Γ2(x))

y
dx

)
= C exp

(∫ (mb(x) + n′(x)− n(x)a(x)−mΓ2(x)

y
+m

d

dx
log(y + κ)

)
dx

)
= C(y + κ)m exp

(∫
n′(x)− n(x)a(x) +mκa(x)

y
dx

)
,

with C ∈ C \ {0}. Since h must be a polynomial in the variables x and y, we must
have

n′(x)− n(x)a(x) +mκa(x) = 0.
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Solving it we get

n(x) = C1e
∫
a(x) dx +mκe

∫
a(x) dx

∫
a(x)e−

∫
a(u) du dx.

Since n(x) is a polynomial we must have C1 = 0 and mκ = 0 and thus n(x) = 0. If
m = 0 then we have that K0 = K1 = 0 and thus K = 0 a contradiction with the fact
that h is a Darboux polynomial with non-zero cofactor. If κ = 0 then c(x) ≡ 0 in
contradiction with the fact that c(x)/a(x) ̸∈ C. Therefore, this case is not possible.

Case 2: Γ1(x) ̸∈ C and Γ̃2 = Γ2(x)/a(x) = κ ∈ C. In this case, from (8) we have
that

b(x)

2a(x)
+

√
b(x)2 − 4a(x)c(x)

2a(x)
= κ, i.e. b(x) +

√
b(x)2 − 4a(x)c(x) = 2κa(x),

which yields

c(x) = κ(b(x)− κa(x)) and b(x) = 2κa(x),

which is not possible because then we have Γ1(x) = κ ∈ C.

Case 3: Γ1(x) ̸∈ C and Γ̃2 = Γ2(x)/a(x) ̸∈ C. In this case, from (8) we can write

a(x)y + Γ2(x)

y
=

dy/dx

y + Γ1(x)
=

d

dx
log(y + Γ1(x))−

dΓ1/dx

y + Γ1(x)

and analogously,

a(x)y + Γ̃1(x)

y
=

dy/dx

y + Γ̃2(x)
=

d

dx
log(y + Γ̃2))−

dΓ̃2/dx

y + Γ̃2(x)
.

In the first case, from (6), we have that

h = C(y + Γ1(x))
m exp

(∫
mb(x) + n′(x)− n(x)a(x)−mΓ2(x)

y
dx

)
exp

(
−m

∫
dΓ1/dx

y + Γ1(x)
dx

)
,

which to be a polynomial in the variables x and y we must have

mb(x) + n′(x)− n(x)a(x)−mΓ2(x)

y
= m

dΓ1/dx

y + Γ1(x)
,

or equivalently,

mb(x) + n′(x)− n(x)a(x)−mΓ2(x) = m
dΓ1

dx
,

Γ1(x)(mb(x) + n′(x)− n(x)a(x)−mΓ2(x)) = 0.

By hypothesis we have that Γ1(x) ̸= 0 and thus mb(x)+n′(x)−n(x)a(x)−mΓ2(x) =
0, but then from the first relation we have dΓ1/dx = 0, which again is not possible
because Γ1(x) /∈ C. Hence this case is not possible.
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In the second case we have

h = C(y + Γ̃2(x))
m exp

(∫
mb(x) + n′(x)− n(x)a(x)−mΓ̃1(x)

y
dx

)
exp

(
−m

∫
dΓ̃2/dx

y + Γ̃2(x)
dx

)
,

which again is never a polynomial in the variables x and y. Hence this case is never
possible. This completes the proof of the proposition. �

Proof of Theorem 6. The proof of Theorem 6 is an immediate consequence of Lemma
7 and Proposition 10. �

Lemma 11. Assume that exp(g1/h1), . . . , exp(gr/hr) are exponential factors of some
polynomial differential system

(9) x′ = P (x, y), y′ = Q(x, y), P,Q ∈ C[x, y],

with cofactors Lj for j = 1, . . . , r. Then exp(G) = exp(g1/h1 + · · · + gr/hr) is also
an exponential factor of system (9) with cofactor L =

∑r
j=1 Lj.

Proof. Using that for j = 1, . . . , r, E1 = exp(g1/h1), . . . , Er = exp(gr/hr) are expo-
nential factors of system (9) with cofactors Lj we have

∂(gj/hj)

∂x
P (x, y)Ej +

∂(gj/hj)

∂y
Q(x, y)Ej = LjEj,

or equivalently,
∂(gj/hj)

∂x
P (x, y) +

∂(gj/hj)

∂y
Q(x, y) = Lj.

Therefore if we set G =
∑r

j=1 gj/hj we get that

∂G

∂x
P (x, y) +

∂G

∂y
Q(x, y) =

r∑
j=1

Lj = L,

and thus if E = exp(G) we obtain

∂G

∂x
P (x, y)E +

∂G

∂y
Q(x, y)E = LE.

This concludes the proof of the lemma. �

Proof of Theorem 5. It follows from Theorem 6 that the generalized Riccati poly-
nomial differential system (1) has no Darboux polynomials. Hence, it follows from
Proposition 1 and Theorems 2 and 3 that to have a Liouvillian first integral we must
have q exponential factors Ej = exp(gj) with cofactors Lj such that

q∑
j=1

µjLj = −2a(x)x− b(x).
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Let G =
∑q

j=1 µjgj ∈ C[x, y]. Then E = exp(G) = exp(
∑q

j=1 µjgj), is an exponential

factor of system (1) with the cofactor L =
∑q

j=1 µjLj (see Lemma 11) and E satisfies

y
∂E

∂x
+

∂E

∂y
(a(x)y2 + b(x)y + c(x)) = LE,

that is

(10) y
∂G

∂x
+

∂G

∂y
(a(x)y2 + b(x)y + c(x)) = L = −2a(x)y − b(x).

We write G as a polynomial in the variable y as follows

G =
m∑
j=0

Gj(x)y
j.

Computing the coefficient of ym+1 with m ≥ 1 in (10) we get

G′
m(x) +ma(x)Gm(x) = 0,

that is

Gm(x) = Cm exp
(
−m

∫
a(x) dx

)
, Cm ∈ C.

Since Gm must be a polymoimal we must have Gm(x) = 0 and thus G = G0(x). Then
introducing it in (10) we obtain

yG′
0(x) = −2a(x)y − b(x),

and since b(x) ̸≡ 0 we get that this case is not possible. This concludes the proof. �
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