POLYNOMIAL FIRST INTEGRALS FOR WEIGHT-HOMOGENEOUS PLANAR POLYNOMIAL DIFFERENTIAL SYSTEMS OF WEIGHT DEGREE 4

JAUME LLIBRE AND CLAUDIA VALLS

Abstract

We classify all the weight-homogeneous planar polynomial differential systems of weight degree 4 having a polynomial first integral.

1. Introduction and statement of the main result

In this paper we deal with polynomial differential systems of the form

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=\dot{\mathbf{x}}=\mathbf{P}(\mathbf{x}), \quad \mathbf{x}=(x, y) \in \mathbb{C}^{2} \tag{1}
\end{equation*}
$$

with $\mathbf{P}(\mathbf{x})=\left(P_{1}(\mathbf{x}), P_{2}(\mathbf{x})\right)$ and $P_{i} \in \mathbb{C}[x, y]$ for $i=1,2$. As usual \mathbb{Q}^{+}, \mathbb{R} and \mathbb{C} will denote the sets of non-negative rational, real and complex numbers, respectively; and $\mathbb{C}[x, y]$ denotes the polynomial ring over \mathbb{C} in the variables x, y. Here, t is real or complex.

We say that system (1) is weight homogeneous or quasi-homogeneous if there exist $\mathbf{s}=\left(s_{1}, s_{2}\right) \in \mathbb{N}^{2}$ and $d \in \mathbb{N}$ such that for arbitrary $\alpha \in \mathbb{R}^{+}=$ $\{a \in \mathbb{R}, a>0\}$,

$$
\begin{equation*}
P_{i}\left(\alpha^{s_{1}} x, \alpha^{s_{2}} y\right)=\alpha^{s_{i}-1+d} P_{i}(x, y), \tag{2}
\end{equation*}
$$

for $i=1,2$. We call $\mathbf{s}=\left(s_{1}, s_{2}\right)$ the weight exponent of system (1), and d the weight degree with respect to the weight exponent \mathbf{s}. In the particular case that $\mathbf{s}=(1,1)$ system (1) is called a homogeneous polynomial differential system of degree d.

Recently such systems have been investigated by several authors. Labrunie [12] and Moulin Ollagnier [15] characterize all polynomial first integrals of the three dimensional (a, b, c) Lotka-Volterra systems. Maciejewski and Strelcyn [14] proved that the so-called Halphen system has no algebraic first integrals. But some of the best results for general weight homogeneous polynomial differential systems have been provided by Furta [10] and Goriely [11], and additionally for quadratic homogeneous polynomial differential systems by Tsygvintsev [16], and Llibre and Zhang [13]. See also the works of Algaba, Freire, Fuentes, Garcia and Teixeira [1]-[5].

A non-constant function $H(x, y)$ is a first integral of system (1) if it is constant on all solution curves $(x(t), y(t))$ of system (1); i.e. $H(x(t), y(t))=$

[^0]constant for all values of t for which the solution $(x(t), y(t))$ is defined. If H is C^{1}, then H is a first integral of system (1) if and only if
\[

$$
\begin{equation*}
P_{1} \frac{\partial H}{\partial x}+P_{2} \frac{\partial H}{\partial y}=0 \tag{3}
\end{equation*}
$$

\]

The function $H(x, y)$ is weight homogeneous of weight degree m with respect to the weight exponent \mathbf{s} if it satisfies $H\left(\alpha^{s_{1}} x, \alpha^{s_{2}} y\right)=\alpha^{m} H(x, y)$, for all $\alpha \in \mathbb{R}^{+}$.

Given $H \in \mathbb{C}[x, y]$ we can split it into the form $H=H_{m}+H_{m+1}+$ $\ldots+H_{m+l}$, where H_{m+i} is a weight homogeneous polynomial of weight degree $m+i$ with respect to the weight exponent s; i.e. $H_{m+i}\left(\alpha^{s_{1}} x, \alpha^{s_{2}} y\right)=$ $\alpha^{m+i} H_{m+i}(x, y)$. The following well-known proposition (see [13] for a proof) reduces the study of the existence of analytic first integrals of a weighthomogeneous polynomial differential system (1) to the study of the existence of a weight-homogeneous polynomial first integral.

Proposition 1. Let H be an analytic function and let $H=\sum_{i} H_{i}$ be its decomposition into weight-homogeneous polynomials of weight degree i with respect to the weight exponent \mathbf{s}. Then H is an analytic first integral of the weight-homogeneous polynomial differential system (1) if and only if each weight-homogeneous part H_{i} is a first integral of system (1) for all i.

The main goal of this paper is to classify all analytic first integrals of the weight-homogenous planar polynomial differential systems of weight degree 4. In view of Proposition 1 we only need to classify all the polynomial first integrals of the weight-homogenous planar polynomial differential systems of weight degree 4 . The classification of all polynomial first integrals (and hence of all analytic first integrals) of the weight-homogenous planar polynomial differential systems of weight degree 1 is straightforward and trivial. The classification of all polynomial first integrals (and hence of all analytic first integrals) of the weight-homogenous planar polynomial differential systems of weight degree 2 was given in $[13,8]$ and for systems of weight degree 3 was given in $[6,8]$.

In the classification of all polynomial first integrals for weight-homogenous planar polynomial differential systems of weight degree 2 and 3 the authors use the Kowalevskaya exponents, but as it was shown in Theorems 4 of [6] these exponents are useless for classifying the polynomial first integrals for weight-homogenous planar polynomial differential systems of weight degree larger than 3.

Proposition 2. In \mathbb{C}^{2} the systems with weight degree 4 can be written as the following ones with their corresponding values of \mathbf{s} :

$$
\begin{array}{ll}
\mathbf{s}=(1,1): & \dot{x}=a_{40} x^{4}+a_{31} x^{3} y+a_{22} x^{2} y^{2}+a_{13} x y^{3}+a_{04} y^{4} \\
& \dot{y}=b_{40} x^{4}+b_{31} x^{3} y+b_{22} x^{2} y^{2}+b_{13} x y^{3}+b_{04} y^{4} \\
\mathbf{s}=(1,2): & \dot{x}=a_{40} x^{4}+a_{21} x^{2} y+a_{02} y^{2} \\
& \dot{y}=b_{50} x^{5}+b_{31} x^{3} y+b_{12} x y^{2} \\
\mathbf{s}=(1,3): & \dot{x}=a_{40} x^{4}+a_{11} x y \\
& \dot{y}=b_{60} x^{6}+b_{31} x^{3} y+b_{02} y^{2} \\
\mathbf{s}=(1,4): & \dot{x}=a_{40} x^{4}+a_{01} y \\
& \dot{y}=b_{70} x^{7}+b_{31} x^{3} y \\
\mathbf{s}=(2,3): \quad & \dot{x}=a_{11} x y \\
& \dot{y}=b_{30} x^{3}+b_{02} y^{2} \\
\mathbf{s}=(2,5): \quad & \dot{x}=a_{01} y \\
& \dot{y}=b_{40} x^{4} \\
\mathbf{s}=(3,3): & \dot{x}=a_{20} x^{2}+a_{11} x y+a_{02} y^{2} \\
& \dot{y}=b_{20} x^{2}+b_{11} x y+b_{02} y^{2} ; \\
\mathbf{s}=(6,9): & \dot{x}=a_{01} y \\
& \dot{y}=b_{20} x^{2}
\end{array}
$$

Proposition 2 is proved in section 2.
In what follows we state our main results, i.e. we classify when the systems of Proposition 2 exhibit a polynomial first integral. The systems with weight exponent $(1,1)$ having a polynomial first integral are given in section 3 , because its classification is very long. The systems with weight exponent $(3,3)$ having a polynomial first integral are studied inside the systems with weight exponent $(1,2)$. For the other systems of Proposition 2 we provide in this introduction their polynomial first integrals.

We introduce the change $(X, Y)=\left(x^{2}, y\right)$ in the planar weight homogeneous polynomial differential systems (1) of weight degree 4 with weight exponent $(1,2)$. With these new variables (X, Y) the systems with weight exponent $(1,2)$ becomes, after introducing the new independent variable $d \tau=x d t$,

$$
\begin{equation*}
X^{\prime}=2 a_{40} X^{2}+2 a_{21} X Y+2 a_{02} Y^{2}, \quad Y^{\prime}=b_{50} X^{2}+b_{31} X Y+b_{12} Y^{2} \tag{4}
\end{equation*}
$$

where the prime denotes derivative with respect to τ.
System (4) is a homogeneous quadratic planar polynomial system (with $\mathbf{s}=(1,1)$). It is well-known, see [9], that for each quadratic homogeneous system there exists some linear transformation and a rescaling of time which transforms system (4) into systems in (5).

$$
\begin{array}{ll}
\dot{x}=-2 x y+\frac{2}{3} x\left(p_{1} x+p_{2} y\right), & \dot{y}=-x^{2}+y^{2}+\frac{2}{3} y\left(p_{1} x+p_{2} y\right), \\
\dot{x}=-2 x y+\frac{2}{3} x\left(p_{1} x+p_{2} y\right), & \dot{y}=x^{2}+y^{2}+\frac{2}{3} y\left(p_{1} x+p_{2} y\right), \\
\dot{x}=-x^{2}+\frac{2}{3} x\left(p_{1} x+p_{2} y\right), & \dot{y}=2 x y+\frac{2}{3} y\left(p_{1} x+p_{2} y\right), \tag{5}\\
\dot{x}=\frac{2}{3} x\left(p_{1} x+p_{2} y\right), & \dot{y}=x^{2}+\frac{2}{3} y\left(p_{1} x+p_{2} y\right), \\
\dot{x}=\frac{2}{3} x\left(p_{1} x+p_{2} y\right), & \dot{y}=\frac{2}{3} y\left(p_{1} x+p_{2} y\right) .
\end{array}
$$

We prove the following theorem that characterizes all the polynomial first integrals for the systems in (5).

Theorem 1. The homogeneous polynomial systems in (5) have a polynomial first integral H if and only if one of the following conditions hold.
(a) The first system in (5) with $p_{1}=0, p_{2}=3(1-q) /(1+2 q)$ with $q=n / m \in \mathbb{Q}^{+}$, and in this case $H=x^{m}\left(3 y^{2}-x^{2}\right)^{n}$.
(b) The second system in (5) with $p_{1}=0, p_{2}=3(1-q) /(1+2 q)$ with $q=n / m \in \mathbb{Q}^{+}$, and in this case $H=x^{m}\left(3 y^{2}+x^{2}\right)^{n}$.
(c) The third system in (5) with $p_{1}=0$ and $p_{2}=3(1-2 q) /(2(1+q))$ with $q=n / m \in \mathbb{Q}^{+}$, and in this case $H=x^{m} y^{n}$.
(d) The fourth system in (5) with $p_{1}=p_{2}=0$, and in this case $H=x$.

We note that systems with weight exponent $(3,3)$ coincide with the systems (4) and hence it can be written into systems in (5). Therefore, Theorem 1 applies to those systems. The proof of Theorem 1 is given in section 4 .

Theorem 2. The weight homogeneous polynomial differential systems with weight exponent $(1,3)$ and weight degree 4 have a polynomial first integral H if and only if the following conditions hold.
(a) $a_{11}=a_{40}=0$ with $H=x$.
(b) $b_{60}=b_{31}=b_{02}=0$ with $H=y$.
(c) $\left(3 a_{11}-b_{02}\right)\left(3 a_{11}-2 b_{02}\right) \neq 0, a_{40}=-a_{11} b_{31} /\left(3 a_{11}-2 b_{02}\right), 3 a_{11} /\left(6 a_{11}-\right.$ $\left.2 b_{02}\right)=m / n \in \mathbb{Q}^{+}$and $m / n<1$ with
$H=x^{3(n-m)}\left(\left(3 a_{11}-2 b_{02}\right) b_{60} x^{6}+2\left(3 a_{11}-b_{02}\right) b_{31} x^{3} y-\left(9 a_{11}^{2}-9 a_{11} b_{02}+2 b_{02}^{2}\right) y^{2}\right)^{m}$.
(d) $b_{31} / a_{40}=-m / n$ and $m / n \in \mathbb{Q}^{+}$with $H=x^{3 m}\left(b_{60} x^{3}+\left(b_{31}-\right.\right.$ $\left.\left.3 a_{40}\right) y\right)^{3 n}$.
(e) $b_{02}=0, a_{11} \neq 0, a_{40}=-b_{31} / 3$ and $b_{06}=-\left(3 a_{40}-b_{31}\right)^{2} /\left(12 a_{11}\right)$ with $H=b_{31} x^{3}-3 a_{11} y$
(f) $\left(3 a_{11}-b_{02}\right)\left(3 a_{11}-2 b_{02}\right) \neq 0, a_{40}=-a_{11} b_{31} /\left(3 a_{11}-2 b_{02}\right), b_{06}=$ $-\left(3 a_{40}-b_{31}\right)^{2} /\left(4\left(3 a_{11}-b_{02}\right)\right), b_{02} \neq 0$ and $-3 a_{11} / b_{02}=n / m \in \mathbb{Q}^{+}$ with

$$
H=x^{3 n}\left(b_{31} x^{3}+\left(2 b_{02}-3 a_{11}\right) y\right)^{m}
$$

The proof of Theorem 2 is given in section 5 .
Theorem 3. The weight homogeneous polynomial differential systems with weight exponent $(1,4)$ and weight degree 4 have a polynomial first integral H if and only if the following conditions hold.
(a) $a_{40}=a_{01}=0$ and $H=x$.
(b) $b_{70}=b_{31}=0$ and $H=y$.
(c) $b_{31}=-4 a_{40}$, and $4 a_{40}^{2}+a_{01} b_{70} \neq 0$ with $H=-b_{70} x^{8}+8 a_{40} x^{4} y+$ $4 a_{01} y^{2}$.
(d) $b_{31}=-4 a_{40}, a_{40} b_{70} \neq 0$ and $4 a_{40}^{2}+a_{01} b_{70}=0$ with $H=b_{70} x^{4}-4 a_{40} y$.

Theorem 3 is proved in section 6 .
Theorem 4. The weight homogeneous polynomial differential systems with weight exponent $(2,3)$ and weight degree 4 have a polynomial first integral H if and only if $a_{11}=0$ in which case $H=x$, or $b_{30}=b_{02}=0$ in which case $H=y$, or $a_{11}\left(3 a_{11}-2 b_{02}\right) \neq 0$ and $-2 b_{02} / a_{11}=n / m \in \mathbb{Q}^{+}$, in which case

$$
H=x^{n}\left(2 b_{30} x^{3}-3 a_{11} y^{2}+2 b_{02} y^{2}\right)^{m}
$$

The proof of Theorem 4 is given in section 7 .
Theorem 5. The weight homogeneous polynomial differential systems with weight exponent $(2,5)$ and weight degree 4 have the polynomial first integral $H=2 b_{40} x^{5}-5 a_{01} y^{2}$.

The proof of Theorem 5 is given in section 8 .
Theorem 6. The weight homogeneous polynomial differential systems with weight exponent $(6,9)$ and weight degree 4 have the polynomial first integral $H=2 b_{20} x^{3}-3 a_{01} y^{2}$.

The proof of Theorem 6 is given in section 9 .

2. Proof of Proposition 2

From the definition of weight homogeneous polynomial differential systems (1) with weight degree 4 , the exponents u_{i} and v_{i} of any monomial $x^{u_{i}} y^{v_{i}}$ of P_{i} for $i=1,2$, are such that they satisfy respectively the relations

$$
\begin{equation*}
s_{1} u_{1}+s_{2} v_{1}=s_{1}+3, \quad \text { and } \quad s_{1} u_{2}+s_{2} v_{2}=s_{2}+3 \tag{6}
\end{equation*}
$$

Moreover, we can assume that P_{1} and P_{2} are coprime, and without loss of generality we can also assume that $s_{1} \leq s_{2}$. We consider different values of s_{1}.
Case $s_{1}=1$. If $s_{2}=1$ then in view of (6) we must have $u_{1}+v_{1}=4$ and $u_{2}+v_{2}=4$, that is, $\left(u_{i}, v_{i}\right)=(0,4),\left(u_{i}, v_{i}\right)=(1,3),\left(u_{i}, v_{i}\right)=(2,2)$, $\left(u_{i}, v_{i}\right)=(3,1)$ and $\left(u_{i}, v_{i}\right)=(4,0)$ for $i=1,2$.

If $s_{2}=2$ then in view of (6) we must have $u_{1}+2 v_{1}=4$ and $u_{2}+2 v_{2}=$ 5 , that is, $\left(u_{1}, v_{1}\right)=(0,2),\left(u_{1}, v_{1}\right)=(2,1)$ and $\left(u_{1}, v_{1}\right)=(4,0)$, while $\left(u_{2}, v_{2}\right)=(1,2),\left(u_{2}, v_{2}\right)=(3,1)$ and finally $\left(u_{2}, v_{2}\right)=(5,0)$.

If $s_{2}=3$ then in view of (6) we must have $u_{1}+3 v_{1}=4$ and $u_{2}+3 v_{2}=6$, that is, $\left(u_{1}, v_{1}\right)=(1,1),\left(u_{1}, v_{1}\right)=(4,0)$, while $\left(u_{2}, v_{2}\right)=(0,2),\left(u_{2}, v_{2}\right)=$ $(3,1)$ and finally $\left(u_{2}, v_{2}\right)=(6,0)$.

If $s_{2}=4$ then in view of (6) we must have $u_{1}+4 v_{1}=4$ and $u_{2}+4 v_{2}=7$, that is, $\left(u_{1}, v_{1}\right)=(0,1),\left(u_{1}, v_{1}\right)=(4,0)$, while $\left(u_{2}, v_{2}\right)=(3,1)$ and finally $\left(u_{2}, v_{2}\right)=(7,0)$.

If $s_{2}=4+l$ with $l \geq 1$, then equation (6) becomes

$$
\begin{equation*}
u_{1}+(4+l) v_{1}=4 \quad \text { and } \quad u_{2}+(4+l) v_{2}=7+l \tag{7}
\end{equation*}
$$

From the first equation of (7) we get $v_{1}=0$ and $u_{1}=4$. By the second equation of (7) it follows that $v_{2} \in\{0,1\}$. If $v_{2}=0$ then $u_{2}=7+l$, and if $v_{2}=1$ then $u_{2}=3$. In both cases P_{1} and P_{2} are not coprime. So this case is not considered.
Case $s_{1}=2$. Now we have $s_{2} \geq 2$. If $s_{2}=2$ then in view of (6) we must have $2 u_{1}+2 v_{1}=5$ and $2 u_{2}+2 v_{2}=5$, which is not possible because 5 is not an even number.

If $s_{2}=3$ then in view of (6) we must have $2 u_{1}+3 v_{1}=5$ and $2 u_{2}+3 v_{2}=6$, that is, $\left(u_{1}, v_{1}\right)=(1,1)$, while $\left(u_{2}, v_{2}\right)=(0,2)$ and $\left(u_{2}, v_{2}\right)=(3,0)$.

If $s_{2}=4$ then in view of (6) we must have $2 u_{1}+4 v_{1}=5$ and $2 u_{2}+4 v_{2}=7$, which is not possible because 5 is not even.

If $s_{2}=5$ then in view of (6) we must have $2 u_{1}+5 v_{1}=5$ and $2 u_{2}+5 v_{2}=8$, that is, $\left(u_{1}, v_{1}\right)=(0,1)$ and $\left(u_{2}, v_{2}\right)=(4,0)$.

If $s_{2}=5+l$ with $l \geq 1$, then equation (6) becomes

$$
\begin{equation*}
2 u_{1}+(5+l) v_{1}=5 \quad \text { and } \quad 2 u_{2}+(5+l) v_{2}=8+l \tag{8}
\end{equation*}
$$

The first equation of (8) is not possible because 5 is not an even number, $5+l \geq 6$ and u_{1}, v_{1} are non-negative integers.
Case $s_{1}=3$. Now we have $s_{2} \geq 3$. If $s_{2}=3$ then in view of (6) we must have $3 u_{1}+3 v_{1}=6$ and $3 u_{2}+3 v_{2}=6$, that is, $\left(u_{i}, v_{i}\right)=(0,2),\left(u_{i}, v_{i}\right)=(1,1)$, $\left(u_{i}, v_{i}\right)=(2,0)$, for $i=1,2$.

If $s_{2}=3+l$ with $l \geq 1$. In view of (6) we must have

$$
\begin{equation*}
3 u_{1}+(3+l) v_{1}=6 \quad \text { and } \quad 3 u_{2}+(3+l) v_{2}=6+l \tag{9}
\end{equation*}
$$

From the first equation of (9) we have that

$$
v_{1}=\frac{6-3 u_{1}}{3+l} \leq \frac{6}{3+l}
$$

and using that $l \geq 1$ then $v_{1} \in\{0,1\}$.
When $v_{1}=0$ then $3 u_{1}=6$ and thus $u_{1}=2$. Then from the second equation of (9) we get that $v_{2} \in\{0,1\}$. If $v_{2}=0$ then $u_{2} \geq 1$, and if $v_{2}=1$ then $u_{2}=1$. In both cases we have that P_{1} and P_{2} are not coprime.

When $v_{1}=1$ then $3 u_{1}=3-l$, which is not possible since u_{1} is an integer and $l \geq 1$.
Case $s_{1}=3+l$ with $l \geq 1$. Now we have $s_{2} \geq 3+l$ with $l \geq 1$ and equation (6) becomes

$$
\begin{equation*}
(3+l) u_{1}+s_{2} v_{1}=6+l=(3+l)+3 \quad \text { and } \quad(3+l) u_{2}+s_{2} v_{2}=3+s_{2} \tag{10}
\end{equation*}
$$

From the first equation of (10) and taking into account that $l \geq 1$, we get that $u_{1} \in\{0,1\}$.

When $u_{1}=0$ we must have $s_{2} v_{1}=6+l$, and since $s_{2} \geq 3+l$ we get

$$
v_{1}=\frac{6+l}{s_{2}} \leq \frac{(3+l)+3}{3+l}=1+\frac{3}{3+l}
$$

Since $v_{1} \neq 0$ and $l \geq 1$ we must have $v_{1}=1$, and then $s_{2}=6+l$. Now the second equation of (10) becomes

$$
\begin{equation*}
(3+l) u_{2}+(6+l) v_{2}=(6+l)+3 \tag{11}
\end{equation*}
$$

Then $v_{2}=0$. From (11) we have $u_{2}=1+\frac{6}{l+3}$. Thus $l=3$ and $u_{2}=2$. So we get the systems with weight exponent $(6,9)$.

When $u_{1}=1$ we must have $s_{2} v_{1}=3$ and since $s_{2} \geq 3+l$ we get $(3+l) v_{2} \leq$ 3 , which is not possible because $l \geq 1$. This concludes the proof of the proposition.

3. Weight exponent $\mathbf{s}=(1,1)$

A weight homogeneous polynomial system

$$
\dot{x}=P_{1}(x, y) ; \quad \dot{y}=P_{2}(x, y)
$$

with weight exponent $(1,1)$ and weight degree d is integrable and its inverse integrating factor is $V(x, y)=x P_{2}(x, y)-y P_{1}(x, y)$. See $[7]$ for more details.

As $P_{1}(x, y), P_{2}(x, y)$ and $V(x, y)$ are homogeneous polynomials, if the degree of $P_{1}(x, y)$ and $P_{2}(x, y)$ is d, then of course, the degree of $V(x, y)$ is $d+1$. Thus, for $d=4$ we can write the homogeneous polynomials as follows:

$$
\begin{align*}
P_{1}(x, y)= & \left(p_{1}-a_{1}\right) x^{4}+\left(p_{2}-4 a_{2}\right) x^{3} y+\left(p_{3}-6 a_{3}\right) x^{2} y^{2}+ \\
& \left(p_{4}-4 a_{4}\right) x y^{3}-a_{5} y^{4}, \\
P_{2}(x, y)= & a_{0} x^{4}+\left(4 a_{1}+p_{1}\right) x^{3} y+\left(6 a_{2}+p_{2}\right) x^{2} y^{2}+ \tag{12}\\
& \left(4 a_{3}+p_{3}\right) x y^{3}+\left(a_{4}+p_{4}\right) y^{4},
\end{align*}
$$

and

$$
V(x, y)=a_{0} x^{5}+5 a_{1} x^{4} y+10 a_{2} x^{3} y^{2}+10 a_{3} x^{2} y^{3}+5 a_{4} x y^{4}+a_{5} y^{5}
$$

So, the first integral is $H(x, y)=\int\left(P_{1}(x, y) / V(x, y)\right) d y+g(x)$, satisfying $\partial H / \partial x=-P_{2} / V$. The canonical forms appear in the factorization of V. Assume that $V(x, y)$ factorizes as

1) 5 simple real roots: $a_{0}\left(x-r_{1} y\right)\left(x-r_{2} y\right)\left(x-r_{3} y\right)\left(x-r_{4} y\right)\left(x-r_{5} y\right)$,
2) 1 double and 3 simple real roots: $a_{0}\left(x-r_{1} y\right)^{2}\left(x-r_{2} y\right)\left(x-r_{3} y\right)\left(x-r_{4} y\right)$,
3) 2 double roots and 1 simple real roots: $a_{0}\left(x-r_{1} y\right)^{2}\left(x-r_{2} y\right)^{2}\left(x-r_{3} y\right)$,
4) 1 triple and 2 simple real roots: $a_{0}\left(x-r_{1} y\right)^{3}\left(x-r_{2} y\right)\left(x-r_{3} y\right)$,
5) 1 triple and 1 double real roots: $a_{0}\left(x-r_{1} y\right)^{3}\left(x-r_{2} y\right)^{2}$,
6) 1 quadruple and 1 simple real roots: $a_{0}\left(x-r_{1} y\right)^{4}\left(x-r_{2} y\right)$,
7) 1 quintuple real root: $a_{0}(x-r y)^{5}$,
8) 3 real and 1 couple of conjugate complex roots: $a_{0}\left(x-r_{1} y\right)\left(x-r_{2} y\right)(x-$ $\left.r_{3} y\right)\left(x^{2}+b x y+c y^{2}\right)$ with $b^{2}-4 c<0$,
9) 1 double, 1 simple real and 1 couple of conjugate complex roots: $a_{0}\left(x-r_{1} y\right)^{2}\left(x-r_{2} y\right)\left(x^{2}+b x y+c y^{2}\right)$ with $b^{2}-4 c<0$,
10) 1 triple real and 1 couple of conjugate complex roots: $a_{0}\left(x-r_{1} y\right)^{3}\left(x^{2}+\right.$ $b x y+c y^{2}$) with $b^{2}-4 c<0$
11) 1 simple real and 2 couples of conjugate complex roots: $a_{0}(x-r y)\left(x^{2}+\right.$ $\left.b_{1} x y+c_{1} y^{2}\right)\left(x^{2}+b_{2} x y+c_{2} y^{2}\right)$ with $b_{1}^{2}-4 c_{1}<0, b_{2}^{2}-4 c_{2}<0$
12) 1 simple real and 1 double couple of conjugate complex roots: $a_{0}(x-$ $r y)\left(x^{2}+b x y+c y^{2}\right)^{2}$ with $b^{2}-4 c<0$
Now we shall compute for each case the first integral and obtain the conditions in order that it is a polynomial.

We define the function

$$
f(r)=5\left(p_{4}+p_{3} r+p_{2} r^{2}+p_{1} r^{3}\right)
$$

Case 1): A first integral H is

$$
\left(x-r_{1} y\right)^{\gamma_{1}}\left(x-r_{2} y\right)^{\gamma_{2}}\left(x-r_{3} y\right)^{\gamma_{3}}\left(x-r_{4} y\right)^{\gamma_{4}}\left(x-r_{5} y\right)^{\gamma_{5}}
$$

where

$$
\gamma_{i}=\frac{f\left(r_{i}\right)+a_{0} \prod_{j=1, j \neq i}^{5}\left(r_{i}-r_{j}\right)}{\prod_{j=1, j \neq i}^{5}\left(r_{i}-r_{j}\right)}
$$

We note that an integer power of H is a polynomial if and only if $\gamma_{i} \in \mathbb{Q}$ for $i=1,2,3,4,5$ and they all have the same sign.

Case 2): A first integral H is

$$
\begin{aligned}
& \left(x-r_{1} y\right)^{\gamma_{1}}\left(x-r_{2} y\right)^{\gamma_{2}}\left(x-r_{3} y\right)^{\gamma_{3}}\left(x-r_{4} y\right)^{\gamma_{4}} \\
& \exp \left(\frac{f\left(r_{1}\right) x}{r_{1}\left(r_{1}-r_{2}\right)\left(r_{1}-r_{3}\right)\left(r_{1}-r_{4}\right)\left(x-r_{1} y\right)}\right)
\end{aligned}
$$

with $\gamma_{1}=A_{1} / B_{1}=A_{1} /\left[\left(r_{1}-r_{2}\right)^{2}\left(r_{1}-r_{3}\right)^{2}\left(r_{1}-r_{4}\right)^{2}\right]$ and

$$
\begin{aligned}
A_{1}= & 5 p_{1}\left(\left(r_{2}+r_{3}+r_{4}\right) r_{1}^{2}-2\left(r_{3} r_{4}+r_{2}\left(r_{3}+r_{4}\right)\right) r_{1}+3 r_{2} r_{3} r_{4}\right) r_{1}^{2}+ \\
& 5 p_{2}\left(r_{1}^{3}-\left(r_{3} r_{4}+r_{2}\left(r_{3}+r_{4}\right)\right) r_{1}+2 r_{2} r_{3} r_{4}\right) r_{1}+ \\
& 5 p_{3}\left(2 r_{1}^{3}-\left(r_{2}+r_{3}+r_{4}\right) r_{1}^{2}+r_{2} r_{3} r_{4}\right)+ \\
& 5 p_{4}\left(3 r_{1}^{2}-2\left(r_{2}+r_{3}+r_{4}\right) r_{1}+r_{3} r_{4}+r_{2}\left(r_{3}+r_{4}\right)\right)-2 a_{0} B_{1},
\end{aligned}
$$

while for $i=2, \ldots, 4$ and

$$
\gamma_{i}=\frac{A_{i}}{B_{i}}=\frac{-\left(f\left(r_{i}\right)+a_{0} B_{i}\right)}{\left(r_{1}-r_{i}\right)^{2} \prod_{j=2 ; j \neq i}^{4}\left(r_{i}-r_{j}\right)} .
$$

We note that an integer power of H is a polynomial if and only if $f\left(r_{1}\right)=0$ and $\gamma_{i} \in \mathbb{Q}$ for $i=1,2,3,4$ and they all have the same sign.

Case 3): A first integral H is

$$
\begin{aligned}
& \left(x-r_{1} y\right)^{\gamma_{1}}\left(x-r_{2} y\right)^{\gamma_{2}}\left(x-r_{3} y\right)^{\gamma_{3}} \\
& \exp \left(-\sum_{i=1}^{2} \frac{f\left(r_{i}\right) x}{r_{i}\left(r_{1}-r_{2}\right)^{2}\left(r_{i}-r_{3}\right)\left(r_{i} y-x\right)}\right)
\end{aligned}
$$

with $\gamma_{i}=A_{i} / B_{i}=A_{i} /\left[\left(r_{1}-r_{2}\right)^{3}\left(r_{i}-r_{3}\right)^{2}\right]$ for $i=1,2, \gamma_{3}=A_{3} / B_{3}=$ $-\left(f\left(r_{3}\right)+a_{0} B_{3}\right) /\left[\left(r_{1}-r_{3}\right)^{2}\left(r_{2}-r_{3}\right)^{2}\right]$,

$$
\begin{aligned}
A_{i}= & -2 a_{0} B_{i}+(-1)^{i+1}\left(5 p_{4}\left(3 r_{i}-r_{j}-2 r_{3}\right)-5 p_{3}\left(\left(r_{1}+r_{2}\right) r_{3}-2 r_{i}^{2}\right)+\right. \\
& \left.5 p_{2} r_{i}\left(r_{i}\left(r_{1}+r_{2}\right)-2 r_{j} r_{3}\right)+5 p_{1} r_{i}^{2}\left(-3 r_{j} r_{3}+r_{i}\left(2 r_{j}+r_{3}\right)\right)\right)
\end{aligned}
$$

for $i, j=1,2$ and $i \neq j$. We note that an integer power of H is a polynomial if and only if $f\left(r_{i}\right)=0$ for $i=1,2$ and $\gamma_{i} \in \mathbb{Q}$ for $i=1,2,3$ and they all have the same sign.

Case 4): A first integral H is

$$
\begin{aligned}
& \left(x-r_{1} y\right)^{\gamma_{1}}\left(x-r_{2} y\right)^{\gamma_{2}}\left(x-r_{3} y\right)^{\gamma_{3}} \\
& \exp \left(\frac{5 \beta x}{2 r_{1}^{2}\left(r_{1}-r_{2}\right)^{2}\left(r_{1}-r_{3}\right)^{2}\left(r_{1} y-x\right)^{2}}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& \beta=\left(p_{1}\left(r_{1}^{2}-3 r_{2} r_{1}-3 r_{3} r_{1}+5 r_{2} r_{3}\right) r_{1}^{3}-p_{2}\left(r_{1}^{2}+r_{2} r_{1}+r_{3} r_{1}-3 r_{2} r_{3}\right) r_{1}^{2}\right. \\
&\left.-p_{3}\left(3 r_{1}^{2}-r_{2} r_{1}-r_{3} r_{1}-r_{2} r_{3}\right) r_{1}+p_{4}\left(-5 r_{1}^{2}+3 r_{2} r_{1}+3 r_{3} r_{1}-r_{2} r_{3}\right)\right) x \\
&+2 r_{1}\left(p_{1}\left(r_{1} r_{2}-2 r_{3} r_{2}+r_{2} r_{3}\right) r_{1}^{3}+p_{3}\left(2 r_{1}-r_{2}-r_{3}\right) r_{1}^{2}\right. \\
&\left.+p_{2}\left(r_{1}^{2}-r_{2} r_{3}\right) r_{1}^{2}+p_{4}\left(3 r_{1}^{2}-2 r_{2} r_{1}-2 r_{3} r_{1}+r_{2} r_{3}\right)\right) y, \\
& \gamma_{1}= A_{1} / B_{1}= \\
&\left.A_{1} /\left[\left(r_{1}-r_{2}\right)^{3}\left(r_{1}-r_{3}\right)^{3}\right)\right], \\
& A_{1}=-3 a_{0} B_{1}-5\left(r_{2}\left(p_{2}+p_{1} r_{2}\right) r_{1}^{3}+\left(r_{1}-3 r_{2}\right)\left(p_{2}+p_{1} r_{2}\right) r_{3} r_{1}^{2}\right. \\
&+\left(p_{2} r_{2}^{2}+p_{1} r_{1}\left(r_{1}^{2}-3 r_{2} r_{1}+3 r_{2}^{2}\right) r_{3}^{2}\right) \\
&+5 p_{3}\left(r_{1}^{3}-3 r_{2} r_{3} r_{1}+r_{2} r_{3}\left(r_{2}+r_{3}\right)\right) \\
&+5 p_{4}\left(3 r_{1}^{2}-3\left(r_{2}+r_{3}\right) r_{1}+r_{2}^{2}+r_{3}^{2}+r_{2} r_{3}\right),
\end{aligned}
$$

$\gamma_{i}=A_{i} / B_{i}=(-1)^{i}\left(f\left(r_{i}\right)+a_{0} B_{i}\right) /\left[\left(r_{1}-r_{i}\right)^{3}\left(r_{2}-r_{3}\right)\right]$ for $i=2,3$. We note that an integer power of H is a polynomial if and only if $\beta=0$ and $\gamma_{i} \in \mathbb{Q}$ for $i=1,2,3$ and they all have the same sign.

Case 5): A first integral H is

$$
\left(x-r_{1} y\right)^{\gamma_{1}}\left(x-r_{2} y\right)^{\gamma_{2}} \exp (\beta),
$$

where

$$
\begin{aligned}
\beta= & \frac{2\left(r_{1}-r_{2}\right) x f\left(r_{2}\right) r_{1}^{2}}{r_{2}\left(r_{2} y-x\right)}+\frac{\left(r_{1}-r_{2}\right)^{2} x^{2} f\left(r_{1}\right)}{\left(x-r_{1} y\right)^{2}}+ \\
& \frac{10\left(r_{1}-r_{2}\right)\left(\left(2 p_{3}+2 p_{1} r_{1} r_{2}+p_{2}\left(r_{1}+r_{2}\right)\right) r_{1}^{2}+p_{4}\left(3 r_{1}-r_{2}\right)\right) x}{r_{1} y-x},
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma_{1}= & -2 r_{1}^{2}\left(3 a_{0}\left(r_{1}-r_{2}\right)^{4}+15 p_{4}+5 p_{3}\left(r_{1}+2 r_{2}\right)\right. \\
& \left.+5 r_{2}\left(3 p_{1} r_{1} r_{2}+p_{2}\left(2 r_{1}+r_{2}\right)\right)\right), \\
\gamma_{2}= & -2 r_{1}^{2}\left(2 a_{0}\left(r_{1}-r_{2}\right)^{4}-15 p_{4}-5 p_{3}\left(r_{1}+2 r_{2}\right)\right. \\
& \left.-5 r_{2}\left(3 p_{1} r_{1} r_{2}+p_{2}\left(2 r_{1}+r_{2}\right)\right)\right) .
\end{aligned}
$$

We note that an integer power of H is a polynomial if and only if $\beta=0$ and $\gamma_{i} \in \mathbb{Q}$ for $i=1,2$ and they all have the same sign.

Case 6): A first integral H is

$$
\left(x-r_{1} y\right)^{\gamma_{1}}\left(x-r_{2} y\right)^{\gamma_{2}} \exp (\beta),
$$

where

$$
\begin{aligned}
\beta= & \frac{2\left(r_{1}-r_{2}\right)^{3} f\left(r_{1}\right) x^{3}}{r_{1}^{3}\left(r_{1} y-x\right)^{3}}+ \\
& \frac{30\left(r_{1}-r_{2}\right)\left(\left(p_{3}+r_{2}\left(p_{2}+p_{1} r_{2}\right)\right) r_{1}^{3}+p_{4}\left(3 r_{1}^{2}-3 r_{2} r_{1}+r_{2}^{2}\right)\right) x}{r_{1}^{3}\left(r_{1} y-x\right)}+ \\
& \frac{15\left(r_{1}-r_{2}\right)^{2}\left(p_{4}\left(3 r_{1}-2 r_{2}\right)+r_{1}\left(\left(p_{2}+p_{1} r_{2}\right) r_{1}^{2}+p_{3}\left(2 r_{1}-r_{2}\right)\right)\right) x^{2}}{r_{1}^{3}\left(x-r_{1} y\right)^{2}},
\end{aligned}
$$

and

$$
\begin{aligned}
& \gamma_{1}=-6\left(-4 a_{0}\left(r_{1}-r_{2}\right)^{4}+5 p_{4}+5 r_{2}\left(p_{3}+r_{2}\left(p_{2}+p_{1} r_{2}\right)\right)\right), \\
& \gamma_{2}=6\left(a_{0}\left(r_{1}-r_{2}\right)^{4}+5 p_{4}+5 r_{2}\left(p_{3}+r_{2}\left(p_{2}+p_{1} r_{2}\right)\right)\right) .
\end{aligned}
$$

We note that an integer power of H is a polynomial if and only if $\beta=0$ and $\gamma_{i} \in \mathbb{Q}$ for $i=1,2$ and they all have the same sign.

Case 7): A first integral H is

$$
(x-r y)^{\gamma_{1}} \exp \left(\frac{\beta x}{(x-r y)^{4}}\right),
$$

where

$$
\begin{aligned}
\beta= & r x\left(r x\left(-p_{2} x+3 p_{1} r x+4 p_{2} r y\right)+p_{3}\left(x^{2}-4 r y x+6 r^{2} y^{2}\right)\right) \\
& -3 p_{4}(x-2 r y)\left(x^{2}-2 r y x+2 r^{2} y^{2}\right),
\end{aligned}
$$

and $\gamma_{1}=-12 a_{0} r^{4}$. We note that $x-r y$ is a polynomial first integral if and only if $\beta=0$.

Case 8): A first integral H is

$$
\begin{aligned}
& \left(x-r_{1} y\right)^{\gamma_{1}}\left(x-r_{2} y\right)^{\gamma_{2}}\left(x-r_{3} y\right)^{\gamma_{3}}\left(x^{2}+b x y+c y^{2}\right)^{\gamma_{4}} \\
& \exp \left(\frac{\beta x}{\prod_{i=1}^{3}\left(c+b r_{i}+r_{i}^{2}\right) \sqrt{\left(4 c-b^{2}\right) x^{2}}} \arctan \left(\frac{b x+2 c y}{\sqrt{\left(4 c-b^{2}\right) x^{2}}}\right)\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\beta= & 5\left(2 p_{1} c^{3}-\left(b\left(p_{2}-p_{1}\left(r_{1}+r_{2}+r_{3}\right)\right)+2\left(p_{3}+p_{2}\left(r_{1}+r_{2}+r_{3}\right)+\right.\right.\right. \\
& \left.\left.p_{1}\left(r_{2} r_{3}+r_{1}\left(r_{2}+r_{3}\right)\right)\right)\right) c^{2}+\left(\left(p_{3}+p_{1} r_{1} r_{2}+p_{1}\left(r_{1}+r_{2}\right) r_{3}\right) b^{2}+\right. \\
& \left(3 p_{4}-3 p_{1} r_{1} r_{2} r_{3}+p_{3}\left(r_{1}+r_{2}+r_{3}\right)-p_{2}\left(r_{2} r_{3}+r_{1}\left(r_{2}+r_{3}\right)\right)\right) b+ \\
& \left.2\left(p_{2} r_{1} r_{2} r_{3}+p_{4}\left(r_{1}+r_{2}+r_{3}\right)+p_{3}\left(r_{2} r_{3}+r_{1}\left(r_{2}+r_{3}\right)\right)\right)\right) c- \\
& b p_{4}\left(b+r_{1}\right)\left(b+r_{2}\right)+\left(\left(p_{1} r_{1} b^{3}-p_{2} r_{1} b^{2}-p_{4} b+p_{3} r_{1} b-2 p_{4} r_{1}\right) r_{2}-\right. \\
& \left.\left.b p_{4}\left(b+r_{1}\right)\right) r_{3}\right),
\end{aligned}
$$

and $\gamma_{i}=A_{i} / B_{i}=-\left(f\left(r_{i}\right)+a_{0} B_{i}\right) /\left[\left(c+b r_{i}+r_{i}^{2}\right) \prod_{j=1, j \neq i}^{3}\left(r_{i}-r_{j}\right)\right]$ for $i=1,2,3, \gamma_{4}=A_{4} / B_{4}=A_{4} /\left[2 \prod_{i=1}^{3}\left(c+b r_{i}+r_{i}^{2}\right)\right]$

$$
\begin{aligned}
A_{4}= & -a_{0} B_{4}+5\left(\left(p_{2}+p_{1}\left(r_{1}+r_{2}+r_{3}\right)\right) c^{2}-\left(p_{4}+p_{1} r_{1} r_{2} r_{3}+\right.\right. \\
& p_{3}\left(r_{1}+r_{2}+r_{3}\right)+p_{2}\left(r_{2} r_{3}+r_{1}\left(r_{2}+r_{3}\right)\right)+ \\
& \left.b\left(p_{3}-p_{1}\left(r_{2} r_{3}+r_{1}\left(r_{2}+r_{3}\right)\right)\right)\right) c+p_{4}\left(b+r_{1}\right)\left(b+r_{2}\right)+ \\
& \left.\left(p_{4}\left(b+r_{1}\right)+\left(p_{4}+\left(p_{1} b^{2}-p_{2} b+p_{3}\right) r_{1}\right) r_{2}\right) r_{3}\right) .
\end{aligned}
$$

We note that an integer power of H is a polynomial if and only if $\beta=0$ and $\gamma_{i} \in \mathbb{Q}$ for $i=1,2,3,4$ and they all have the same sign.

Case 9): A first integral H is

$$
\begin{aligned}
& \left(x-r_{1} y\right)^{\gamma_{1}}\left(x-r_{2} y\right)^{\gamma_{2}}\left(x^{2}+b x y+c y^{2}\right)^{\gamma_{3}} \\
& \exp \left(-\frac{f\left(r_{1}\right) x}{r_{1}\left(r_{1}-r_{2}\right)\left(c+r_{1} b+r_{1}^{2}\right)\left(r_{1} y-x\right)}+\right. \\
& \left.\frac{\beta x}{\prod_{i=1}^{2}\left(c+b r_{i}+r_{i}^{2}\right)^{3-i} \sqrt{\left(4 c-b^{2}\right) x^{2}}} \arctan \left(\frac{b x+2 c y}{\sqrt{\left(4 c-b^{2}\right) x^{2}}}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\beta= & 5\left(2 p_{1} c^{3}-\left(b\left(p_{2}-p_{1}\left(2 r_{1}+r_{2}\right)\right)+2\left(p_{3}+p_{2}\left(2 r_{1}+r_{2}\right)+\right.\right.\right. \\
& \left.\left.p_{1} r_{1}\left(r_{1}+2 r_{2}\right)\right)\right) c^{2}+\left(\left(p_{3}+p_{1} r_{1}\left(r_{1}+2 r_{2}\right)\right) b^{2}+\right. \\
& \left(3 p_{4}+p_{3}\left(2 r_{1}+r_{2}\right)-r_{1}\left(3 p_{1} r_{1} r_{2}+p_{2}\left(r_{1}+2 r_{2}\right)\right)\right) b+ \\
& \left.2\left(p_{4}\left(2 r_{1}+r_{2}\right)+r_{1}\left(p_{2} r_{1} r_{2}+p_{3}\left(r_{1}+2 r_{2}\right)\right)\right)\right) c- \\
& \left.b p_{4}\left(b+r_{1}\right)^{2}+\left(-p_{4} b^{2}-2 p_{4} r_{1} b+\left(b\left(p_{1} b^{2}-p_{2} b+p_{3}\right)-2 p_{4}\right) r_{1}^{2}\right) r_{2}\right), \\
\gamma_{1}= & -\frac{A_{1}}{B_{1}}=-\frac{A_{1}}{\left(r_{1}-r_{2}\right)^{2}\left(c+b r_{1}+r_{1}^{2}\right)^{2}}, \\
A_{1}= & 2 a_{0} c^{2}\left(r_{1}-r_{2}\right)^{2}+2 a_{0} b^{2} r_{1}^{2}\left(r_{1}-r_{2}\right)^{2}+ \\
& c\left(-5 p_{4}+r_{1}\left(4 a_{0}\left(b+r_{1}\right)\left(r_{1}-r_{2}\right)^{2}+5 p_{1} r_{1}\left(2 r_{1}-3 r_{2}\right)+\right.\right. \\
& \left.\left.5 p_{2}\left(r_{1}-2 r_{2}\right)\right)-5 p_{3} r_{2}\right)+b\left(\left(4 a_{0} r_{1}\left(r_{1}-r_{2}\right)^{2}-5 p_{3}+\right.\right. \\
& \left.\left.5 p_{1} r_{1}\left(r_{1}-2 r_{2}\right)-5 p_{2} r_{2}\right) r_{1}^{2}+5 p_{4}\left(r_{2}-2 r_{1}\right)\right)+r_{1}\left(5 p_{4}\left(2 r_{2}-3 r_{1}\right)+\right. \\
& \left.r_{1}\left(\left(2 a_{0}\left(r_{1}-r_{2}\right)^{2}-5 p_{2}-5 p_{1} r_{2}\right) r_{1}^{2}+5 p_{3}\left(r_{2}-2 r_{1}\right)\right)\right), \\
\gamma_{2}= & \frac{A_{2}}{B_{2}}=\frac{-f\left(r_{2}\right)+a_{0} B_{2}}{\left(r_{1}-r_{2}\right)^{2}\left(c+b r_{2}+r_{2}^{2}\right)}, \\
\gamma_{3}= & \frac{A_{3}}{B_{3}}=\frac{A_{3}}{2\left(c+b r_{1}+r_{1}^{2}\right)^{2}\left(c+b r_{2}+r_{2}^{2}\right)}, \\
A_{3}= & -a_{0} B_{3}+5\left(\left(p_{2}+p_{1}\left(2 r_{1}+r_{2}\right)\right) c^{2}-\left(p_{4}+p_{3}\left(2 r_{1}+r_{2}\right)+\right.\right. \\
& \left.r_{1}\left(p_{1} r_{1} r_{2}+p_{2}\left(r_{1}+2 r_{2}\right)\right)+b\left(p_{3}-p_{1} r_{1}\left(r_{1}+2 r_{2}\right)\right)\right) c+ \\
& \left.p_{4}\left(b+r_{1}\right)^{2}+\left(\left(p_{1} b^{2}-p_{2} b+p_{3}\right) r_{1}^{2}+2 p_{4} r_{1}+b p_{4}\right) r_{2}\right) .
\end{aligned}
$$

We note that an integer power of H is a polynomial if and only if $f\left(r_{1}\right)=0$, $\beta=0$ and $\gamma_{i} \in \mathbb{Q}$ for $i=1,2,3$ and they all have the same sign.

Case 10): A first integral H is

$$
\begin{aligned}
& \left(x-r_{1} y\right)^{\gamma_{1}}\left(x^{2}+b x y+c y^{2}\right)^{\gamma_{2}} \exp \left(\frac{f\left(r_{1}\right)\left(c+b r_{1}+r_{1}^{2}\right)^{2} x^{2}}{r_{1}^{2}\left(x-r_{1} y\right)^{2}}\right. \\
& \left.-\frac{\beta_{1}\left(c+b r_{1}+r_{1}^{2}\right) x}{r_{1}^{2}\left(x-r_{1} y\right)}+\frac{\beta_{2} x}{\sqrt{\left(4 c-b^{2}\right) x^{2}}} \arctan \left(\frac{b x+2 c y}{\sqrt{\left(4 c-b^{2}\right) x^{2}}}\right)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\beta_{1}= & 10\left(\left(p_{2}-b p_{1}\right) r_{1}^{4}+2\left(p_{3}-c p_{1}\right) r_{1}^{3}+\left(-c p_{2}+b p_{3}+3 p_{4}\right) r_{1}^{2}+\right. \\
& \left.2 b p_{4} r_{1}+c p_{4}\right), \\
\beta_{2}= & 10\left(\left(p_{1} r_{1}^{3}-p_{4}\right) b^{3}-r_{1}\left(p_{2} r_{1}^{2}+3 p_{4}\right) b^{2}+r_{1}^{2}\left(p_{3} r_{1}-3 p_{4}\right) b-\right. \\
& 2 p_{4} r_{1}^{3}+2 c^{3} p_{1}-c^{2}\left(2 p_{3}+b\left(p_{2}-3 p_{1} r_{1}\right)+6 r_{1}\left(p_{2}+p_{1} r_{1}\right)\right)+ \\
& c\left(\left(3 p_{1} r_{1}^{2}+p_{3}\right) b^{2}+3\left(p_{4}+r_{1}\left(p_{3}-r_{1}\left(p_{2}+p_{1} r_{1}\right)\right)\right) b+\right. \\
& \left.\left.2 r_{1}\left(3 p_{4}+r_{1}\left(3 p_{3}+p_{2} r_{1}\right)\right)\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
\gamma_{1}= & -2\left(3 a_{0}\left(c+r_{1}\left(b+r_{1}\right)\right)^{3}+5\left(\left(p_{1} b^{2}-p_{2} b+p_{3}\right) r_{1}^{3}+3 p_{4} r_{1}^{2}+\right.\right. \\
& 3 b p_{4} r_{1}+b^{2} p_{4}+c^{2}\left(p_{2}+3 p_{1} r_{1}\right)-c\left(p_{4}+b\left(p_{3}-3 p_{1} r_{1}^{2}\right)+\right. \\
& \left.\left.\left.r_{1}\left(3 p_{3}+r_{1}\left(3 p_{2}+p_{1} r_{1}\right)\right)\right)\right)\right), \\
\gamma_{2}= & 5\left(\left(p_{1} b^{2}-p_{2} b+p_{3}\right) r_{1}^{3}+3 p_{4} r_{1}^{2}+3 b p_{4} r_{1}+b^{2} p_{4}+c^{2}\left(p_{2}+3 p_{1} r_{1}\right)\right. \\
& \left.-c\left(p_{4}+b\left(p_{3}-3 p_{1} r_{1}^{2}\right)+r_{1}\left(3 p_{3}+r_{1}\left(3 p_{2}+p_{1} r_{1}\right)\right)\right)\right) \\
& -2 a_{0}\left(c+r_{1}\left(b+r_{1}\right)\right)^{3}
\end{aligned}
$$

We note that an integer power H is a polynomial if and only if $f\left(r_{1}\right)=0$, $\beta_{1}=\beta_{2}=0$ and $\gamma_{i} \in \mathbb{Q}$ for $i=1,2$ and they all have the same sign.

Case 11): A first integral H is

$$
\begin{aligned}
& \left(x^{2}+b_{1} x y+c_{1} y^{2}\right)^{\gamma_{1}}\left(x^{2}+b_{2} x y+c_{2} y^{2}\right)^{\gamma_{2}}\left(x-r_{1} y\right)^{\gamma_{3}} \\
& \exp \left(\sum_{i=1}^{2} \frac{\beta_{i} x}{\sqrt{\left(4 c_{i}-b_{i}^{2}\right) x^{2}}} \arctan \left(\frac{b_{i} x+2 c_{i} y}{\sqrt{\left(4 c_{i}-b_{i}^{2}\right) x^{2}}}\right)\right)
\end{aligned}
$$

with $\beta_{i}=\alpha_{i} / \delta_{i}$ for $i=1,2$, where

$$
\begin{aligned}
\alpha_{i}= & 5\left(-b_{i}\left(c_{i}^{2} p_{2}+c_{i} c_{j} p_{2}+b_{j} c_{i}\left(c_{i} p_{1}+p_{3}\right)-3 c_{i} p_{4}+c_{j} p_{4}\right)+\right. \\
& b_{i}\left(c_{i}^{2} p_{1}+c_{j} p_{3}+c_{i}\left(-3 c_{j} p_{1}+b_{j} p_{2}+p_{3}\right)+b_{j} p_{4}\right) r_{1}+ \\
& b_{i}^{3}\left(-p_{4}+c_{j} p_{1} r_{1}\right)+b_{i}^{2}\left(c_{i} c_{j} p_{1}+c_{i} p_{3}+b_{j} p_{4}-\left(b_{j} c_{i} p_{1}+c_{j} p_{2}+p_{4}\right) r_{1}\right)+ \\
& 2\left(c_{i}^{3} p_{1}-c_{j} p_{4} r_{1}-c_{i}^{2}\left(c_{j} p_{1}+p_{3}+p_{2} r_{1}-b_{j}\left(p_{2}+p_{1} r_{1}\right)\right)+\right. \\
& \left.\left.c_{i}\left(p_{4} r_{1}+c_{j}\left(p_{3}+p_{2} r_{1}\right)-b_{j}\left(p_{4}+p_{3} r_{1}\right)\right)\right)\right), \\
\delta_{i}= & \left(\left(b_{2}^{2} c_{1}+\left(c_{1}-c_{2}\right)^{2}+b_{1}^{2} c_{2}-b_{1} b_{2}\left(c_{1}+c_{2}\right)\right)\left(c_{i}+b_{i} r_{1}+r_{1}^{2}\right),\right.
\end{aligned}
$$

for $i, j=1,2$ and $i \neq j$

$$
\begin{aligned}
\gamma_{i}= & -2 a_{0}\left(b_{j}^{2} c_{i}+\left(c_{i}-c_{j}\right)^{2}+b_{i}^{2} c_{j}-b_{i} b_{j}\left(c_{i}+c_{j}\right)\right)\left(c_{i}+r 1\left(b_{i}+r 1\right)\right)+ \\
& 5\left(b_{i}^{2}\left(p_{4}+c_{j} p_{1} r_{1}\right)+b_{i}\left(c_{i} c_{j} p_{1}-c_{i} p_{3}-c_{j} p_{2} r_{1}+p_{4} r_{1}\right)+\right. \\
& \left(c_{i}-c_{j}\right)\left(-p_{4}-p_{3} r_{1}+c_{i}\left(p_{2}+p_{1} r_{1}\right)\right)-b_{j}\left(c_{i}^{2} p_{1}+p_{4}\left(b_{i}+r_{1}\right)-\right. \\
& \left.\left.c_{i}\left(p_{3}+\left(-b_{i} p_{1}+p_{2}\right) r_{1}\right)\right)\right),
\end{aligned}
$$

for $i, j=1,2$ and $i \neq j$. Finally

$$
\gamma_{3}=\frac{A_{3}}{B_{3}}=\frac{-\left(f\left(r_{1}\right)+a_{0} B_{3}\right)}{\prod_{i=1}^{2}\left(c_{i}+b_{i} r_{1}+r_{1}^{2}\right)}
$$

We note that an integer power of H is a polynomial if and only if $\beta_{1}=\beta_{2}=0$ and $\gamma_{i} \in \mathbb{Q}$ for $i=1,2,3$ and they all have the same sign.

Case 12): A first integral H is

$$
\begin{aligned}
& (x-r y)^{\gamma_{1}}\left(x^{2}+b x y+c y^{2}\right)^{\gamma_{2}} \\
& \exp \left(\frac{\beta_{1} x^{3}}{\left[\left(4 c-b^{2}\right) x^{2}\right]^{3 / 2}} \arctan \left(\frac{b x+2 c y}{\sqrt{\left(4 c-b^{2}\right) x^{2}}}\right)+\right. \\
& \left.\quad \frac{10 \beta_{2}\left(c+b r+r^{2}\right) x}{\left(b^{2}-4 c\right) c\left(x^{2}+b x y+c y^{2}\right)}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
\beta_{1}= & -10\left(\left(p_{4}+r\left(p_{3}-r\left(p_{2}+p_{1} r\right)\right)\right) b^{3}+4 p_{3} r^{2} b^{2}+2 r^{2}\left(p_{3} r-3 p_{4}\right) b-\right. \\
& 4 p_{4} r^{3}+4 c^{3} p_{1}+c^{2}\left(4\left(p_{3}+r\left(p_{2}+3 p_{1} r\right)\right)-2 b\left(p_{2}-3 p_{1} r\right)\right)- \\
& \left.2 c\left(2 p_{2} r b^{2}+\left(3 p_{4}-r\left(p_{3}+r\left(3 p_{1} r-p_{2}\right)\right)\right) b+2 r\left(3 p_{4}+r\left(p_{3}+p_{2} r\right)\right)\right)\right), \\
\beta_{2}= & -p_{4} y b^{3}+\left(c\left(p_{1} r x+p_{3} y\right)-p_{4}(x+r y)\right) b^{2}+\left(\left(p_{1}(x+r y)-p_{2} y\right) c^{2}+\right. \\
& \left.\left(-p_{2} r x+3 p_{4} y+p_{3}(x+r y)\right) c-p_{4} r x\right) b+ \\
& 2 c\left(p_{1} y c^{2}-\left(p_{1} r x+p_{3} y+p_{2}(x+r y)\right) c+p_{3} r x+p_{4}(x+r y)\right), \\
\gamma_{1}= & 2\left(a_{0}\left(c+b r+r^{2}\right)^{2}+f(r)\right), \\
\gamma_{2}= & 4 a_{0}\left(c+b r+r^{2}\right)^{2}-f(r) .
\end{aligned}
$$

We note that an integer power of H is a polynomial if and only if $\beta_{1}=\beta_{2}=0$ and $\gamma_{i} \in \mathbb{Q}$ for $i=1,2$ and they all have the same sign.

4. Weight exponent $\mathbf{s}=(1,2)$

We prove Theorem 1. Since systems in (5) are homogeneous, we know that they are integrable because they have the inverse integrating factor $V=x \dot{y}-y \dot{x}$. The strategy will be to obtain such first integrals and determine whose of them are polynomials. Denoting systems in (5) by $\dot{x}=P(x, y)$, $\dot{y}=Q(x, y)$ the first integral is $H(x, y)=\int(P(x, y) / V(x, y)) d y+g(x)$, satisfying $\partial H / \partial x=-Q(x, y) / V(x, y)$.

The first system in (5) has the first integral

$$
H=x^{-3-2 p_{2}}\left(3 y^{2}-x^{2}\right)^{-3+p_{2}} \exp \left(-2 \sqrt{3} p_{1} \operatorname{arctanh}(x /(\sqrt{3} y))\right)
$$

Note that an integer power of H is a polynomial if and only if $p_{1}=0$ and $p_{2}=3(1-q) /(1+2 q)$ with $q \in \mathbb{Q}^{+}$.

The second system in (5) has the first integral

$$
H=x^{-3-2 p_{2}}\left(3 y^{2}+x^{2}\right)^{-3+p_{2}} \exp \left(-2 \sqrt{3} p_{1} \arctan (x /(\sqrt{3} y))\right)
$$

Note that an integer power of H is a polynomial if and only if $p_{1}=0$ and $p_{1}=3(1-q) /(1+2 q)$ with $q \in \mathbb{Q}^{+}$.

The third system in (5) has the first integral

$$
H=x^{-2\left(3+p_{1}\right)} y^{-3+2 p_{1}} \exp \left(2 p_{2} y / x\right)
$$

Note that an integer power of H is a polynomial if and only if $p_{2}=0$ and $p_{2}=3(1-2 q) /(2(1+q))$ with $q \in \mathbb{Q}^{+}$.

The fourth system in (5) has the first integral

$$
H=x \exp \left(-y\left(2 p_{1} x+p_{2} y\right) /\left(3 x^{2}\right)\right)
$$

Note that an integer power of H is a polynomial if and only if $p_{1}=p_{2}=0$.
The fifth system in (5) has the first integral x / y which is never a polynomial.

5. Weight exponent $\mathbf{s}=(1,3)$

Doing the change of variables $(X, Y)=\left(x^{3}, y\right)$ the planar weight homogeneous systems of weight degree 4 and weight exponent $(1,3)$ becomes

$$
\begin{equation*}
\dot{X}=3 a_{40} X^{2}+3 a_{11} X Y, \quad \dot{Y}=b_{60} X^{2}+b_{31} X Y+b_{02} Y^{2} \tag{13}
\end{equation*}
$$

Again we shall use the inverse integrating factor $V=X \dot{Y}-Y \dot{X}$ for computing the first integrals of system (13).

It is clear that if $a_{11}=a_{40}=0$ then a polynomial first integral is X, and if $b_{60}=b_{31}=b_{02}=0$ then a polynomial first integral is Y. Now we consider the other cases.
Case 1: $3 a_{11}-b_{02} \neq 0$ and $R=-\left(3 a_{40}-b_{31}\right)^{2}+4\left(-3 a_{11}+b_{02}\right) b_{60} \neq 0$. In this case system (13) has the first integral

$$
\begin{aligned}
& \frac{6}{\sqrt{R}}\left(a_{11}\left(3 a_{40}+b_{31}\right)-2 a_{40} b_{02}\right) \arctan \left(\frac{3 a_{40} X-b_{31} X+6 a_{11} Y-2 b_{02} Y}{\sqrt{R} X}\right)+ \\
& 2\left(3 a_{11}-b_{02}\right) \log X+3 a_{11} \log \left(\frac{Y\left(3 a_{40} X-b_{31} X+3 a_{11} Y-b_{02} Y\right)}{X^{2}}-b_{60}\right)
\end{aligned}
$$

Here $\log A$ always means $\log |A|$, and as usual \log is the logarithm in base e. Since this first integral must be a polynomial we must have

$$
\begin{equation*}
a_{11}\left(3 a_{40}+b_{31}\right)-2 a_{40} b_{02}=0 \tag{14}
\end{equation*}
$$

We consider different subcases.
If $3 a_{11}-2 b_{02} \neq 0$. Then from (14) we get

$$
a_{40}=-\frac{a_{11} b_{31}}{3 a_{11}-2 b_{02}} .
$$

Therefore, doing the exponential of the previous first integral we obtain that the first integral is

$$
H=X^{1-\frac{3 a_{11}}{6 a_{11}-2 b_{02}}} p(X, Y)^{\frac{3 a_{11}}{6 a_{11}-2 b_{02}}},
$$

where
$p(X, Y)=\left(3 a_{11}-2 b_{02}\right) b_{60} X^{2}+2\left(3 a_{11}-b_{02}\right) b_{31} X Y-\left(9 a_{11}^{2}-9 a_{11} b_{02}+2 b_{02}^{2}\right) Y^{2}$.
Note that since $a_{11}-b_{02} \neq 0$ and $3 a_{11}-2 b_{02} \neq 0$ we have $9 a_{11}^{2}-9 a_{11} b_{02}+$ $2 b_{02}^{2} \neq 0$. Therefore an integer power of H is a polynomial first integral if and only if $3 a_{11} /\left(6 a-11-2 b_{02}\right)=m / n \in \mathbb{Q}^{+}$, and $m / n<1$. In this case the first integral H is
$X^{n-m}\left(\left(3 a_{11}-2 b_{02}\right) b_{60} X^{2}+2\left(3 a_{11}-b_{02}\right) b_{31} X Y-\left(9 a_{11}^{2}-9 a_{11} b_{02}+2 b_{02}^{2}\right) Y^{2}\right)^{m}$.
If $3 a_{11}-2 b_{02}=0$, that is, $b_{02}=3 a_{11} / 2$. In this case from (14) we get $a_{11} b_{31}=0$. Hence either $a_{11}=0$, or $b_{31}=0$. But if $a_{11}=0$, then $b_{02}=0$ in contradiction with the fact that $3 a_{11}-2 b_{02} \neq 0$. Therefore, this case is not possible and we must have $b_{31}=0$. The first integral is then

$$
H=\frac{-2 b_{60} X^{2}+6 a_{40} X Y+3 a_{11} Y^{2}}{X}
$$

which is never a polynomial.
Case 2: $b_{02}=3 a_{11}$ and $b_{31}-3 a_{40} \neq 0$. In this case system (13) has the first integral

$$
\begin{aligned}
& \left(b_{31}-3 a_{40}\right)^{2} \log X+\frac{3 a_{11}\left(3 a_{40}-b_{31}\right) Y}{X}+ \\
& 3\left(-3 a_{40}^{2}+b_{31} a_{40}-a_{11} b_{60}\right) \log \left(-\frac{b_{60} X-3 a_{40} Y+b_{31} Y}{X}\right)
\end{aligned}
$$

In order that the first integral is a polynomial we must have $a_{11}\left(3 a_{40}-b_{31}\right)=$ 0 , that is $a_{11}=0$ (and hence $b_{02}=0$). Then doing the exponential of the previous first integral we obtain the first integral

$$
X^{1 / 3}\left(\frac{b_{60} X-3 a_{40} Y+b_{31} Y}{X}\right)^{\frac{a_{40}}{3 a_{40}-b_{31}}}
$$

Then we must have $b_{31} / a_{40}=-m / n$ with $m / n \in \mathbb{Q}^{+}$. In this case the previous first integral becomes $H=X^{m}\left(b_{60} X-3 a_{40} Y+b_{31} Y\right)^{3 n}$.
Case 3: $b_{02}=3 a_{11}$ and $b_{31}=3 a_{40}$. Then system (13) has the first integral

$$
\frac{-2 b_{60} X^{2} \log X+6 a_{40} Y X+3 a_{11} Y^{2}}{6 X^{2}}
$$

Since the case $a_{40}=a_{11}=0$ has been studied, we have that in this case the first integral is never a polynomial.
Case 4: $3 a_{11}-b_{02} \neq 0$ and $R=0$. Then

$$
b_{06}=\frac{-\left(3 a_{40}-b_{31}\right)^{2}}{4\left(3 a_{11}-b_{02}\right)}
$$

and system (13) has the first integral

$$
\begin{aligned}
& \frac{3\left(-3 a_{11} a_{40}+2 b_{02} a_{40}-a_{11} b_{31}\right) X}{3 a_{40} X-b_{31} X+6 a_{11} Y-2 b_{02} Y}+\left(3 a_{11}-b_{02}\right) \log \left(36 a_{11} X-12 b_{02} X\right)+ \\
& 3 a_{11} \log \left(-\frac{3 a_{40} X-b_{31} X+6 a_{11} Y-2 b_{02} Y}{X}\right)
\end{aligned}
$$

In order that it is a polynomial we must have

$$
\begin{equation*}
2 a_{40} b_{02}-a_{11}\left(3 a_{40}+b_{31}\right)=0 \tag{15}
\end{equation*}
$$

We consider two different subcases.
If $3 a_{11} \neq 2 b_{02}$. In this case condition (15) becomes

$$
a_{40}=-\frac{a_{11} b_{31}}{3 a_{11}-2 b_{02}}
$$

Then doing the exponential of the previous first integral we obtain the first integral

$$
X^{\frac{1}{36 a_{11}-12 b_{02}}}\left(\frac{b_{31} X-3 a_{11} Y+2 b_{02} Y}{X}\right)^{\frac{a_{11}}{4\left(b_{02}-3 a_{11}\right)^{2}}}
$$

From this first integral we obtain the first integral

$$
X\left(b_{31} X-3 a_{11} Y+2 b_{02} Y\right)^{-3 a_{11} / b_{02}}
$$

So, if $b_{02} \neq 0$ then $3 a_{11} / b_{02}=-m / n$ with $m / n \in \mathbb{Q}^{+}$and the polynomial first integral is

$$
X^{n}\left(b_{31} X-3 a_{11} Y+2 b_{02} Y\right)^{m}
$$

If $b_{02}=0$ then $H=b_{31} X-3 a_{11} Y$ is a polynomial first integral. This concludes the proof of the theorem.

6. Weight Exponent $\mathbf{s}=(1,4)$

We introduce the change $(X, Y)=\left(x^{4}, y\right)$ in the planar weight homogeneous polynomial differential systems (1) of weight degree 4 with weight exponent $(1,4)$. In these new variables (X, Y) the systems with weight exponent $(1,4)$ becomes, after introducing the new independent variable $d \tau=x^{3} d t$, as follows

$$
\begin{equation*}
X^{\prime}=4\left(a_{40} X+a_{01} Y\right), \quad Y^{\prime}=b_{70} X+b_{31} Y \tag{16}
\end{equation*}
$$

where the prime denotes derivative with respect to τ. If $a_{40}=a_{01}=0$ then a polynomial first integral is X, and if $b_{70}=b_{31}=0$ then a polynomial first integral is Y. Now we consider the other cases.

Case 1: $R=-\left(4 a_{40}-b_{31}\right)^{2}-16 a_{01} b_{70} \neq 0$. Then a first integral of system (16) is

$$
\begin{aligned}
& \frac{2\left(4 a_{40}+b_{31}\right)}{\sqrt{R}} \arctan \left(\frac{\left(4 a_{40}-b_{31}\right) X+8 a_{01} Y}{\sqrt{R} X}\right)+ \\
& \log \left(-b_{70} X^{2}+\left(4 a_{40}-b_{31}\right) X Y+4 a_{01} Y^{2}\right)
\end{aligned}
$$

Since it must be a polynomial we must have $b_{31}=-4 a_{40}$, and we get the polynomial first integral is $H=-b_{70} X^{2}+8 a_{40} X Y+4 a_{01} Y^{2}$.
Case 2: $R=0$. We consider different subcases.
We first study when $b_{70} \neq 0$. Then from $R=0$ we get

$$
\begin{equation*}
a_{01}=-\frac{\left(4 a_{40}-b_{31}\right)^{2}}{16 b_{70}} \tag{17}
\end{equation*}
$$

If $b_{31}-4 a_{40} \neq 0$ the first integral is

$$
\frac{2\left(4 a_{40}+b_{31}\right) b_{70} X}{-2 b_{70} X+\left(4 a_{40}-b_{31}\right) Y}+\left(4 a_{40}-b_{31}\right) \log \left(2 b_{70} X+\left(-4 a_{40}+b_{31}\right) Y\right)
$$

which is a polynomial if and only if $b_{31}=-4 a_{40}$. The polynomial first integral is $b_{70} X-4 a_{40} Y$.

If $b_{31}=4 a_{40}$ then $a_{40} \neq 0$ (otherwise $b_{31}=0$ and from (17) we also have $a_{01}=0$ and this case has been considered), and the first integral of (16) is

$$
H=\frac{Y}{X}-\frac{b_{70} \log X}{4 a_{40}}
$$

which is never a polynomial.
If $b_{70}=0$ then from $R=0$ we get $b_{31}=4 a_{40}$. We only consider the case $a_{40} \neq 0$, and the first integral of (16) is

$$
-\frac{a_{40} X}{Y}+a_{01} \log Y
$$

which is never a polynomial. This completes the proof of the theorem.

7. Weight Exponent $s=(2,3)$

We prove Theorem 4. The planar weight homogeneous polynomial differential systems (1) with weight degree 4 with weight-exponent $(2,3)$ are

$$
\begin{equation*}
\dot{x}=a_{11} x y, \quad \dot{y}=b_{30} x^{3}+b_{02} y^{2} \tag{18}
\end{equation*}
$$

If $a_{11}\left(3 a_{11}-2 b_{02}\right) \neq 0$ then the first integral of system (18) is

$$
H=x^{-\frac{2 b_{02}}{a_{11}}}\left(2 b_{30} x^{3}-3 a_{11} y^{2}+2 b_{02} y^{2}\right)
$$

Then an integer power of H is a polynomial first integral if and only if $-2 b_{02} / a_{11} \in \mathbb{Q}^{+}$.

If $a_{11}=0$ then $H=x$ is a polynomial first integral of system (18).
If $b_{30}=b_{02}=0$ then $H=y$ is a polynomial first integral of system (18).
If $a_{11} \neq 0$ and $3 a_{11}=2 b_{02}$, then the first integral of system (18) is

$$
H=\frac{y^{4}}{x^{3}}-\frac{2 b_{30}}{a_{11}} \log x
$$

which is never a polynomial. This completes the proof of the theorem.

8. Weight exponent $\mathbf{s}=(2,5)$

We prove Theorem 5. The planar weight homogeneous polynomial differential systems (1) of weight degree 4 with weight exponent $(2,5)$ are

$$
\dot{x}=a_{01} y, \quad \dot{y}=b_{40} x^{4}
$$

It is straightforward to prove that $H=2 b_{40} x^{5}-5 a_{01} y^{2}$ is a polynomial first integral.

9. Weight exponent $\mathbf{s}=(6,9)$

We prove Theorem 6. The planar weight homogeneous polynomial differential systems (1) of weight degree 4 with weight exponent $(6,9)$ are

$$
\dot{x}=a_{01} y, \quad \dot{y}=b_{20} x^{2} .
$$

It is straightforward to prove that $H=2 b_{20} x^{3}-3 a_{01} y^{2}$ is a polynomial first integral.

References

[1] A. Algaba, N. Fuentes and C. García, Centers of quasi-homogeneous polynomial planar systems, Nonlinear Anal. Real World Appl. 13 (2012), 419-431.
[2] A. Algaba, C. García and M. Reyes, Integrability of two dimensional quasihomogeneous polynomial differential systems, Rocky Mountain J. Math. 41 (2011), 1-22.
[3] A. Algaba, C. García and M. Reyes, Rational integrability of two-dimensional quasi-homogeneous polynomial differential systems, Nonlinear Anal. 73 (2010), 13181327.
[4] A. Algaba, C. García and M.A. Teixeira, Reversibility and quasi-homogeneous normal forms of vector fields, Nonlinear Anal. 73 (2010), 510-525.
[5] A. Algaba, E. Freire, E. Gamero and C. García, Monodromy, center-focus and integrability problems for quasi-homogeneous polynomial systems, Nonlinear Anal. 72 (2010), 1726-1736.
[6] C. Cairó and J. Llibre, Polynomial first integrals for weight-homogeneous planar polynomial differential systems of weight degree 3, J. Math. Anal. Appl. 331 (2007), 1284-1298.
[7] J. Chavarriga, H. Giacomini, J. Giné and J. Llibre, Darboux integrability and the inverse integrating factor, J. Differential Equations 194 (2003), 116-139.
[8] A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic vector fields in the plane, J. Math. Anal. and Appl. 147 (1990), 420-448.
[9] T. Date and M. LaI, Canonical forms of real homogeneous quadratic transformations, J. Math. Anal. Appl. 56 (1976), 650-682.
[10] S. D. Furta, On non-integrability of general systems of differential equations, Z. Angew Math. Phys. 47 (1996), 112-131.
[11] A. Goriely, Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations, J. Math. Phys. 37 (1996), 1871-1893.
[12] S. Labrunie, On the polynomial first integrals of the (a, b, c) Lotka-Volterra system, J. Math. Phys. 37 (1996), 5539-5550.
[13] J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems, Nonlinearity, 15 (2002), 1269-1280.
[14] A.J. Maciejewski and J.M. Strelcyn, On algebraic non-integrability of the Halphen system, Phys. Lett. A 201 (1995), 161-166.
[15] J. Moulin-Ollagnier, Polynomial first integrals of the Lotka-Volterra system, Bull. Sci. Math. 121 (1997), 463-476.
[16] A. Tsygvintsev, On the existence of polynomial first integrals of quadratic homogeneous systems of ordinary differential equations, J. Phys. A: Math. Gen. 34 (2001), 2185-2193.

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

E-mail address: jllibre@mat.uab.cat
Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal

E-mail address: cvalls@math.ist.utl.pt

[^0]: 2010 Mathematics Subject Classification. Primary: 34A05, 34A34, 34C14.
 Key words and phrases. Polynomial first integrals, weight-homogeneous polynomial differential systems.

 The first author is supported by the grants MICIIN/FEDER MTM 2008-03437, AGAUR 2009SGR410, and ICREA Academia. The third author is partially supported by FCT through CAMGDS, Lisbon.

