ON THE DARBOUX INTEGRABILITY OF THE LOGARITHMIC
GALACTIC POTENTIALS

JAUME LLIBRE! AND CLAUDIA VALLS?

ABSTRACT. We study the logarithmic Hamiltonians H = (p2 +p;)/2+log(1+ 2%+

y?/ q2)1/ 2 which appears in the study of the galactic dynamics. We characterize all
the invariant algebraic hypersurfaces and all exponential factors of the Hamiltonian
system with Hamiltonian H. We prove that this Hamiltonian system is completely
integrable with Darboux first integrals if and only if ¢ = £1.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The potential
2

V = 1log <R2+x2+y—>,
2 q>
where ¢ € R\ {0} is called the logarithmic potential. It has an absolute minimum
and reflection symmetry with respect to both axes. This potential is relevant in
problems of galactic dynamics as a model for elliptical galaxies. More precisely, it
is a model of a core embedded in a dark matter halo, with R being the core radius.
Without loss of generality we can assume that R = 1, and the energy can take any
non-negative value. The parameter ¢ is the ellipticity of the potential, which ranges
in the interval 0.6 < g < 1. Lower values of ¢ have no physical meaning and greater
values of ¢ are equivalent to reverse the role of the coordinate axes. In this paper,
to make a complete and deep study of the Darboux integrability of such a potentials
we will consider that ¢ € R\ {0}. This model has been intensively investigated from
different dynamical and physical point of views by several authors, see for instance
3,7, 11, 12, 13].
We consider the logarithmic Hamiltonian
2

1 1
H:§(pi+p§)+§log<1—l—x2+%>, q € R\ {0},

its Hamiltonian system is

j:_pw7
y:_pya
x
1 I
( ) pl’ 1+x2+y2/q27
. Y
Py =

P+ 22+ y2/¢%)’
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where the dot indicates derivative with respect to time t. Note that this Hamiltonian
system (1) has two degrees of freedom.

The main aim of this paper is to study the existence of first integrals of system
(1). The vector field X associated to system (1) is

0 p, 0 T 0 N y 0
Or  q Oy 1+22+9?/¢?0p. (1 +22+y%/¢?) Op,

Let U C R? be an open set. We say that the non—constant function F': R? — R is
a first integral of a vector field X on U, if F(z(t),y(t), p.(t), py(t)) = constant for all
values of ¢ for which the solution (x(t), y(¢), p.(t), py(t)) of X is defined on U. Clearly
F is a first integral of X on U if and only if XF =0 on U.

We say that the functions Fi, ..., F, are in involution if {F}, F;} = 0 for all ¢ # j,
where {-, -} denotes the Poisson bracket. Moreover, they are independent if the one—
forms dFy,...,dF, are linearly independent over a full Lebesgue measure subset of
the common definition domain of F} for j = 1,...,n. By definition, a Hamiltonian
system with n degrees of freedom having n independent first integrals in involution
is completely integrable, see for more details [1].

Note that system (1) is completely integrable, if and only if there exists a first
integral linearly independent and in involution with H. We have the following result,
whose proof follows by direct computations.

Proposition 1. When q = +1 the Hamiltonian system (1) is completely integrable
with the first integrals H and Hy = yp, — xpy.

From now on we will restrict to the case ¢ # £1. Doing the change of time
dt = (1 + 2% + y?/q?) ds, system (1) becomes

7' = —p,(1+2* +*/¢%),

b, =,
Y
py q27

where the prime denotes derivative with respect to the new time s.

Taking the notation Y =y/q, @ = 1/¢* > 0, Py = qp, we get

v = —p,(1+2*+Y?),
Y' = -QPy(1+2°+Y?),
P =1,

P, =Y.
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We write the previous system again as
v = —p.(1+2° +97),
y' = —Qp,(1+2° +y°),

(2)

Py =1,
Py =y
The vector field associated to system (2) is
0 0 0 0
X =—p(1+2"+y") 5= —Qp,(1+ 2 +y*)— + + Yy
Note that system (2) has the first integral
(3) Hy = (1 + 2% + y?)ers 9,

From now on @) # 1.

The aim of this paper is to study the existence of additional first integrals of system
(2) which are linearly independent with Hy and that can be described by functions of
Darboux type (see (7)). Note that one of the main tools for studying the dynamics of
the differential system (2) is to know the existence of an additional independent first
integral for some values of the parameter () > 0. In general, for a given differential
system it is a difficult problem to determine the existence or nonexistence of first
integrals.

First we study the existence of first integrals of system (2) given by polynomials.
A polynomial first integral f = f(z,y,ps, py) of system (2) is a polynomial in the

variables x, y, p, and p, such that
of of , of of _

_ 1 2 2__ 1 2 2_
(4) pe(1+ +y>8x Qpy(1+x +y)ay+x8pm+y3py

The first main result is the following.

0.

Theorem 2. System (2) with Q) # 1 has no polynomial first integrals.

The proof of Theorem 2 is given in section 2.
A rational first integral of system (2) is a rational function f satisfying (4).

Theorem 3. System (2) with Q # 1, has no rational first integrals.

The proof of Theorem 3 is given in section 4.

To prove Theorem 3 we will use the Darboux theory of integrability. The Darboux
theory of integrability in dimension 4 is based on the existence of invariant algebraic
hypersurfaces (or Darboux polynomials). For more details see [4, 5, 6]. This theory is
one of the best theories for studying the existence of first integrals for the polynomial
differential systems.

A Darbouzx polynomial of system (2) is a polynomial f € Clz,y,p,,p,] \ C such
that
of
Ox

of  of of
142 +y°) = — =K
Qpy,(1+z +y)3y+x8px+yapy fs

(5) —pa(1+ 2" +37)
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for some polynomial

(©) K = ag + aqx + oy + asp, + aypy + a52” + agay + azap, + asTpy + agy’
+ Q1oYpz + a11yYpy + Q1ap? + 13Dz Py + &14]?32,,

called the cofactor of f. Note that f = 0 is an invariant algebraic hypersurface for
the flow of system (2), and a polynomial first integral is a Darboux polynomial with
zero cofactor. We note that if f ¢ Rlx,y, p,,p,] \ R is a Darboux polynomial then
there exists another Darboux polynomial f (the conjugate of f) with cofactor K (the
conjugate of K).

Theorem 4. The unique irreducible Darboux polynomial with non—zero cofactor of
system (2) with Q # 1 is 1 + 2 + y*.

The proof of Theorem 4 is given in section 3.

An exponential factor F = F(z,y,ps,py) of system (2) is a function of the form
F =exp(go/g1) ¢ C with go, g1 € Clz,y, ps, py] coprime satisfying that

oOF oF oF oF
—p(1+ 2> +y°)— — Qp,(1 + 2> +y*)— + =

— - LF
ox oy Opy * yﬁpy

Y

for some polynomial L = L(z,y,p,,p,) of degree at most 2, called the cofactor of
F. We note that if F' ¢ R[x,y, p,,p,] \ R is an exponential factor then there exists
another exponential factor F' (the conjugate of F') with cofactor L (the conjugate of
L).

Theorem 5. The unique exponential factors of system (2) with Q # 1 are eP*, ePv,
ePr, PPy, ePy, evP==Qpy g exponential of linear combinations of all the exponents
in the previous exponential factors.

The proof of Theorem 5 is given in Section 5.

A Darbouz first integral G of system (2) is a first integral of the form
(7) szfl .. fﬁpplﬂl . F;‘q,

where f1,..., f, are Darboux polynomials and F3, ..., I, are exponential factors and
Ajopu, € Cfor 5 =1,...,pand k = 1,...,q. Note that the Darboux first integral
always is a real function due to the fact that if there are complex polynomials or
complex exponential factors, then always also appear their conjugates.

Theorem 6. The unique Darboux first integrals of system (2) with Q # 1 are func-
tions of Darboux type of Hy.

The proof of Theorem 6 is given in section 6.

In short, from Proposition 1 and Theorem 6 we have the following result.

Corollary 7. The Hamiltonian system (1) is completely integrable with Darboux first
integrals if and only if ¢ = £1.
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2. POLYNOMIAL FIRST INTEGRALS: PROOF OF THEOREM 2

Let f be a polynomial first integral of system (2). Without loss of generality
we can assume that it has no constant term. Then f satisfies (4). We write f as
f=22-0 fi(,y,ps,py) where each f; is a homogeneous polynomial of degree j in
each variables z,y, p, and p,. We can assume that f,, # 0 with n > 0. We have that
the terms of degree n + 2 in (4) satisfy

Ofn Ofa\
" e +pra—y) s

®) (e +y?) (p
Solving it we get

fn = Kn(px7py7ypx - pry)v

where K, is any function in the variables p,, p, and yp, — Qzp,. Since f,, must be a
homogeneous polynomial of degree n we must have

9) fo=" D @GupmPipP(ype — Qrp))", a5, um € R.

J1t+ja+2m=n

Now the terms of degree n in (4) satisfy

Ofn2 of —2> of, of of. af,
2 2 n n O L n n n
(" +y )(pz 5 TPy 9 )= P Qpy o +tag - +y8py
=T Z jlajhjz,mpgcl_lp{f (ypac - pry)m

(10) Jji+je+2m=n

+ ) Z j2aj1,j2,mp];p{/2_1(ypx - pry)m

J1+j2+2m=n
10,02 m—1
+(1=Quy > maj, Pl (yps — Qrp,)"
J1+je+2m=n
Now we introduce the variable
Y + Qxp,

(11) Y =yp, — Qxp, and y= P

Then we can rewrite the right-hand side of (10) in the variables (z,Y, p,,p,) as

T Z (1 + Qg2 + (1 — Q)m)ay, jymplt ' PLEY™

J1+j2+2m=n

- 1—1, jo—1vy m—+1
+ D e gmpl PP

jitje+2m=n

+ (1 — Q)Qx? Z maj, j,mpl Py

j1+je+2m=n
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Note that in these new variables, if we set fn_g(x, Y, puspy) = fo2(x,y, ps, py) then
we can rewrite (10) as

(12)

afnf2 o X ) . o
or  22p2 + (Y + Qup,)? Z (J1 4+ Qj2 + (1 — Q)m)ay, j, mP PI2Y

Jit+je+2m=n

1 . .
E ) . 1 2—lym+1
" 5132]?3 + (Y + Ql‘py)z ]2(1]17]2,771]% p;

Ji1+j2+2m=n

(1-Q)Qa? i lome
B T

Ji1+j2+2m=n

Using the integrals
/ dx 1 (xpi + P Q% + prY)
arctan ,

22p2 + (Y + Qxp,)? opY peY
T 1
dx = (xlo 2p? + z+Y)?
2 Y
—2p, @ arctan <a:px +pr(prw + )) >’
Y
x? 1
dr = ( p2Q*Y — piY
Y
arctan (chx + py?}(iﬁ;@»’lf + )) +px( (pi +p§Q2) T

QY log (2% + (p,Q + 1)),

we get
1

=1 _jo—1v, m—1 . 2,12 2
2<p:26+p73Q2)2 Z Ajy jomPa pg]/2 Y (2((]2+2m)pr D

J1+je+2m=n

fn—Z =

2 22
. ) . zp; + p,Q°x + p, QY
+j2p} — (J1 + 2m)p2Qp2 — j1p,@*)Y arctan yp v !
+papy ((J2 + M)p2Q° + (j1 — m)PiQ* + (jo — m)P2Q + (j1 + m)p2)Y
log (p22* + (p,Qz +Y)?) — 2mp,(Q — 1)Q(p2 +pZQ2):c> + Kp2(ps, 0y, Y).

Since f,_o must be a polynomial, in particular, we must have that the part with
arctan must be zero. Then,

Z ajl,jg,mpilp;2ym((j2 + 2m)P§,Q2pi + jopy — (1 + Qm)piQp?; - ijng) =0.
J1+j2+2m=n

This implies that either a;, j, ,» = 0, or

j1=0, j2=0, (j2+2m)Q*— (ji +2m)Q = 0.
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Hence, since Q(Q — 1) # 0 we get that either a;, j,,,» =0 or j; = jo =m = 0. In
the first case f, = 0, and in the second one n = 0. So, in both cases we have a
contradiction with the fact that f is a polynomial first integral.

3. DARBOUX POLYNOMIALS WITH NON-ZERO COFACTOR: PROOF OF THEOREM 4

We consider a Darboux polynomial with non-zero cofactor. We write it as f =
> j—0 fi(®,Y, Pz, py) Where each f; is a homogeneous polynomial of degree j in each
variables z,y, p, and p,. Without loss of generality we can assume that f,, # 0 with
n > 0. We have that the terms of degree n + 2 in (5) satisfy

Ofn Ofn

(" +y )(px 5 + Qpy 9y

+ 1oYPs + Q11ypy + Q2ps + 13Papy + 1apy) fa-

(13) ) = (asz® + agry + arrp, + asxp, + agy?

Solving the differential equation in (13) we have

_(Oé5p325 + pr(()éﬁpx —+ a9pr))SC)
Pa(P? + Q%)

Dot QYpy 7

o ((Q:vp —yp )C(gpq;pi_Qgﬁ;)z) (p2(a + y2)) 202 + Q°P)*

fn = Kn(Da, Dy, Y0 — Qpy) €Xp (

—T) arctan (

where
Ty = (@14]9@2, + uspepy + ar2p2) (Ph + szz)Q
+ (Qxpy — ypo) (P2 + Q*p2) (—a1op? — (11 — Qar)pupy + asQp2)
+ (a5 — ag)p2 + 206Qpapy + (a9 — 045)Q2p§)(ypx — Qzpy),
Ty = (a7pl + (ag + 010Q)papy + oanpf/)(pi + Q2p§)
+ (2Q(ag — a5)papy + a6(ph — Q°p)) (ype — Qpy).
Since f,, must be a polynomial, introducing the change of variables in (11), the part
of the first exponential must be zero. Then as = ag = ag = 0. Then, T} reduces to
(ev1apj) + a13papy + a12py) (P + Qp))* + (Qupy — ypa) (P + Q*p})
(—orop2 — (o1 — Qo) pepy + agQpy) =
Oélng + Oélspypi + aoyp) + 0414P§pi + 20412]9@2,Q2P§ - OéloprIpi
+py (011 — a7 Q)yp; + 20133 Q°p; — prQ (o — a7 Q)xps
—ppQ(as — a10Q)yps + Py Q7 (012Q* + 20114) P2 + PEQ* (s — a10Q)xp?
+p,Q% (11 — 7 Q)ypa + P, Q*pr — P, Q% (11 — a7 Q)ap,
—agpyQ3yp, + 1S Q* + asp Q.
Equating the coefficients of the same monomials in the previous equation, we get
ag = g = a1z = a3 = agy = 0,
and ay; = Qaz. Then, Ty = a7(p + Q?p;)?, which yields a7 = —2m with m € N.
Hence
K = ap+ a1z + agy + asp, + aspy — 2m(zp, + Qyp,),
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and
o= K(pas py, ype — Qupy) (2* + y*)™.
Since f, must have degree n we get

(14) fn = ($2 + QQ)m Z aj17j2»]'3p;‘1pyjf (ypx - pry>j3> Ay ja gz € C.
Ji+j2+2j3=n—2m

Computing the terms of degree n 4 1 in (5) we get

Ofn_ Ofn_
— (2® +y°) (px ](;z - J(;y 1) = —2m(xp, + Qupy) fu

+ (012 + oy + agpy + aupy) fo.

Now, proceeding as in the proof of Theorem 2, introducing the change of variables
(11), solving it and then going back to the old variables we obtain

(2 + %)™
2(p2 + p2Q?)
+aupy( + PyQ°)pe + (2P} — pyQ*(x — 1)) — a1pep, Q) (p2y — prx))

(m +p,Qy

arctan [ —————2~2
PyQT — pay

Z aj1,j2,j3pzcl_1p7]f (pxy . prl.)jg—l’

J1+j2+2j3=n—2m

foc1 = Knuo1(Dey Dys ype — Qapy) (2% + y?)™ + (2 (ag(pi + poQ*)ps

) = pelasne + aam, Qo) oy — 1, @) ox(ia” + 7))

where K,,_; is a function in the variables p,, p, and yp, — Qzp,. Since f,,_; must be
a homogeneous polynomial of degree n — 1 and f,, # 0 we have that

ap=oag=az3=0o4 =0
and
(15) fn—l = (772 + yQ)m Z bj47j5,j6p;4p;5 (ypas - pry)%? bj47j5,j6 e C.
Jatjs+2je=n—2m—1

Now computing the terms of degree n we obtain

afn—2 8fn—2 o
—(1]2 + y2> (p:c 8x + pr ay ) + _Qm(xpz + Qypy)fn—2 -
O fn

Ofn  Ofn  Ofn
B

+ Qp —r— —Ys =

Y (9y apr apy
Qp (xQ + yQ)m Z ajhjz,jspilpg]f (ypm - pry)j3
Jitj2+2j3=n—2m

Y Gl ey — 0, Q)N (@ )

J1+j2+2j3=n—2m
(2mp.py (P2y — Py Q) (P + pyQY) + (2% + ¥?) (jipyr (pyQr — puy)
+0:y(J3py(Q — 1)z + ja(p,Qz — py)))).

aOfn + Pz

(16)
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Solving this differential equation we obtain
(17)
fo2 = Ko o(ps,py, ype — Qupy)(2® + y*)™
+(:E2 + yQ)m Z aj1,j2,j3pé1p§2_l(pxy - prx)jS_l

J1tj2+2j3=n—2m

) m(pzy —pyQr)  Japy(Q — 1)6293) N 2
! 2?4y’ P + 1@ 2p. (P} + Py @%)°

(ocopxpy(pi + p2Q%)* — (Japit + (J2 + 243)P2Q%P2 — (j1 + 243)P2 QD3

- 413 Pz + pry
— 10, Q°) (pzy — p Qx)) arctan <—
) ! p,Qx — poy

+(j1 — J3)P2Q% + (j2 — J3)P2Q + (j1 + J3)p2) (Pay — Py Q)
log(p2(a + y2>>) ,

where K,,_, is a function in the variables p,, p, and yp, — Qxp,. Since f,_o must be
a homogeneous polynomial of degree n — 2 and f,, # 0 we get

) + papy (2 + J3)P2@Q°

ap=J1=J2=7J3=0.
Then n = 2m and since f,,_; has degree n — 1 it follows from (14), (15) and (17) that

m— m m—
fn = ao,o,o(x2+92)m, Jac1=0, fno= ma07070(x2+y2) b= <1)a0,0,0($2+y2) L

Computing the terms of degree n — 1 we get

afn—?) afn—3
(2 2
(x +y)(px o + Qpy o

Solving this differential equation we obtain

) = —2m(xp, + Qupy) fr—s.

fn—S - Kn—3(pm7py7 YPz: — pry)(IQ + yQ)ma

where K,,_3 is a function in the variables p,,p, and yp, — Qzp,. Since f,,_3 must be
a homogeneous polynomial of degree n — 3 and n = 2m, we get that f,_3 must be a
homogeneous polynomial of degree 2m — 3. This is not possible and then K,,_3 =0
which yields f,_3 = 0.

Computing the terms of degree n — 2 we get

Ofn- Ofn-
—(22 + %) (px e L+ Qp, dy 4) + 2m(xp, + Qypy) fu—a-
_ afnf2 afn72 afan afnf2
— P ox +@py oy v Op. 4 Opy

= 2@07070 (T) (m — 1)(.172 + yQ)m_z(ipr + ypr)
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Solving it we obtain
m(m — 1)
2

where K,,_4 is a function in the variables p,,p, and yp, — Qzp,. Since f,,_4 must be
a homogeneous polynomial of degree n — 4 = 2m — 4 we must have K,, 4, = 0 and

frea = () aop0(@? + y*)™ 2.
Proceeding inductively we get that

fn_Qk_lzo fork::(),...,m—l

fn—a = Kn_a(Ds, Dy, Y — pry)($2 + y2)m + Clo,o,o(x2 + yz)mﬂ’

and
m 2 2\m—k
fn—Qk:(k>a0,O,0(fU + y°) for k=0,...,m.

This implies that f, = agp0(l + 2? + y?)™. Thus the unique irreducible Darboux
polynomial of equation (2) is 1 + 22 4+ y2. This concludes the proof of the theorem.

4. PROOF OF THEOREM 3

To prove Theorem 3 we recall two auxiliary results. The first one was proved in
[6] while the second one was proved in [8].

Lemma 8. Let f be a polynomial and f = Hf;-lj its decomposition into irreducible
j=1

factors in Clx,y,z]. Then f is a Darboux polynomial if and only if all the f; are

Darboux polynomials. Moreover, if K and K; are the cofactors of f and f;, then

K = iajKj.
j=1

Lemma 9. The existence of a rational first integral for a polynomial differential
system (2) implies the existence of a polynomial first integral, or the ezistence of two
Darboux polynomials with the same non-zero cofactor.

The proof of Theorem 3 follows readily from Theorems 2 and 4 together with
Lemmas 8 and 9.

5. EXPONENTIAL FACTORS: PROOF OF THEOREM 5

To prove Theorem 5 we will use the following known result whose proof and geo-
metrical meaning is given in [2, 10].

Proposition 10. The following statements hold.

(a) If E = exp(go/q1) is an exponential factor for the polynomial system (2)
and gy 1s not a constant polynomial, then g1 = 0 is an invariant algebraic
hypersurface.

(b) Eventually €% can be exponential factors, coming from the multiplicity of the
infinite tnvariant hyperplane.
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The following result given in [2, 10] characterizes the algebraic multiplicity of an
invariant algebraic hypersurface using the number of exponential factors of system
(2) associated with the invariant algebraic hypersurface.

Theorem 11. Given an irreducible invariant algebraic hypersurface g = 0 of degree
m of system (2), it has algebraic multiplicity k if and only if the vector field associated
to system (2) has k — 1 exponential factors of the form exp(g;/g"), where g; is a
polynomial of degree at most im and (g;,g9) =1 fori=1,...k — 1.

In view of Theorem 11 if we prove that e%/? is not an exponential factor with
degree g9 < degree g, there are no exponential factors associated to the invariant
algebraic hypersurface g = 0.

System (2) has the irreducible Darboux polynomial 1 + 22 + y2. Then in view of
Proposition 10 it can have an exponential factor of the form: either £ = exp(g) with
g € Clz,y,pz,0,] \C , or E = exp(g/(1 + 2* + y*)™) with m > 1 and such that
g € Clz,y,ps, py] and is coprime with 1+ 2% 4+ y?. We first prove that system (2) has
no exponential factors of the form E = exp(g/(1 + 22 + y*)™).

Assume that system (2) has an exponential factor of the form E = exp(g/(1+ 2%+
y*)™) with m > 1 such that 14 22 + y* is coprime with g € C[z,y,p,, p,]. In view
of Theorem 11 we can assume that m = 1 and that ¢ has degree at most two (note
that here g = 1+ 2% + y? has degree two). We write g as a polynomial of degree two
in the variables z,y, p,, p, as follows
(18) g = ag + a1x + agy + azp; + asp, + a5x2 + agry + arxTp, + agrpy
+ agy® + aroype + a11ypy + @12p5 + ar3papy + a14p;.

Clearly, g satisfies
(19) _<1+x2+y2)p$%_pr(1”2+y2)g_g”§iw%
+2(aps + Qypy)g = L(1 +2” +y%)
where L is a polynomial of degree two in the variables z,y, p,, p,. Setting
L = b + by + bay + bapy + bapy + bsz® + bexy + brap, + bgap,
+ boy? + bioypa + bi1ypy + brap’ + bispapy + 514193
in (19) with an algebraic manipulator we conclude that

g=ay(l+2*+y*) and L=0.

(20)

However this is not possible since ¢ is coprime with 1 + 22 + y2.

In summary, if (2) has an exponential factor it must be of the form E = exp(g)
with g € Clz,y, ps, py] \ C. In this case, g satisfies
(21) — (142> +y°)p @—Qp (1+x2+y2)@+xag +y@=L
“ox Y oy Opy Ipy ’
where L = L(x,y, ps, py) is some polynomial of degree two in the variables z,y, p,, p,
and that we can take as in (20).
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We write g as g = Z?:o 9j(x,y, ps, py) Where each g; is a homogeneous polynomial
of degree j. Without loss of generality we can assume that g, # 0 with n > 0.

Assume n > 3. Then computing the terms of degree n+ 2 in (21) we get (8). Now
proceeding as we did in the proof of Theorem 2 we get g, is as in (9). Then the terms
of degree n in (21) (since n > 3) they satisfy equation (10) which, again in view of
the proof of Theorem 2 they must be zero. Then g has degree at most two. In this
case we write it as in (18). Then imposing that g satisfies (21) and solving it with
an algebraic manipulator we conclude that

by

5 Pz + @apy + bspapy + aup; + aio(ype — Qup,).

g = ap + bipy +

This concludes the proof of the theorem.

6. PROOF OF THEOREM 6
In order to proof Theorem 6 we need the following result whose proof is given in
[6].

Theorem 12. Suppose that system (2) admits p Darboux polynomials and with cofac-
tors K; and q exponential factors F; with cofactors L;. Then there ewists \j, p; € C
not all zero such that

q q

i=1 i=1
if and only if the function G given in (7) (called of Darboux type) is a first integral
of system (2).

In view of Theorem 12 to characterize the Darboux first integrals we need to com-
pute the Darboux polynomials and the exponential factors. Then, using Theorems
2, 4 and 5 if G is a Darboux first integral of system (2) it must be of the form (7),
ie.

G=(1+ 24 y2)/\eulpz+u2pi+u3pzpy+u4py+u5p§+u6(ypzfopy)
and the cofactors must satisfy

—2X(@pys + Qupy) + T + 2p0xps + p3(xpy + ype) + pay + 205ypy + p6(1 — Q)zy = 0.

Solving this system we have either pu; = pus = puy = pg = 0 and ps = A, us = QA.
From (3) this yields

G — [(1 12 +y2)€(pi+62p§)])‘ - H[j\.

That is, all the Darboux first integrals of system (2) are Darboux functions in the
variable Hy. This concludes the proof of Theorem 6.
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